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Abstract—Federated learning (FL) has emerged as a promising distributed learning paradigm that enables a large number of mobile
devices to cooperatively train a model without sharing their raw data. The iterative training process of FL incurs considerable
computation and communication overhead. The workers participating in FL are usually heterogeneous and the workers with poor
capabilities may become the bottleneck of model training. To address the challenges of resource overhead and system heterogeneity,
this paper proposes an efficient FL framework, called FedMP, that improves both computation and communication efficiency over
heterogeneous workers through adaptive model pruning. We theoretically analyze the impact of pruning ratio on training performance,
and employ a Multi-Armed Bandit based online learning algorithm to adaptively determine different pruning ratios for heterogeneous
workers, even without any prior knowledge of their capabilities. As a result, each worker in FedMP can train and transmit the sub-model
that fits its own capabilities, accelerating the training process without hurting model accuracy. To prevent the diverse structures of
pruned models from affecting the training convergence, we further present a new parameter synchronization scheme, called Residual
Recovery Synchronous Parallel (R2SP). Besides, our proposed framework can be extended to the peer-to-peer (P2P) setting.
Extensive experiments on physical devices demonstrate that FedMP is effective for different heterogeneous scenarios and data
distributions, and can provide up to 4.1× speedup compared to the existing FL methods.

Index Terms—Edge Computing, Federated Learning, Adaptive Model Pruning, Heterogeneity.
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1 INTRODUCTION

WITH the rapid development of the Internet of Things
(IoT), mobile and embedded devices (e.g., smart-

phones, wearables, and sensors) now generate more data
than ever before, expected to reach gigabytes or even ter-
abytes every day [1]. However, the limited communication
bandwidth, together with the desire for data privacy, makes
it infeasible to collect all data to the remote cloud for pro-
cessing. As an alternative, edge computing has gained much
attention [2], which performs data processing on edge nodes
close to the data sources. With more data and advanced
applications (e.g., autonomous driving, virtual reality), there
is a growing trend to use massive data generated at the
network edge to boost machine learning (ML) performance,
which is known as federated learning (FL) [3]. Among
previous FL frameworks, the dominant one is the parameter
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server (PS) based framework [4]. The PS transmits the global
model to the participating workers (i.e., edge nodes). These
workers perform local training using stochastic gradient
descent (SGD) [5] and send local updates to the PS for
global aggregation. In this process, FL enables multiple
workers to cooperatively train an ML model without having
to reveal their local data, which can protect user privacy and
relieve bandwidth burden. With the technical advantages
and implemental feasibilities, FL has been applied in a
variety of scenarios other than edge computing, including
finance, health, digital assistance and personalized recom-
mendations [6]–[9]. Besides, some specific FL applications
have been proposed to improve our daily life such as
next word prediction [10], query suggestion [11], physical
activity detection [12], and keyword trigger [13].

However, the FL paradigm will encounter some diffi-
culties in practice for the following reasons. (1) Scarce Com-
munication Bandwidth. Since the average wide area network
(WAN) bandwidth between the PS and workers is much
(e.g., 15×) lower than the local area network (LAN) band-
width within the datacenters where the PS resides [14], the
frequent communication between the PS and workers will
overwhelm the scarce WAN bandwidth, and the commu-
nication may be frequently interrupted, slow or expensive.
(2) Limited On-Edge Resources. Besides the bandwidth, the
computation and storage resources of the workers are al-
ways limited in edge computing [3]. On the other hand, the
parameter size of deep neural networks (DNNs) may reach
tens or even hundreds of megabytes. The heavyweight ar-
chitecture of DNNs makes them computationally expensive
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with excessive memory requirements and probably results
in unbearable delay or breakdown when training DNNs on
resource-constrained workers. (3) Heterogeneous Edge Nodes.
The edge nodes may range from universal gateways to
specialized base stations, and their communication, com-
putation and storage capabilities are usually heterogeneous
[15]. The workers with different capabilities will widen
the performance gap between high- and low-performance
nodes and deteriorate the training efficiency [7].

Some previous works have made efforts to separately
address the above resource limitation and system hetero-
geneity challenges. On the one hand, many solutions have
been proposed to reduce resource consumption by com-
munication round reduction [5], [16] or model/gradient
compression [17]–[25]. However, they just alleviate the total
communication cost and do not essentially reduce the model
complexity. As a consequence, huge computation overhead
makes on-device training difficult and may become the
principal constraint of these works. Moreover, an impor-
tant factor is ignored in previous studies of efficient FL,
i.e., heterogeneity. If the PS sends the identical model to
heterogeneous workers like [26], [27], the workers with poor
capabilities may become the bottleneck of model training
and delay global aggregation, called straggler problem [28].

On the other hand, some optimization methods [29]–[33]
have been proposed to mitigate the impact of heterogeneity
on FL. Unfortunately, they cannot reduce both communica-
tion and computation overhead, thereby hindering efficient
FL over resource constrained workers. The recent works
[34], [35] enable the training of heterogeneous local mod-
els with varying complexities, improving communication
and computation efficiency. However, HeteroFL [34] does
not propose specific methods about how to adaptively de-
termine the complexity levels of local models. They also
require complete knowledge about device capabilities for
model assignment. However, edge nodes are reluctant to
share their private information (e.g., computing power) with
the PS for privacy concerns. AdaptCL [35] does not pro-
vide the convergence analysis and introduces new hyper-
parameters to prevent excessive pruning, which is difficult
to achieve the trade-off between efficiency and accuracy.

In this paper, we propose FedMP, an efficient FL frame-
work to conquer the above challenges. Specifically, FedMP
adopts model pruning technique which can reduce the
resource demands of DNNs while maintaining the accu-
racy of the original models [27], [36], [37]. Compared with
parameter quantization and compression, model pruning
can realize both communication and computation savings.
We develop an online learning algorithm to adaptively
determine appropriate pruning ratios for heterogeneous
workers. Given the pruning ratios, the PS performs dis-
tributed model pruning and sends the personalized sub-
models to the workers for local training. In FedMP, each
worker only transmits and trains a pruned model fitting its
own capability, which can mitigate the effect of stragglers
on training performance.

However, there are some challenges in designing such
an FL framework. Firstly, it is non-trivial to determine
different pruning ratios for heterogeneous workers so as
to achieve the trade-off between resource efficiency and
model accuracy, especially when the prior knowledge of

workers’ capabilities is not available. Secondly, it is also
challenging to aggregate sub-models of workers to derive
the global model. Different from existing pruning methods,
the sub-models generated by adaptive model pruning have
diverse structures, thus direct aggregation by traditional
synchronization schemes such as Bulk Synchronous Parallel
(BSP) will degrade the overall accuracy [38]. In light of the
above discussion, we state the key contributions as follows:

• We propose a novel FL framework, called FedMP,
which simultaneously reduces computation and com-
munication overhead through adaptive model pruning,
enabling efficient FL over heterogeneous workers. Be-
sides, FedMP can be extended to the P2P setting.

• FedMP adopts a Multi-Armed Bandit (MAB) based
online learning algorithm to adaptively determine the
pruning ratios for the workers even without know-
ing any prior knowledge of their capabilities, which
achieves the trade-off between efficiency and accuracy.

• We also present a novel parameter synchronization
scheme called Residual Recovery Synchronous Parallel
(R2SP), which recovers the sub-models with diverse
structures before model aggregation and ensures com-
prehensive model updates during the training process.

• We implement FedMP on a physical platform and ex-
tensively evaluate FedMP with typical FL tasks. The
experimental results show that FedMP is effective for
different heterogeneous scenarios and data distribu-
tions, and can provide up to 4.1× speedup compared
to the existing FL methods.

The remainder of this paper is organized as follows.
Section 2 introduces the background and motivation. We
describe the workflow of FedMP and provide the conver-
gence analysis in Section 3. Section 4 presents an adaptive
pruning ratio decision algorithm. In Section 5, we extend
FedMP to the P2P settings. Experimental results are given
in Section 6. Section 7 discusses the applicability of FedMP
to other models. Section 8 reviews related works and Section
9 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of FL and
then discuss the disadvantages of traditional model pruning
methods for FL in heterogeneous edge computing, which
motivates our design.

2.1 Federated Learning

In FL, the workers make full use of the rich data from
IoT devices, mobile phones, edge servers, etc, and train
DNNs collaboratively while keeping data locally [3], [5],
[15]. Considering a set N = {1, 2, ..., N} of workers (i.e.,
edge nodes) with local datasets {D1, D2, ..., DN}, the goal
of FL is to solve the following distributed optimization
problem:

min
x∈Rd

F (x) � 1

N

N∑
n=1

Fn(x) (1)

where x is the model parameter vector, N is the number of
workers, and Fn(x) is the local loss function of worker n.
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TABLE 1
SUMMARY OF MAIN NOTATIONS

Symbol Definition
N Number of workers
Dn Local dataset
F Global loss function
Fn Local loss function
ϕn Training sample in the local dataset
K Total number of training rounds
k Round number index
τ Number of local iterations in each round
t Iteration number index
αk
n Pruning ratio of worker n in round k

xk Global model in round k

x̂k
n Sub-model of worker n in round k

xk
n Sparse model of worker n in round k

xk
n Residual model of worker n in round k

Qk
n Pruning error of worker n in round k

γ Learning rate
T k
n Completion time of worker n in round k

T k Completion time of round k

ε Convergence threshold of global loss function
Pk Sequence of partition regions
θ Granularity of pruning ratio exploration
λ Discount factor

Such a distributed ML framework incurs huge com-
putation and communication overhead, especially training
modern DNNs with a large number of parameters [39]. Due
to the limited computation and communication resources
in edge computing, the considerable overhead becomes a
bottleneck of speeding up the model training [17]. To over-
come the bottleneck, some efficient FL solutions have been
proposed to alleviate communication overhead by reducing
the frequency of global aggregation [3], [5], quantization
[17]–[21] and sparsification [22]–[25].

However, the previous works mainly focus on reducing
the communication overhead, but ignore the computation
efficiency. In fact, the computation capability of edge nodes
is also limited compared to that of the data center. It is no-
toriously expensive for DNNs to perform iterations of SGD.
For example, the VGG-16 model [40], with 138.34 million
parameters, requires 30.94 billion floating-point operations
to process a single image. Consequently, local training is
often very slow in modern DNNs due to the large amount
of computation overhead. Furthermore, the edge nodes
participating in FL are heterogeneous, i.e., with different
computation and communication capabilities. The unbal-
anced capabilities of workers will exacerbate the straggler
problem. Some “weak” workers may become the bottleneck
of model aggregation and seriously limit the training speed
of FL. In light of this fact, it is worthwhile to design more
effective solutions, which can reduce the resource cost and
mitigate the impact of device heterogeneity on FL.

2.2 Model Pruning
There are usually tens of millions of parameters in modern
DNNs, and it could be infeasible to store and train these

over-parameterized models on the resource-constrained de-
vices. To address this challenge, model pruning is proposed
to reduce the model parameters and resource demands
of DNNs while achieving almost similar accuracy of the
original model [36], [37]. In general, model pruning ap-
proaches can be classified into unstructured pruning and
structured pruning. On the one hand, unstructured pruning
removes the unimportant weights (i.e., the connections be-
tween the neurons) in the neural networks, which results
in a high level of parameter sparsity [36]. However, due to
the irregularization of the resulting sparse matrix, it is very
difficult to compress the parameters in memory, and some
specialized hardware/libraries are required to accelerate the
model training [41]. On the other hand, structured pruning
[37] is designed to directly remove some unimportant model
structures (e.g., convolutional filters) without introducing
sparsity. Therefore, the resulting model can be regarded as
a sub-figure or sub-model of the original neural network,
which contains fewer parameters and helps reduce both
communication and computation overhead.

Most of the existing model pruning methods are pro-
posed for centralized model training. However, the data
in FL is scattered across workers, and the PS does not
have access to data for pre-training. Thus these methods
cannot be directly applied to distributed scenarios of FL [36],
[37]. Although some works [27] focus on the application of
unstructured model pruning in FL, they need the support
of additional hardware and libraries. Besides, they ignore
the heterogeneity of workers and the PS sends the identi-
cal pruned model to all workers, thus weak workers will
become the bottleneck of model training. To this end, we
are inspired to design an efficient FL framework through
adaptive model pruning for heterogeneous workers.

3 PROPOSED FRAMEWORK

In this section, we propose FedMP, an efficient FL frame-
work, to improve both computation and communication
efficiency in heterogeneous edge computing. We first intro-
duce the overview of FedMP, then describe two key phases
in detail. Finally, we theoretically analyze the convergence
of FedMP.

3.1 Overview of FedMP

The model training usually involves a certain number of
rounds. As shown in Fig. 1, each round in FedMP consists
of the following phases:

� Adaptive model pruning: At the beginning of round
k ∈ {0, 1, ...,K − 1}, the PS adaptively determines the
specific pruning ratio αk

n according to the heterogeneous
capabilities of worker n (Section 4). Then the PS prunes
the global model xk into the sub-models in terms of the
pruning ratios. FedMP exploits a distributed method to
remove less important filters and neurons from the original
model (Section 3.2). After model pruning, the PS sends the
corresponding sub-model to each worker for local training.

� Local training: Within a training round, each worker
updates the sub-model over its local dataset via SGD for τ
iterations. The larger the pruning ratio is (i.e., more global
model parameters are pruned), the fewer CPU cycles it
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Fig. 1. FedMP overview. Each round consists of three phases,
i.e., adaptive model pruning, local training, model aggregation.
The workers are assigned different pruning ratios according to
their heterogeneous capabilities. The pruning ratio of the same
worker may vary in different rounds.

requires to process a data sample, and the fewer parameters
it transmits. After τ local iterations, model aggregation will
be activated, and each worker only uploads its trained sub-
model rather than the entire model.

� Model aggregation: After receiving the sub-models
from all workers, the PS begins to perform global aggrega-
tion. In FedMP, we propose R2SP to recover the sub-models,
then derive an updated global model by aggregating the
recovered models (Section 3.3).

The above procedure repeats until model convergence.
Since only the pruned models are transmitted and trained,
the computation and communication overhead is reduced
significantly compared with training the entire model.

3.2 Adaptive Model Pruning Phase

In order to prevent weak workers from blocking the learn-
ing process, the PS determines different pruning ratios for
heterogeneous workers, which will be elaborated in Sec-
tion 4. The pruning ratio αk

n represents the percentage of
filters/neurons that are removed from the original model
of worker n in round k. After determining the specific
pruning ratios, the PS performs distributed model pruning
on the same global model xk for each worker, which is
different from centralized model pruning methods. FedMP
adopts the structured pruning approach rather than the
unstructured pruning approach. The sparse network de-
rived by the unstructured pruning approach is difficult to
accelerate due to the lack of efficient sparse libraries and
specialized hardware. Pruning weights does not efficiently
reduce the computation time since most removed weights
are from the fully-connected layers, but the computation
cost is concentrated in the convolutional layers [42].

Specifically, the pruning strategy in FedMP is as follows.
To avoid introducing layer-wise hyper-parameters, every
layer uses the same pruning ratio [37]. The filters/neurons
in the same layer are sorted by their importance scores.
Given the pruning ratio, the filters/neurons with lower
importance scores will be removed from each layer of the
original model. FedMP chooses to use a simple yet effective

metric (i.e., l1-norm) to obtain the importance scores of fil-
ters/neurons [37]. For each filter in the convolutional layers,
we calculate the sum of the absolute kernel weights as the
filter’s score. Previous studies [36] have shown that low-
weight connections have a weak effect on model accuracy.
Consequently, for each neuron in the fully-connected layers,
we calculate the sum of the absolute weights that the neuron
is connected to as the neuron’s score. If the filters/neurons
have relatively lower scores, they seem less important, and
will be removed in terms of the pruning ratio, leading to a
more compact network architecture.

When the filters with their feature maps are pruned, the
corresponding channels of filters in the next layer are also
removed. In addition, if a convolutional layer is pruned,
the weights of the subsequent batch normalization layer
are removed too. A smaller sub-model x̂k

n is created for
worker n after distributed model pruning, and the remain-
ing parameters of the modified global model are copied
into the sub-model. The sub-models are sent from the PS
to workers, then each worker starts local training over
its local dataset. These pruned models have much fewer
parameters compared to the original global model, thus
both resource consumption and memory footprint will be
reduced dramatically. Note that the sub-model x̂k

n of each
worker is related to its pruning ratio αk

n and may vary with
different workers.

In a nutshell, our approach converts a cumbersome
model into a slim model and does not introduce extra layer-
wise meta-parameters. l1-norm is a good metric for filters
and neurons evaluation considering that the PS is data free
in FL setting. Moreover, FedMP does not rely on specialized
libraries and hardware for acceleration performance, so it
can work with existing deep learning libraries.

3.3 Model Aggregation Phase

After the workers complete the sub-model training over
the local datasets, the local updates will be sent to the PS
that synchronizes the parameters. Synchronization among
workers is very critical in FL, and is a costly operation that
may significantly reduce the benefits of data parallelism
and model parallelism. Since the pruning ratios of differ-
ent workers change dynamically, the sub-models involved
in global aggregation have diverse structures in FedMP.
Traditional synchronization schemes in distributed machine
learning such as BSP may degrade the overall accuracy [38].
Therefore, we design a new synchronization scheme, called
Residual Recovery Synchronous Parallel (R2SP) to guarantee
the training convergence.

We next introduce the workflow of R2SP, as shown in
Algorithm 1. In round k, the relatively unimportant filters
and neurons are selected for worker n according to the
pruning ratio αk

n. The kernel weights of these filters and
the weights connected to these neurons will be set to zero
so as to obtain the sparse model xk

n. Note that the sparse
model xk

n is different from the sub-model x̂k
n that will be

sent to worker n. That is, the physically removed parameters
in the sub-model are set to 0 in the sparse model. The
global model and the sparse model are subtracted to obtain
the residual model xk

n, i.e., xk
n = xk − xk

n, and it works
as an auxiliary variable for parameter synchronization. In
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Algorithm 1 Residual Recovery Synchronous Parallel

1: for Each round k ∈ {0, 1, ...,K − 1} do

2: Processing at the PS:

3: Prune the global model xk to obtain the sparse model
xk
n and sub-model x̂k

n;
4: Obtain the residual model xk

n = xk − xk
n;

5: Record the indexes of the remaining parameters;
6: Distribute the sub-model x̂k

n for local training;
7: Receive the trained sub-models from all workers;
8: Recover the sub-model x̂k

n based on the indexes;
9: Add the recovered models and residual models;

10: Perform parameter averaging;

practice, the indexes of the remaining parameters also need
to be recorded for each worker n in R2SP, and we can use
a binary mask to store the indexes, resulting in a negligible
overhead for the resource-rich PS [14].

After receiving the trained sub-models from all workers,
the PS begins to perform global aggregation. R2SP first
performs model recovery for each sub-model based on the
indexes stored in the PS. The recovered models have the
same network structure as the global model. R2SP adds the
recovered models and the corresponding residual models,
then performs parameter averaging among all workers.
Although the PS needs to maintain the residual models
in R2SP, their occupied memory will be released after
each global aggregation. In the current round, the residual
models will not incur significant memory overhead on the
PS. It is known that DNNs do not need full floating-point
precision for inference [43]. When there are many workers,
we can quantize each parameter in residual models with
fewer bits to further reduce the memory overhead. The
memory occupied by the residual model is only 10-20%
of that by the original model, and thus leads to a small
overhead for the resource-rich PS, which is usually a cloud
or cloudlet in edge computing scenarios [44].

By the iterative pruning and recovery process, the PS
maintains a rather complete model structure in the whole
training process. With residual models, the filters and neu-
rons pruned in the last round will be recovered during
global aggregation, thus they may be trained in the next
round. In this way, R2SP ensures that each model parameter
has a chance to be trained. This is the major difference
from traditional model pruning methods, which perma-
nently remove filters and neurons from the network. The
pruned parameters in traditional methods cannot update
their weights, leading to a smaller and smaller global model.
However, R2SP enables a fully functional model by recover-
ing the sub-models and prevents the removal of important
parameters from affecting subsequent training.

3.4 Convergence Analysis

In this section, we provide the convergence analysis of our
proposed framework. We use an element-wise product to
represent the pruned model, i.e., x̂k

n = xk � mk
n, where

xk is the global model in round k and mk
n denotes the

mask vector that is zero if the corresponding parameter in
xk is pruned and one otherwise. Only the parameters that

have not been pruned from the global model are accessible
and trainable. After adaptive model pruning, each worker n
receives the corresponding pruned model x̂k

n and performs
τ local iterations by setting x̂k

n(0) = x̂k
n. At each iteration

t ∈ {1, 2, ..., τ}, the local model can be updated as

x̂k
n(t) = x̂k

n(t− 1)− γ∇Fn(x̂
k
n(t− 1);ϕn)�mk

n (2)

where γ is the learning rate and ϕn is a training sample
from the local dataset Dn. It is worth mentioning that
∇Fn(x̂

k
n(t−1);ϕn)�mk

n is the stochastic gradient computed
by the remaining parameters in x̂k

n(t − 1). Only the un-
pruned parameters are updated by the stochastic gradient
while the pruned parameters will not be updated due to
the element-wise product with mask mk

n. In this way, the
training process of the pruned model x̂k

n (including forward
and backward propagation) in the theoretical analysis is
consistent with that of the sub-model in our FedMP frame-
work. After τ iterations, the trained local models x̂k

n(τ) are
uploaded and then aggregated into the new global model.

To analyze the convergence of FedMP, we assume that
our problem satisfies the following common assumption,
which is widely used in previous works [45]–[48] on the
convergence analysis.

Assumption 1. Assume that our problem satisfies the following
conditions:
1) Smoothness: Each function Fn(x) is smooth with modulus L.
2) Bounded variances: There exists a constant σ > 0 such that

E[‖∇Fn(x;ϕn)−∇Fn(x)‖2] ≤ σ2, ∀x, ∀n
3) Bounded stochastic gradients and weights: There exist con-
stants G > 0 and δ > 0 such that

E[‖∇Fn(x;ϕn)‖2] ≤ G2,E[‖ x ‖2] ≤ δ2, ∀x, ∀n
The following lemma shows that the deviations between

xk and x̂k
n(t − 1) can be controlled by selecting proper

pruning ratios. In this paper, we use the pruning error
to measure how well the pruned model approximates the
original model, which is defined as Qk

n � E[‖ xk − x̂k
n ‖2].

Lemma 1. Under Assumption 1, the proposed framework ensures

τ∑
t=1

N∑
n=1

E[‖ xk − x̂k
n(t− 1) ‖2] ≤ 2τ3γ2G2N

3
+ 2τ

N∑
n=1

Qk
n

The proof of Lemma 1 can be found in Appendix A.

Theorem 1. Let Assumption 1 and Lemma 1 hold, the conver-
gence bound of our proposed framework is

1

K

K−1∑
k=0

E[‖ ∇F (xk) ‖2]

≤ 4

Kγτ
(F (x0)− F (x∗)) +

6L2

KN

K−1∑
k=0

N∑
n=1

Qk
n +

6Lγσ2

N
+ 2τ2γ2L2G2

where x∗ denotes the optimal model which minimizes the global
loss function.

The proof of Theorem 1 can be found in Appendix B.
In Theorem 1, we settle for a weaker notion of convergence
and use the expected squared gradient norm to analyze the
convergence property, as suggested in [18], [49].
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Corollary 1. According to the pruning strategy and Assumption
1, we have

1

K

K−1∑
k=0

E[‖ ∇F (xk) ‖2]

≤ 4

Kγτ
(F (x0)− F (x∗)) +

6L2δ2

KN

K−1∑
k=0

N∑
n=1

αk
n +

6Lγσ2

N

+ 2τ2γ2L2G2

The proof of Corollary 1 can be found in Appendix C.
From Corollary 1, we find that the convergence bound is
closely related to the pruning ratio of each worker. Larger
pruning ratios result in a looser convergence bound, and
vice versa. If the sub-model has fewer parameters (i.e., larger
pruning ratios), the resource overhead can be reduced, but
it will also have a negative impact on convergence.

4 ALGORITHM FOR PRUNING RATIO DECISION

In this section, we propose an adaptive pruning ratio deci-
sion algorithm which is an important part in FedMP. We first
formalize the problem and then identify two key challenges
in designing such an algorithm. Finally, we propose an on-
line learning algorithm to adaptively determine the pruning
ratios for workers.

4.1 Problem Formulation

As discussed in Section 3, the completion time T k
n of worker

n in round k includes local computation time T k
n,comp and

transmission time T k
n,comm, i.e.,

T k
n = T k

n,comp + T k
n,comm (3)

Both T k
n,comp and T k

n,comm are related to the pruning ra-
tios. The larger the pruning ratios are, the more parameters
will be removed from the original model, resulting in less
transmission time and local computation time.

In the synchronous FL, the total latency is determined by
the “slowest” worker. The total time of round k in FedMP is
defined as

T k = max
n

T k
n (4)

By Eq. (4), the completion time T k of round k depends
on the pruning ratios of all workers. Our goal is to de-
termine the optimal pruning ratios for workers so as to
minimize the completion time of the whole FL training
with accuracy requirement. The optimization problem can
be formulated as

min
K−1∑
k=0

T k

s.t.

{
F (xK) < ε

0 ≤ αk
n < 1, ∀n, ∀k (5)

The first inequality guarantees the model accuracy
where ε is the convergence threshold of global loss function.
The second inequality bounds the range of the pruning ratio.
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Fig. 2. Effect of different pruning ratios on test accuracy.

4.2 Key Challenges

There are two key challenges in designing an effective
algorithm for adaptive pruning ratio decision.

Challenge 1. How should we determine optimal model prun-
ing ratios for workers so as to achieve the trade-off between
resource efficiency and training accuracy? To verify the trade-
off between efficiency and accuracy, we train AlexNet on
the CIFAR-10 dataset over 10 workers. The learning rate, the
batch size and the number of local iterations are set as 0.02,
16 and 50, respectively. Fig. 2(a) shows the accuracy results
given the same training rounds when pruning ratios vary
from 0 to 0.9. We observe that the model accuracy gradually
decreases with the increase of pruning ratio. This is expected
because more sensitive and meaningful filters/neurons are
removed as the pruning ratio increases. Aggressive pruning
will result in the negative impact on training performance
with respect to the number of rounds. On the other hand,
we report the accuracy results given the same time budget
in Fig. 2(b), where the accuracy first increases and then
decreases with the pruning ratio varying from 0 to 0.9. When
the pruning ratio is relatively small, the pruned model can
achieve better accuracy than the original one whose pruning
ratio is 0. The explanation for the above phenomenon is the
training time is equal to the number of rounds multiplied
by the per-round completion time. Model pruning with a
smaller ratio does not seriously hurt the model accuracy,
and can reduce the per-round completion time [36], [37].
Thus under the given time, the pruned model can be trained
for more rounds than the original model, resulting in better
accuracy. According to the experimental results, the smaller
pruning ratio ensures the model accuracy, but the compu-
tation and communication overhead is still high. On the
contrary, the larger pruning ratio will contribute to less com-
munication and computation overhead, and is more likely to
deteriorate the model accuracy. The pruning ratio decision
has a crucial impact on the trade-off between resource
efficiency and training accuracy. However, it is difficult to
capture the quantitative relationship among model pruning
ratio, resource consumption and convergence performance.

Challenge 2. How should we adaptively determine different
pruning ratios for heterogeneous workers? Considering edge
heterogeneity, the pruning ratios should be adaptive to the
training process of different workers. If the PS determines a
uniform pruning ratio or sends a uniform pruned model to
all workers, the high-performance workers will compromise
to the low-performance ones and perform local training
with large pruning ratios, leading to resource waste and
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accuracy loss. The low-performance workers are still the
bottleneck of model training. However, due to the large
solution space, it is challenging to simultaneously determine
different pruning ratios for heterogeneous workers. Further-
more, the edge nodes probably are unwilling to share their
private information such as computing power with the PS.
The pruning ratio decision would be more complicated due
to the lack of prior knowledge.

4.3 Multi-Armed Bandit Based Algorithm

To address the challenges above, we propose a Multi-Armed
Bandit (MAB) based online learning algorithm to adaptively
determine the pruning ratios for heterogeneous workers
without any prior knowledge of their capabilities.

The decision optimization problem can be modeled as
an MAB problem, where the PS and the pruning ratios can
be regarded as the player and the arms, respectively. In each
round, the PS makes the decision about which arm of the
bandit is pulled, and a reward in Eq. (6) will be received
after the decision. Upper Confidence Bound (UCB) policy is
widely used to address the MAB problem [50]. Traditional
UCB policy with the discrete arm setting only has a finite
set of choices. However, the value range of pruning ratio
in FedMP is a continuous space so that the arm space is
infinite. In this paper, we extend the UCB policy to the case
where the arms are continuous, namely Extended Upper
Confidence Bound (E-UCB), as described in Algorithm 2.

Specifically, E-UCB will create agents for the workers
participating in FL and use the decision tree to adaptively
learn arm space partitions. In round k, each agent maintains
a sequence of finite partitions of the arm space Pk =
{P 1

k , P
2
k , ..., P

lk
k } with ∪lk

j=1P
j
k = [0, 1) and P0 = {[0, 1)}

(Line 1), where lk is the number of partition regions and may
vary over time. These partition regions could be viewed as
leaves in the decision tree. E-UCB treats the problem as
a finite-arm bandit problem with respect to the partition
regions, and chooses the partition region that maximizes
the upper bound of a confidence interval for the expected
reward (Lines 3-5). All arms within the chosen region are
treated as the same and selected randomly (Line 6). After
determining the pruning ratio αk

n for worker n, the chosen
partition region is split into multiple regions to form the
new partition Pk+1 (Line 8), and the decision tree grows
adaptively as the algorithm runs. E-UCB stops extending
the decision tree once leaf diameters (region diameters)
are below θ (Line 7), which represents the granularity of
pruning ratio exploration. We will show the influence of
θ on the model training process through experiments in
Section 6. After receiving all sub-models from workers, the
PS can get the completion time T k

n of worker n (Line 11). The
agent will observe a reward from its interactive environment
(Line 12), which has a crucial impact on future decisions.
The reward in E-UCB can be defined as

R(αk
n) =

ΔLoss

|T k
n − 1

N

∑N
n′=1 T

k
n′ |

(6)

where the numerator indicates the contribution of the work-
ers to model convergence. The denominator represents the
gap between the completion time of worker n and the
average completion time. A smaller gap means that the

Algorithm 2 Extended Upper Confidence Bound (E-UCB)
for Worker n

1: Initialize P0 = {[0, 1)};
2: for Each round k ∈ {0, 1, ...,K − 1} do

3: for Each partition region P j
k ∈ Pk do

4: Calculate upper confidence bound
Uk(P

j
k ) = Rk(λ, P

j
k ) + ck(λ, P

j
k );

5: Choose the partition region P j
k = argmaxUk(P

j
k );

6: Select the pruning ratio αk
n from P j

k ;
7: if The diameter of P j

k is larger than θ then

8: Split P j
k with αk

n to form Pk+1;
9: else

10: Pk+1 = Pk;

11: Record the completion time T k
n of worker n;

12: Calculate the reward R(αk
n);

selected pruning ratio fits the worker’s capabilities better,
leading to a higher reward.

To choose the most appropriate partition region, the
agent should pursue a balance between the exploitation of
arms that perform well in the past and the exploration of
arms that might return higher rewards in the future. E-UCB
uses the following definition of upper confidence bound to
address the exploitation vs. exploration challenge.

(1) Exploitation. Let Nk(λ, P
j
k ) =

∑k−1
s=1 λ

k−s
�{αs

n∈P j
k}

record the number of times that the partition region P j
k is

chosen, where λ ∈ (0, 1) is a discount factor. The indicator
function �{αs

n∈P j
k} is 1 when αs

n ∈ P j
k and 0 otherwise. The

discounted empirical average is given by

Rk(λ, P
j
k ) =

1

Nk(λ, P
j
k )

k−1∑
s=1

λk−sR(αs
n)�{αs

n∈P j
k} (7)

The exploitation item averages all past rewards with a
discount factor λ while giving more weight to recent ob-
servations.

(2) Exploration. If the agent always selects the pruning
ratio from the partition region which it currently regards as
the best, it might miss another partition region with a higher
expected reward. Thus E-UCB adds an exploration item to
the upper bound. Let nk(λ) =

∑lk
j=1 Nk(λ, P

j
k ) hold and

the discounted padding function is defined as

ck(λ, P
j
k ) =

√
2 log nk(λ)

Nk(λ, P
j
k )

(8)

where Nk(λ, P
j
k ) records the number of times that the parti-

tion region P j
k is chosen and nk(λ) represents the total num-

ber of times that all partition regions are chosen. When the
partition region P j

k is not chosen for a long time, Nk(λ, P
j
k )

remains the same and nk(λ) keeps increasing, thus expand-
ing the exploration item. As a result, this partition region
P j
k has a greater chance of being selected in the subsequent

training process. The discounted padding function enables
the agent to explore other potential partition regions, which
prevents getting stuck in the local optimum.

The upper confidence bound in E-UCB is defined as

Uk(P
j
k ) = Rk(λ, P

j
k ) + ck(λ, P

j
k ) (9)
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The region P j
k with the largest Uk will be chosen. The

key idea behind E-UCB is that the agent always chooses
the best partition region that fits the worker’s capabilities
based on the estimated reward. The regions with the largest
Uk are carefully split while worse regions are not explored
anymore. By fitting the decision tree that grows adaptively,
the partitions can be learned from last experience.

With the knowledge of heterogeneous capabilities, some
more straightforward methods can be used to determine
the pruning ratios. However, it is usually impractical for
the PS to obtain these private information of workers in
edge computing. To this end, E-UCB adaptively learns the
partitions and determines the pruning ratios only through
the completion time of workers without requiring any prior
knowledge of heterogeneous capabilities. The performance
of designed arm-pulling policy is measured by regret, which
is defined as the difference between the expected reward by
playing the optimal arms and that obtained by the given
policy. The goal of E-UCB algorithm is to minimize the
expected regret, i.e.,

lim
K→∞

1

K

K−1∑
k=0

(R(α∗)−R(αk
n)) = 0 (10)

where α∗ is the optimal pruning ratio. Obviously, bounding
the expected regret is essentially equivalent to controlling
the number of pulling the sub-optimal arms. The algorithm
performance can be guaranteed according to [51]. Consid-
ering the system performance, E-UCB algorithm only in-
curs negligible overhead on each worker while significantly
speeding up the training process. The algorithm overhead
will be quantified in the experiments of Section 6.

5 EXTENSION TO P2P SETTING

In this section, we show how FedMP extends to the P2P
setting and propose an algorithm of pruning ratio decision
and neighbor selection for decentralized FL.

5.1 Workflow of P2P-FedMP
In the PS based FL framework, all distributed workers have
to communicate with the PS, which could potentially incur
the single-point of failure due to network jam or malicious
attacks. This bottleneck makes the PS architecture difficult
to scale to a large number of workers. To overcome the
shortcomings of the PS architecture, decentralized FL is well
worth investigating, where each participating worker trains
local model and exchanges parameters with neighbors in the
peer-to-peer (P2P) manner to reach a consensus. There is no
central server to collect or distribute models under the P2P
setting. Therefore, it can avoid the communication hot-spot
and potential disastrous failure of the PS.

To this end, we extend FedMP to the P2P setting without
the assistance of the PS (referred to as P2P-FedMP). At the
beginning of round k, each worker n determines its pruning
ratio αk

n. Then worker n performs structured pruning for its
local model and obtains a more compact local model x̂k

n that
has much fewer parameters compared to the original model.
After model pruning, the local models of workers in the P2P
topology have different structures and sizes, which fit their
own capabilities and thus mitigate the effect of stragglers on

training performance. In each round, the pruned model x̂k
n

is trained τ iterations over the local dataset Dn.
Unlike the PS architecture where the central server is

responsible for collecting and aggregating the local models,
the workers in decentralized FL exchange the models along
the P2P links. The link speeds connecting the workers are
mainly determined by the geographic distance. It is reported
that the link speed between geographically-close workers
can be up to 12× faster than that between distant ones [52].
Besides, the link speeds are usually time-varying due to
workers’ mobility or background noise. A high-speed link at
one time may get slow at other time. In such heterogeneous
and dynamic P2P networks, exchanging models via low-
speed links will severely slow down the training process.
Therefore, considering the pruning ratios and network con-
ditions, P2P-FedMP will dynamically select the communica-
tion neighbors for workers in each round. In our framework,
the workers tend to communicate through high-speed links
in the P2P networks to accelerate decentralized training.
The detailed policy of pruning ratio decision and neighbor
selection is presented in Section 5.3.

Afterward, the workers exchange the pruned models
with their selected neighbors. The indexes of the reserved
parameters are also sent to the neighbors. We adopt a binary
mask to record the indexes and the binary mask only uses 1
bit to indicate whether the parameter is reserved, resulting
in negligible communication overhead [14]. After receiving
the parameters from the neighbors, worker n recovers the
pruned models of its neighbors in terms of the received
indexes. Finally, the recovered models are aggregated into
the latest local model. Since the pruned models are trained
and transmitted in the P2P topology, the computation and
communication overhead are drastically reduced. Besides,
the workers tend to select neighbors with short commu-
nication time, thus P2P-FedMP has cheaper scalability and
higher training efficiency.

5.2 System Model
In decentralized FL, a set N = {1, 2, ..., N} of workers
collaboratively train models under the P2P setting. The P2P
topology can be expressed as an undirected graph. We use
the symmetric adjacency matrix Ak = [akn,m] ∈ R

N×N to
denote the undirected graph. If there exists a communica-
tion link (n,m) between worker n and worker m in round
k, we have akn,m = akm,n = 1; otherwise akn,m = akm,n = 0.
Each worker only exchanges models with its neighbors
instead of the PS. The neighbor set of worker n can be
represented by Mk

n =
{
m ∈ N|akn,m = 1

}
. The degree

matrix Ek = [ekn,m] ∈ R
N×N is a diagonal matrix, where

ekn,n=|Mk
n|. Combining the adjacency matrix and the de-

gree matrix, the Laplacian matrix Lk can be expressed as
Lk = Ek − Ak. According to the spectral graph theory
[53], there are the following important properties about the
Laplacian matrix:

• The eigenvalues of Lk are denoted by Φ1(L
k) <

Φ2(L
k) <· · ·< ΦN (Lk), where Φi(L

k) is the i-th small-
est eigenvalue of matrix Lk. Then we have Φ1(L

k) = 0.
• Φ2(L

k) > 0 if and only if the P2P topology is con-
nected. A larger value of Φ2(L

k) implies a denser
graph.
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Furthermore, due to the communication resource con-
straints, the available bandwidth on each worker is limited
in the P2P networks. Let bkn,m be the bandwidth occupied
by communication from worker n to worker m and Bk

n

denote the available bandwidth of worker n in round k. We
need to ensure that the bandwidth used to communicate
with neighbors does not exceed resource constraints, i.e.,∑

m∈Mk
n
bkn,m ≤ Bk

n. The time T k
n,m for transmitting a

pruned model from worker n to worker m is defined as

T k
n,m =

(1− αk
n) ·W

vkn,m
(11)

where W is the size of the original model and vkn,m is the
link speed from worker n to worker m in round k. The
completion time T k

n of worker n in round k includes the
computation time T k

n,comp for local updating and the com-
munication time maxm∈Mk

n
T k
n,m with neighbors, which can

be expressed as

T k
n = T k

n,comp + max
m∈Mk

n

T k
n,m (12)

In the synchronous manner, all decentralized workers are
required to enter the next round simultaneously. Thus,
the round completion time is T k = max

n
T k
n . Finally, the

optimization problem of pruning ratios and communication
neighbors under the P2P setting can be formulated as

min
K−1∑
k=0

T k

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F (xK) < ε

Φ2(L
k) > 0, ∀k∑

m∈Mk
n
bkn,m ≤ Bk

n, ∀n, ∀k
0 ≤ αk

n < 1, ∀n, ∀k
(13)

The first inequality guarantees the model accuracy. The
second inequality ensures a connected topology in each
round. The third inequality expresses the communication
resource constraints and the fourth inequality bounds the
range of the pruning ratio.

5.3 Algorithm Design
Considering the inherent properties of decentralized FL
paradigm, P2P-FedMP not only needs to determine the
appropriate pruning ratios for workers but also selects com-
munication neighbors for them. The pruning ratio decision
and neighbor selection are interactive, i.e., their decisions
have an impact on each other. On the one hand, the pruning
ratio should match the link speeds of the selected neigh-
bors, which prevents the stragglers from affecting training
efficiency. On the other hand, the workers tend to select
some neighbors with short communication time for model
exchange according to the corresponding pruning ratios.
The tightly coupled problem demonstrates the need for
joint optimization, which brings additional challenges for
algorithm design under the P2P setting.

To this end, we take into account interactive decisions
on the basis of E-UCB and optimize the pruning ratios
and communication neighbors alternately via fixed-point
iterations [54]. Only by optimizing the relationship between

Algorithm 3 Pruning Ratio Decision and Neighbor Selection
in Round k

1: Initialize Ak with the fully-connected topology;
2: Determine the initial pruning ratio αk

n by E-UCB;
3: Construct a list of candidate links based on Ak;
4: while The candidate list is not empty do

5: Calculate the communication time T k
n,m based on the

updated pruning ratio αk
n;

6: Choose the link (n,m) with the longest time T k,max
n,m

from the candidate list;
7: Remove the link (n,m) from the candidate list;
8: if

∑
i∈Mk

n
bkn,i > Bk

n or
∑

i∈Mk
m
bkm,i > Bk

m then

9: ak
n,m = ak

m,n = 0;
10: if Φ2(L

k) ≤ 0 then

11: ak
n,m = ak

m,n = 1;

12: Calculate the reward R(αk
n) based on the updated

topology Ak;
13: Select the pruning ratio αk

n from the partition
region P j

k with probability z(P j
k );

14: Obtain the final pruning ratio αk
n and neighbor set Mk

n;

the two, can the coupled problem be solved overall. In the
alternate optimization process, we remove the bottleneck
links that slow down the training process under the updated
pruning ratio scheme. Then the pruning ratios are adjusted
in time based on the received rewards to adapt to changes in
network topology. In this way, the pruning ratio and com-
munication neighbors adapt to each other to get the final
decision, which will better accommodate heterogeneous and
dynamic network conditions under the P2P setting.

In the above joint optimization process, the contribu-
tion of pruning ratio to model convergence is agnostic in
advance of actual training. Thus we need to update the
design of the reward function in E-UCB to overcome the
unavailability of future training information. The reward
function of the joint optimization process is

R(αk
n) =

1− αk
n

|T k
n − 1

N

∑N
n′=1 T

k
n′ |

(14)

A smaller pruning ratio does not seriously hurt model
accuracy and thus gets higher rewards. Meanwhile, if the
completion time under this pruning ratio deviates from
other workers, it will have a negative impact on the received
rewards. In other words, we expect slight pruning and
a small gap in completion time. Traditional MAB meth-
ods compute the actual reward of an arm by averaging
the received rewards. However, the link speeds are time-
varying in decentralized FL paradigm. Correspondingly,
the optimal pruning ratios change dynamically over time,
which results in a non-stationary MAB problem [55]. There-
fore, it is not rational to directly average the rewards as
traditional MAB methods. To make the reward estimation
more stable and accurate, P2P-FedMP adopts exponential
moving average to concentrate more on the recent rewards
while the weights of past rewards decay [56]. In round k,
each agent maintains a sequence of finite partitions of the
arm space Pk = {P 1

k , P
2
k , ..., P

lk
k } with ∪lk

j=1P
j
k = [0, 1). In
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the joint optimization process, if αk
n ∈ P j

k , the discounted
empirical average of partition region P j

k will be gradually
updated as

Rk(λ, P
j
k ) = Rk(λ, P

j
k ) + λ(R(αk

n)−Rk(λ, P
j
k )) (15)

where λ is the same discount factor as the E-UCB algorithm.
The goal of our MAB algorithm is to maximize the

total received rewards by balancing exploitation (the use
of acquired information) and exploration (acquiring new
information). If the player always plays the arm he currently
thinks is best, he may miss identifying another arm that
actually has a higher reward. Conversely, if the gambler
explores the environment too frequently in search of prof-
itable actions, he cannot accumulate as many rewards. In
P2P-FedMP, we use the Boltzmann strategy [57] to pursue
a judicious trade-off between exploration and exploitation.
Specifically, the probability of choosing partition region P j

k
is derived as

z(P j
k ) =

eRk(λ,P
j
k )∑lk

j′=1 e
Rk(λ,P

j′
k )

(16)

Based on the updated reward function, we describe the
joint optimization process of pruning ratios and commu-
nication neighbors in Algorithm 3. In each round k, we
initialize the pruning ratios of alternate decision process
(Lines 4-13) by E-UCB, and the initial topology is the fully-
connected topology [58]. According to the initial topology,
we can construct a list of candidate links. In heterogeneous
and dynamic P2P networks, the workers with low-speed
links will become the bottleneck of decentralized learning
and restrict the training process. P2P-FedMP aims to opti-
mize the utilization of high-speed links to accelerate decen-
tralized training. Considering both the pruning ratios and
link speeds, we calculate the communication time between
worker n and worker m as T k,max

n,m = max{T k
n,m, T k

m,n}.
Then we identify the bottleneck link (n,m) with the longest
communication time T k,max

n,m from the candidate list. On the
premise of ensuring resource constraints, the link (n,m)
will remove from the P2P topology Ak, which contributes
to improving training efficiency. It is worth noting that a
connected topology is enough to guarantee the training
convergence under the P2P setting [59]. Therefore, we only
remove the links that will not affect the connectivity of the
P2P topology. Based on the updated topology, the pruning
ratio αk

n receives the corresponding reward R(αk
n). Then the

selection probability of partition regions can be obtained
according to the returned reward. To balance exploitation
and exploration, we choose the pruning ratio αk

n from
the partition region P j

k with the corresponding probability
z(P j

k ). Considering the updated pruning ratios, we can
again identify the bottleneck link with the longest com-
munication time from the remaining candidate links. Upon
traversing the candidate list, we generate the final pruning
ratio αk

n and neighbor set Mk
n for worker n in round k.

6 EVALUATION

6.1 Experimental Setup
Implementation. We implement a prototype of FedMP by
employing an AMAX deep learning workstation as the PS

TABLE 2
DIFFERENT COMPUTING MODES FOR JETSON TX2

Mode Denver2 (dual-core) Cortex-A57 (quad-core) GPU
0 2.0 GHz×2 2.0 GHz×4 1.30 GHz
1 — 2.0 GHz×4 1.12 GHz
2 1.4 GHz×2 1.4 GHz×4 1.12 GHz
3 — 1.2 GHz×4 0.85 GHz

and 30 NVIDIA Jetson TX2 devices as the workers. The
workstation is equipped with one Intel Xeon Octa-core E5-
2620 v4 processor and 4 NVIDIA GeForce RTX 2080Ti GPUs
with 11GB GDDR6 memory each. Every Jetson TX2 has 8GB
LPDDR4 main memory and features an NVIDIA Denver2
(dual-core) CPU cluster, an ARM Cortex-A57 (quad-core)
CPU cluster and an NVIDIA Pascal GPU with 256 CUDA
capable cores. Our software implementation is based on
Pytorch v1.6, but can be easily extended to other ML frame-
works such as TensorFlow.

Heterogeneous workers. we consider both computation
heterogeneity [60] and communication heterogeneity [61]
in the experiments. (1) Computation heterogeneity: We set
different computing modes for each Jetson TX2 to reflect the
heterogeneous computation capabilities of workers, as sum-
marized in TABLE 2. From modes 0 to 3, the computation
capability decreases gradually. (2) Communication heterogene-
ity: The communication capabilities of workers may also be
different in practice. The workers usually connect to the PS
via wireless links in edge computing, and the signal strength
of wireless links may vary with the distance [62]. Hence, we
place Jetson TX2 devices at different locations to simulate
communication heterogeneity. As shown in Fig. 3, based on
different computing modes (X-axis) and locations (Y-axis),
we partition the devices into three clusters (i.e., A, B, C). By
selecting workers from these clusters, we can create different
heterogeneous scenarios.

Models and datasets. We evaluate the effectiveness of
FedMP on four typical FL tasks: (1) CNN on MNIST, (2)
AlexNet on CIFAR-10, (3) VGG-19 on EMNIST and (4) ResNet-
50 on Tiny-ImageNet. The MNIST dataset contains 60,000
training and 10,000 test greyscale images of handwritten
digits with size 28×28. The CIFAR-10 dataset includes
60,000 32×32 color images (50,000 for training and 10,000
for testing) of ten different types of objects. The EMNIST
dataset is composed of 731,668 training images and 82,587
testing images which draw from 62 classes of objects [63].
The Tiny-ImageNet dataset contains 200 classes, where each
class has 500 training images and 50 test images. The di-
mension of each image is 64×64×3. The CNN has two 5×5
convolutional layers, a fully-connected layer with 256 units,
and a softmax output layer with 10 units [5].

Data distribution. Considering that the workers in FL
collect data from their physical locations directly, the data
samples among workers are usually not independent and
identically distributed (non-IID). As a measurement of non-
IIDness in data distribution among workers, we use y to
define the non-IID level.

• For MNIST and CIFAR-10: The non-IID level of y in-
dicates that y% of the data on each worker belong to
one label and the remaining data belong to other labels
[64]. As a special case, we use the non-IID level of 0 to
denote IID data distribution among workers.
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• For EMNIST and Tiny-ImageNet: The non-IID level of
y indicates that each worker lacks y classes of data
samples, which is similar with the setting of [65]–[67].

Baselines. We compare our framework with the follow-
ing baselines:

• Syn-FL [3] transmits and trains the entire models. The
PS aggregates the parameters after all of the heteroge-
neous workers have finished local updates.

• UP-FL [27] determines a uniform pruning ratio for all
workers in each round, and the pruning ratio may vary
in different rounds.

• FedProx [29] allows participating workers to perform
different numbers of local iterations based on their
heterogeneous capabilities.

• FlexCom [33] considers heterogeneous communication
condition and enables flexible communication compres-
sion, which allows heterogeneous workers to compress
the gradients to different levels before uploading.

Default settings. Unless noted otherwise, the number of
workers is 10 throughout the experiments. Half of them are
selected from cluster A, and half are selected from cluster B.
The data samples are assigned to each worker uniformly. We
set the discount factor λ as 0.95 [56]. For a fair comparison,
the baselines are implemented on the same platform as
FedMP.

6.2 Experimental Results
6.2.1 Effect of Pruning Granularity θ

The parameter θ represents the granularity of pruning ra-
tio exploration in E-UCB. In Section 4.3, E-UCB uses the
decision tree to adaptively learn arm space partitions and
determine the pruning ratios. The decision tree stops grow-
ing when region diameters are below θ. To investigate the
effect of pruning granularity θ on training performance, we
measure the completion time of different models to reach
the target accuracy (e.g., 90% for CNN, 80% for AlexNet,
80% for VGG-19, 45% for ResNet-50) when θ varies from
0.01 to 0.25. For the sake of comparison, we normalize the
completion time, and the results of the four models are
shown in Fig. 4.

For all the four models, when the parameter θ is small
(i.e., θ ∈ [0.01, 0.05]), it only has a minor impact on
training performance. As the parameter θ gets large (i.e.,

TABLE 3
ACCURACY OF DIFFERENT FL METHODS IN A GIVEN TIME

Models
Time

Budget Syn-FL UP-FL FedProx FlexCom FedMP

CNN 20000s 93.83% 94.31% 95.82% 96.21% 97.17%
AlexNet 30000s 81.59% 81.74% 81.78% 81.91% 82.34%
VGG-19 50000s 85.04% 84.93% 85.15% 85.33% 85.66%

ResNet-50 100000s 47.15% 46.43% 47.55% 47.37% 47.85%

θ ∈ (0.05, 0.25]), the completion time increases drastically.
The reason lies in that large pruning granularity (i.e., larger
θ) may cause the pruning ratio selected in a large range,
leading to poor training performance. Therefore, we tend to
explore the pruning ratio with a relatively small granularity.
On the other hand, since model parameters have significant
redundancy [37], if the pruning granularity is small enough,
it does not affect the completion time too much. That is,
θ ∈ [0.01, 0.05] achieves almost the same performance,
which is demonstrated for different models. Motivated by
this, choosing θ from [0.01, 0.05] is modest for different
scenarios.

6.2.2 Overall Effectiveness
We investigate the performance of FedMP and baselines
when they are deployed across heterogeneous workers. Fig.
5 shows that the average per-round time of computation
and communication decreases with the increase of pruning
ratio. The reason lies in that model pruning significantly re-
duces the complexity of DNNs, leading to time reduction in
computing and delivering local updates. TABLE 3 compares
the test accuracy that different FL methods can achieve in a
given time. We note that FedMP always converges to the
similar accuracy as Syn-FL, and achieves higher accuracy
in a given time on all the four models. It indicates that
distributed model pruning with appropriate pruning ratios
does not hurt the model accuracy and can achieve the goal
of effective FL.

Fig. 6 shows the test accuracy with time passed on
different datasets. From these results, we make three ma-
jor observations. Firstly, FedMP substantially outperforms
Syn-FL. For example, FedMP takes 10,906s to achieve 80%
accuracy for AlexNet on CIFAR-10, while Syn-FL takes
24,017s. FedMP provides 2.2× speedup compared to Syn-
FL. Since Syn-FL does not adopt any parameter reduction
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Fig. 6. Test accuracy of different FL methods.
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Fig. 7. Completion time under different heterogeneous scenarios.

method, the over-parameterized DNNs incur a great deal
of computation and communication overhead. In contrast,
the pruned models are transmitted and trained in FedMP,
which reduce both communication and computation time
while ensuring the accuracy.

Secondly, FedMP converges much faster than UP-FL on
all the four datasets, and achieves a speedup of nearly
2× for AlexNet on CIFAR-10. This is because UP-FL ac-
celerates model training by uniform model pruning, but
ignores the heterogeneity of edge nodes. The pruned models
are the same across workers, so that the workers with
weak capabilities delay the global aggregation. However,
FedMP adaptively prunes the global model according to
the heterogeneity of edge nodes. The pruned models are
customized for workers’ capabilities, which accelerates the
DNNs training by a significant margin.

Thirdly, FedMP has a clear and consistent advantage on
training speed over the other heterogeneity-aware baselines
(i.e., FedProx and FlexCom). Particularly, FedMP improves
the performance over FedProx by 2.0× for CNN, 1.8×
for AlexNet, 1.2× for VGG-19, and 1.1× for ResNet-50.
Compared to FlexCom, FedMP achieves about 1.8×, 1.6×,
1.2× and 1.2× speedup, correspondingly. Although FedProx
allows heterogeneous workers to perform different numbers
of local iterations, it does not incorporate model compres-
sion or pruning techniques. As a result, the computation and
communication overhead in FedProx is still large, leading to
poor training efficiency. FlexCom reduces the communica-
tion overhead by assigning different compression ratios to
heterogeneous workers. However, each worker trains the
same local model, which cannot reduce the computation
overhead and cope with the computation heterogeneity.
Consequently, local training is still very slow due to the
large amount of computation overhead. By contrast, the
excellent performance of FedMP can be explained by the
superiority of adaptive model pruning, which allows each

worker to train and transmit the pruned model under its
resource constraints. Therefore, FedMP can reduce both
computation and communication overhead, thereby accel-
erating the training process compared with the baselines.

6.2.3 Effect of Heterogeneity

To understand how FedMP performs under heterogeneous
scenarios, we deploy FedMP and baselines across the work-
ers with different heterogeneity levels, i.e., Low, Medium,
High. For Low, we select 10 workers from cluster A. For
Medium, we select 5 workers from cluster A, and 5 workers
from cluster B. For High, we select 3 workers from cluster
A, 3 workers from cluster B, and 4 workers from cluster C .
For our experiments, the desired target accuracies of CNN,
AlexNet, VGG-19 and ResNet-50 are 90%, 80%, 80% and
45%, respectively. Fig. 7 shows the required time to reach
the target accuracy under different heterogeneous scenarios.

We observe that, from Low to High, the required time to
reach the target accuracy increases accordingly. This is ex-
pected because less capable workers are introduced into the
system. In the synchronous FL, the PS performs global ag-
gregation after receiving all the local models. Thus the total
latency is determined by the “slowest” worker, increasing
the completion time of all methods. Nevertheless, FedMP
still takes less time to reach the target accuracy compared
with the baselines. When training AlexNet on CIFAR-10 in
the heterogeneity level of High, FedMP achieves 3.6×, 3.0×,
2.3×, and 2.0× speedup compared to Syn-FL, UP-FL, Fed-
Prox, and FlexCom, respectively. Moreover, the performance
gap can be enlarged with the increase of heterogeneity level.
For example, FedMP improves the performance over Syn-
FL by 1.3× in Low, 2.8× in Medium, and 4.1× in High
for CNN on MNIST. This is because FedMP determines
the appropriate pruning ratios for the weak workers that
are newly introduced into the system, so that each worker
can still train the sub-model that best suits its capability,
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Fig. 8. Completion time under different non-IID levels.
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leading to a slight increase in completion time. These results
demonstrate that FedMP is robust for different heteroge-
neous scenarios and can fully utilize the limited resources
of workers.

6.2.4 Effect of non-IID Data
While the previous experiments are based on uniform data
partitioning, we now discuss the impact of non-IID data
on training performance. Fig. 8 shows the required time
for FedMP and baselines to achieve the target accuracy
in different non-IID levels. We set the target accuracy of
CNN, AlexNet, VGG-19 and ResNet-50 as 90%, 77%, 80%,
and 42%, respectively. From the results, we note that the
required time for all methods to achieve the target accuracy
increases with the increase of non-IID levels. Since the local
models trained on non-IID data are different from each
other, aggregating these divergent models may degrade the
training performance and result in more communication
rounds until convergence. Nevertheless, for all the four
datasets, FedMP still outperforms the baselines in different
non-IID levels. For example, even in the non-IID level of
30, FedMP can reduce the completion time by 30%, 23%,
16% and 12% compared to Syn-FL, UP-FL, FedProx and
FlexCom for VGG-19 on EMNIST. These results demonstrate
the effectiveness of our framework even under non-IID data
distribution.

6.2.5 Effect of Worker Number
We evaluate the scalability of FedMP with different numbers
of workers. In this set of experiments, half of the workers
participating in FL are selected from cluster A, and half are
from cluster B. We compare the required time of FedMP and
baselines to achieve the target accuracy with the number

of workers varying from 10 to 30. The target accuracy is
the same as for Fig. 7(b). The results of training AlexNet
on CIFAR-10 are shown in Fig. 9. The completion time of
FedMP increases slightly with the increasing number of
workers. When the number of workers is 30, FedMP still
provides 2.4×, 2.0×, 2.0×, and 1.6× speedup compared to
Syn-FL, UP-FL, FedProx, and FlexCom, indicating that our
design is superior in scalability over other baselines.

Next, we quantify the algorithm overhead which plays a
critical role in practical deployment. We measure the aver-
age per-round algorithm overhead including the pruning
ratio decision time and model pruning time. The results
for different numbers of workers are shown in Fig. 10.
Apparently, the time overhead increases with the increasing
number of workers. However, the maximum time overhead
in our experiments is far less than the transmission time and
local training time (e.g., hundreds of seconds), thus can be
ignored. These results show that FedMP can be deployed in
large-scale scenarios, with a small overhead in exchange for
substantial training speedup.

6.2.6 Effect of E-UCB

In Section 4.3, we propose an MAB based online learning
algorithm, called E-UCB, to adaptively determine different
pruning ratios for workers. To show high efficiency of our
proposed algorithm, we compare the standard deviation of
the round completion time for workers before and after
adopting E-UCB. The standard deviation is the arithmetic
square root of the variance and reflects the degree of dis-
persion of the workers’ round completion time. We measure
the standard deviation of the workers’ completion time in
each round and then calculate their average. The results
for AlexNet on CIFAR-10 are shown in Fig. 11, which is
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Fig. 12. Test accuracy of different decentralized methods.

obtained by deploying FedMP and baselines across the
workers with different heterogeneity levels. As the hetero-
geneity level increases (from Low to High), the capability gap
between different workers becomes larger. The completion
time of workers in each round becomes more dispersed, and
thus the standard deviations of the five methods gradually
increase. Nevertheless, FedMP still has the smallest stan-
dard deviation of the round completion time for workers
compared to the baselines. For example, FedMP reduces
the standard deviation by 58.1%-73.8% compared to Syn-
FL. The reason is that adaptive pruning ratios obtained by
E-UCB allow each worker to train a sub-model that fits its
own capabilities, thereby mitigating the effect of stragglers
on latency. After adopting E-UCB, the round completion
time for workers becomes more concentrated. The above
results show the effectiveness of our proposed pruning ratio
decision algorithm.

6.2.7 Evaluation of P2P-FedMP
To avoid the possible bottleneck of the PS, we extend FedMP
to P2P setting (i.e., P2P-FedMP). Since there is no central
server or global model in decentralized FL paradigm, we
introduce the following decentralized baselines for perfor-
mance comparison:

• PSGD [68] trains and exchanges the complete model on
each worker with all other workers.

• D-PSGD [49] trains and then exchanges the complete
model with neighbors in the ring topology, which is
constructed by arranging the N workers in the order of
1 → 2 → · · · → N → 1.

• CHOCO [69] as a gossip-based stochastic optimization
algorithm employs compression techniques to reduce
communication overhead of decentralized training.

• Random-FedMP is a simplified version of P2P-FedMP,
where E-UCB algorithm is directly deployed on each
worker and the communication topology is randomly
constructed in each round.

We first compare the overall training performance of
P2P-FedMP with decentralized baselines. Fig. 12 plots the
test accuracy of different methods with respect to training
time. We observe that P2P-FedMP converges faster and
attains higher test accuracy after a fixed training time com-
pared to baselines. For example, after training for 10,000s,
the accuracy of P2P-FedMP is 97.67% for CNN on MNIST
while that of PSGD, D-PSGD, CHOCO, and Random-
FedMP is 91.98%, 93.60%, 94.51%, and 96.50%, respectively.
Besides, our framework can drastically reduce the com-
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Fig. 13. Completion time of decentralized methods under
different non-IID levels.

pletion time to achieve the target accuracy. In particular,
P2P-FedMP takes 9,336s to reach 78% accuracy for AlexNet
on CIFAR-10. The completion time of PSGD, D-PSGD,
CHOCO, and Random-FedMP is 29,825s, 19,891s, 19,456s,
and 15,941s, respectively. The corresponding speedup pro-
vided by P2P-FedMP is 3.2×, 2.1×, 2.1×, and 1.7×.

The explanation for these observations is that each
worker in PSGD and D-PSGD sends/receives the com-
plete models to/from all its neighbors, leading to massive
resource overhead. Their topologies are fixed and cannot
adapt to network dynamics. Moreover, the sub-models in
P2P-FedMP are individually pruned based on workers’
capabilities while the compressed models in CHOCO ignore
the device heterogeneity and incur high computation over-
head. Although Random-FedMP assigns different pruning
ratios to heterogeneous workers, the randomly constructed
topology still suffers from the low-speed links and substan-
tially restricts the training process. On the contrary, P2P-
FedMP jointly optimizes the pruning ratios and commu-
nication neighbors considering the inherent properties of
decentralized FL paradigm. The interactive decision of our
algorithm enables the suitable sub-models to be trained and
transmitted over the high-speed links, which contributes to
reducing both computation and communication overhead
in dynamic heterogeneous P2P networks, thus accelerating
decentralized training.

We further evaluate the performance of P2P-FedMP in
the non-IID scenario. Fig. 13 depicts the completion time
for reaching the target accuracy under different non-IID
levels. The target accuracies of CNN and AlexNet are set as
90% and 75% since they are the accuracies that all methods
can achieve. We note that the superiority of our solution is
still significant under high non-IIDness of data distribution.
Specifically, when the non-IID level of MNIST increases
from 0 to 60, P2P-FedMP provides up to 4.6× speedup, 4.2×
speedup, 4.0× speedup, and 3.8× speedup compared with
the decentralized baselines. For AlexNet on CIFAR-10, the
corresponding speedup is 3.5×, 3.6×, 3.1×, and 3.6×. The
above results verify the fact that the extension of FedMP is
still effective under the P2P setting.

7 DISCUSSION

In this section, we discuss the adaptability and potential ex-
tensions of FedMP. FedMP can accommodate diverse neural
networks by easily replacing different pruning strategies.
Given some other neural networks, the PS still determines
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TABLE 4
PERPLEXITY OF DIFFERENT FL METHODS IN A GIVEN TIME

AND SPEEDUP FOR REACHING TARGET PERPLEXITY

Methods Perplexity (validate, test) Speedup
Syn-FL (156.35, 148.15) 1.0×
UP-FL (158.94, 149.81) 0.8×
FedMP (155.47, 146.95) 1.6×

different pruning ratios for heterogeneous workers even
without knowing any prior knowledge of their capabilities.
According to the pruning ratios, the PS performs distributed
model pruning with the specialized strategy so that each
worker only trains and transmits a pruned model suiting
its own capability. Under these circumstances, FedMP can
reduce computation and communication overhead for dif-
ferent models.

We take Recurrent Neural Networks (RNNs) as an ex-
ample to show the applicability of FedMP to other models.
Compared with Convolutional Neural Networks (CNNs),
pruning RNNs is more challenging. Since a recurrent unit
is shared across all the time steps in sequence, indepen-
dently removing the unit will result in mismatch of dimen-
sions and then inducing invalid recurrent units. Following
the intrinsic sparse structure method [70], we update the
pruning strategy in Section 3.2 and keep other designs
unchanged. Specifically, we remove weights associated with
one component of intrinsic sparse structures, and then the
sizes/dimensions (of basic structures) are simultaneously
reduced by one. As a result, the obtained RNN has the
original schematic with dense connections but with smaller
sizes of these basic structures.

To study the benefits of FedMP, we train a RNN with
two stacked LSTM layers on the Penn TreeBank dataset
[71]. The performance of the models is measured by the
metric of perplexity, which is the exponent of cross-entropy
loss. The results are reported in TABLE 4. We note that
FedMP has lower perplexity in a given time compared to
baselines and provides 1.6× speedup for reaching the target
test perplexity (e.g., 150). These results prove that FedMP
can achieve efficient FL for diverse neural networks.

8 RELATED WORK

8.1 Federated Learning for Resource Constraints

To make full use of isolated data from IoT devices, FL
has been proposed to enable collaborative model training
over multiple workers without leaking their respective lo-
cal data [3]. However, due to the constrained resources
in edge computing, FL imposes massive computation and
communication overhead, which limits its efficiency in prac-
tical deployment. Some previous works have made efforts
to alleviate the communication burden without sacrificing
model performance. FedAvg [3] and its variants [5] en-
large the communication interval to significantly reduce the
communication overhead. These proposals allow workers
to train local models for multiple iterations before global
aggregation instead of aggregating local updates every iter-
ation, thereby reducing total communication rounds.

Another natural solution to ease the communication
overhead is to reduce the size of transmitted data. The
compression strategies in FL can be roughly divided into
two categories: quantization [17]–[21] and sparsification
[22]–[25]. Specifically, quantization aims to represent each
original element of parameters by using fewer number of
bits. Alistarh et al. propose QSGD [18], where the workers
can trade-off the number of bits communicated per round
with the variance added to the process. SignSGD [19] sends
the sign of the local updates to the PS and aggregates the
gradient signs using majority voting, which can achieve 32
times less communication compared with the standard FL
method. Considering that signSGD does not converge to the
optimum, Karimireddy et al. [20] present an error-feedback
mechanism to overcome the intrinsical bias of signSGD.
FedPAQ [21] is proposed to periodically average the local
updates and quantize the updates before uploading to the
PS. On the other hand, sparsification only transmits a subset
of important elements from the original model parameters.
Han et al. [22] present a fairness-aware bidirectional top-
k gradient sparsification approach where the near-optimal
k was determined by online learning techniques. Sun et
al. [23] propose a General Gradient Sparsification (GGS)
framework consisting of gradient correction and Batch
Normalization update with local gradients. Sattler et al.
[25] introduce sparse ternary compression (STC) that can
compress both upstream and downstream communications
as well as ternarization and optimal Golomb encoding of
the weight updates. However, the above works only focus
on improving communication efficiency and cannot reduce
computation overhead. In fact, the computation capabilities
of workers in FL are also limited, and thus huge computa-
tion overhead hinders efficient FL over resource-constrained
workers.

In addition, the workers participating in training need
to share the limited resources in FL. The resource allocation
problems have been studied by a series of works. Tran et al.
[72] jointly optimize the CPU frequency, transmit power and
model accuracy to minimize the weighted sum of energy
cost and learning time. Yang et al. [73] propose an itera-
tive algorithm to address the problem of energy-efficient
transmission and computation resource allocation. Yao et
al. [74] investigate both the CPU frequency and wireless
transmission power control to balance the trade-off between
the energy consumption and learning time in fog-aided IoT
networks. The authors in [75] develop resource allocation
mechanisms for delay-constrained FL in the non-orthogonal
multiple access (NOMA) enabled and relay-assisted IoT
networks. Wu et al. [76] jointly optimize the radio resource
allocation for NOMA transmission and computation re-
source allocation for FL training, with the objective of min-
imizing the total energy consumption and convergence la-
tency. Though the above works provide some novel insights,
they do not consider any parameter reduction techniques.
Training and transmitting the complete models incur huge
computation and communication overhead. In these meth-
ods, the PS sends the identical model to heterogeneous
workers. Consequently, the workers with poor capabilities
make it difficult to train the over-parameterized DNNs.
They may become the bottleneck of model aggregation and
eventually degrade the training performance of FL. It is
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worth noting that our work is orthogonal to the resource
allocation methods, which can be applied alongside FedMP
to further boost training efficiency.

8.2 Federated Learning for System Heterogeneity

The configuration of workers may differ due to variability
in CPU, GPU, memory, and so on, leading to system hetero-
geneity. The performance of FL will be significantly affected
by stragglers which finish training much slower than others.
To this end, some heterogeneity-aware solutions have been
proposed to adapt to workers with different capabilities. Li
et al. [29] propose to support running different numbers of
local iterations according to workers’ heterogeneous capa-
bilities. The asynchronous FL methods [30]–[32] let workers
upload the local updates to the PS for model aggregation
immediately after local training without waiting for other
slow workers. However, the aforementioned heterogeneity-
aware methods also train and transmit the complete mod-
els, thus heavy communication and computation overhead
make the overall training process inefficient.

Very few efforts have been made to address system
heterogeneity and resource overhead challenges simultane-
ously. To improve communication efficiency, Li et al. [33]
develop a convergence-guaranteed FL algorithm enabling
flexible compression, which assigns different compression
ratios to heterogeneous workers. Similar to other compres-
sion based FL methods, this solution cannot reduce com-
putation overhead and ignore computation heterogeneity.
HeteroFL [34] improves communication and computation
efficiency by assigning different sub-models to heteroge-
neous workers. However, they do not provide adaptive
decision algorithms for heterogeneous workers and require
complete information on device heterogeneous capabilities.
Although AdaptCL [35] designs a solution of dynamic
and adaptive pruning for efficient collaborative learning,
the proposed method lacks the convergence analysis and
may not achieve the trade-off between resource overhead
and model accuracy. Compared to the existing works, our
proposed framework can (1) reduce both computation and
communication overhead, (2) address system heterogene-
ity, and (3) adaptively provide device-specific solutions to
achieve the trade-off between overhead and accuracy.

9 CONCLUSION

In this paper, we design and implement FedMP, which
performs federated learning through adaptive model prun-
ing. Specifically, we adopt a structured model pruning
approach for federated learning so as to simultaneously
reduce computation and communication overhead. We then
propose an MAB based online learning algorithm to adap-
tively determine the pruning ratios for different workers to
conquer their heterogeneity. Extensive experiments on the
classical models and datasets show the high effectiveness of
FedMP. In future work, we could consider joint optimization
of client selection and model pruning to further improve
resource efficiency. In each round, we select only a fraction
of workers to participate in FL rather than all workers,
which can reduce the resource overhead associated with the
proposed framework.
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