
1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3147792, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., AUG. 2021 1

Accelerating Federated Learning with Cluster
Construction and Hierarchical Aggregation

Zhiyuan Wang, ∗Hongli Xu, Member, IEEE, Jianchun Liu, Student Member, IEEE,
Yang Xu, Member, IEEE, He Huang, Member, IEEE, ACM, Yangming Zhao

Abstract—Federated learning (FL) has emerged in edge computing to address the limited bandwidth and privacy concerns of
traditional cloud-based training. However, the existing FL mechanisms may lead to a long training time and consume massive
communication resources. In this paper, we propose an efficient FL mechanism, namely FedCH, to accelerate FL in heterogeneous
edge computing. Different from existing works which adopt the pre-defined system architecture and train models in a synchronous or
asynchronous manner, FedCH will construct a special cluster topology and perform hierarchical aggregation for training. Specifically,
FedCH arranges all clients into multiple clusters based on their heterogeneous training capacities. The clients in one cluster
synchronously forward their local updates to the cluster header for aggregation, while all cluster headers take the asynchronous method
for global aggregation. Our analysis shows that the convergence bound depends on the number of clusters and the training epochs.
We propose efficient algorithms to determine the optimal number of clusters with resource budgets and then construct the cluster
topology to address the client heterogeneity. Extensive experiments on both physical platform and simulated environment show that
FedCH reduces the completion time by 49.5-79.5% and the network traffic by 57.4-80.8%, compared with the existing FL mechanisms.

Index Terms—Hierarchical Federated Learning, Mobile Edge Computing, Cluster Construction, Optimization.

F

1 INTRODUCTION

IN the era of big data, billions of Internet of Thing devices
and smartphones around the world produce a significant

amount of data per second [1]. Therefore, the traditional
way of uploading those data to the remote cloud for process-
ing will encounter many issues, including privacy leakage,
network congestion, and high transmission delay [2]. Since
data are generated at the network edge, mobile edge com-
puting (MEC) is a natural alternative [3], [4], which uses the
computing and storage resources of devices to perform data
processing close to the data generators. According to Cisco’s
survey, most IoT-created data will be stored, processed, and
analyzed close to or at the network edge [5]. With more
data and advanced applications (e.g., autonomous driving,
virtual reality, and image classification), machine learning
(ML) tasks will be a dominant workload in MEC [6]. To
alleviate the network bandwidth burden and avoid the
privacy leakage, FL becomes an efficient solution to analyze
and process the distributed data on end devices for those
ML tasks [7], [8].

Among previous FL frameworks, the dominant one is
the parameter server (PS) based framework [9]. This frame-
work comprises two components, the PS and clients, which
form a two-layer architecture. Clients mainly use their local
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data to cooperatively train models in a synchronous manner.
After each client performs local training, the local model
will be forwarded to the PS for processing, which is called
global aggregation. Under this framework, the PS maintains
the globally shared up-to-date model to solve large-scale
ML problems, which can protect privacy [10], and relieve
network burden [11], [12], compared with the traditional
centralized training approach.

However, the PS-based framework will also encounter
some challenges due to the limited and heterogeneous re-
sources (i.e., computing and communication) [13], [14] in
MEC. 1) Bandwidth constraint on parameter server. The first
challenge is to aggregate models from massive devices in
the FL framework. The bottleneck lies in the high com-
munication cost on the centralized parameter server, which
is always located on a remote cloud platform to provide
reliable services [9] with limited ingress bandwidth [7], [9].
Specifically, for a system with hundreds of devices, the total
size of models transmitted in each epoch will reach at least
50GB when training model (e.g., VGG16 [15]), leading to
possible network congestion. 2) Limited and heterogeneous
communication resource on clients. Different from the tradi-
tional model training, where the server clusters communi-
cate with each other through high-speed links, the clients
may frequently communicate with the PS for model trans-
mission over heterogeneous wireless links under the PS-
based framework. Therefore, the client with the slowest link
will restrict the training speed of most FL mechanisms [7],
[11]. 3) Limited and heterogeneous computing resource on clients.
The clients (e.g., smartphones, and vehicles) are generally
have limited and heterogeneous computing capacities [16],
[17]. Since model (e.g., deep neural network) training always
imposes heavy computing requirements and the amount of
data among clients are imbalanced [18], the performance
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gap between clients is further widened, which will severally
deteriorate the training efficiency and lead to long training
time.

Some recent studies have proposed various solutions to
address the above challenges. To alleviate the total com-
munication cost in FL, a natural solution adopts the model
compression [19], [20]. Unfortunately, those approaches will
sacrifice the accuracy of the trained model and incur high
computation overhead. Moreover, several solutions [21]–
[23] have built a basic hierarchical FL architecture for al-
leviating the bandwidth pressure on the PS. However, those
works ignore the possible heterogeneous resources among
clients, adopt the pre-defined system architecture and train
models in a synchronous manner, which can seriously dete-
riorate the training efficiency. Each training epoch of those
studies only progresses as fast as the slowest clients [24],
called straggler effect. To conquer the negative impact of
client heterogeneity, the asynchronous FL [17], [25], [26] and
partial update [27], [28] are proposed. The asynchronous FL
performs global aggregation as soon as the PS collects one
local update from an arbitrary client. Therefore, the global
model will be simply and severely destroyed by the local
model from a single client, leading to poor convergence
performance. For partial update, those approaches allow
to aggregate local models from partial devices for global
aggregation, and some stragglers’ gradients are dropped.
Since a certain proportion of weak clients will always be
discarded and never participate in global aggregation, it is
difficult for the partial update to achieve the comparable
accuracy as [6], [21], [23].

To effectively deal with the limited resource as well as
the client heterogeneity in MEC, in this paper, we design an
efficient FL mechanism, called FedCH. Different from most
of the existing work which performs model aggregations
in the synchronous or asynchronous manner based on a
given architecture (including the hierarchical FL architec-
ture), FedCH will construct an efficient Cluster topology and
then adopt the proposed Hierarchical aggregation approach
for training. Specifically, FedCH will arrange all clients into
K clusters based on their heterogeneous training capacities
(i.e., computing and communication) for distributed ma-
chine learning. This procedure enables the clients in the
same cluster to be more similar to each other than those in
different clusters. To adapt to the constructed cluster topol-
ogy, FedCH further adopts the hierarchical aggregation, i.e.,
those clients in the same cluster perform the synchronous
method for aggregation, called cluster aggregation, while all
clusters perform global aggregation in an asynchronous
method. Based on this, each cluster performs training inde-
pendently at its own training speed, and those clusters com-
posed of clients with low training capacities will not restrict
the training speed of the whole system. Besides, considering
the low-cost intra-cluster communication among clients, the
time consumption of model aggregation will be significantly
reduced and the bandwidth burden of the parameter server
will be obviously relieved. Under hierarchical aggregation,
the theoretical analyses show that the training performance
mainly depends on the cluster topology as well as the
resource budgets (Section 4). As a result, it is critical to
determine how to construct the cluster topology under
the given resource constraints for training, i.e., how many

clusters should we create and to which cluster should each
client be assigned? The main contributions of this paper are
as follows:

1) We design a novel FL mechanism, namely FedCH,
to address the resource constraints and client hetero-
geneity in edge computing. Furthermore, we theo-
retically prove that FedCH can provide the conver-
gence guarantee for model training.

2) To accelerate federated learning, we propose effi-
cient algorithms to determine the optimal number
of clusters with resource constraints and construct
the cluster topology for hierarchical aggregation. We
also extend our algorithms to deal with dynamic
scenarios.

3) We conduct extensive experiments using various
models and datasets on both physical platform and
large-scale simulated environment. The experimen-
tal results show that the proposed algorithms reduce
completion time by 49.5-79.5% and the network traf-
fic by 57.4-80.8% while achieving similar accuracy,
compared with the well-known FL mechanisms.

The rest of this paper is organized as follows. We review
the related work in Section 2. We propose our proposed
mechanism in Section 3. In Section 4, we present our al-
gorithms and extend them to dynamic scenarios. Section 5
evaluates the performance of our proposed algorithms. We
conclude this paper in Section 6.

2 RELATED WORK

This section briefly reviews the related work on FL acceler-
ation and the hierarchical FL in edge computing.

2.1 Federated Learning Acceleration
To address the resource constraint and accelerate FL in
MEC, several mechanisms have been proposed recently
[6], [29]–[32], including asynchronous aggregation, adaptive
training, partial update (client selection), model pruning or
compression and some other advanced technologies. 1) For
asynchronous aggregation, Xie et al. [17] first propose the
FL algorithm with asynchronous aggregation and staleness
treatment to improve flexibility and scalability. Based on
this, some other approaches have been proposed for asyn-
chronous FL acceleration in the past two years. For example,
Wu et al. [33] propose a semi-asynchronous FL mechanism
and introduce novel designs with respect to model distribu-
tion and global aggregation to mitigate the impacts of strag-
glers, and model staleness. The authors in [34] adopt a novel
weighted aggregation strategy to aggregate the models with
different versions to take full advantage of the acceleration
effect of asynchronous strategy on heterogeneous training.
2) For adaptive training in FL, Wang et al. [6] propose a
solution that adjusts the frequency of global aggregation to
minimize the learning loss under a fixed resource budget
dynamically and adaptively. The authors in [35] introduce
two approaches for FL acceleration by adaptive sampling
and top-k selective masking. The former controls the frac-
tion of selected client models dynamically, while the latter
selects parameters with top-k largest values. The authors in
[29] target to accelerate the FL by jointly optimizing local
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training batch size and communication resource allocation.
3) There is also a strand of literature that focuses on client
selection in FL. Chen et al. [30] enable the implementation
of FL over wireless networks by considering user selection
under limited bandwidth resource. Jin et al. [31] study how
to select suitable participants and set the number of local up-
dates for resource-efficient FL. [36] solves a client selection
problem with resource constraints, which allows the server
to aggregate as many client updates as possible and to accel-
erate performance improvement. 4) Model compression is
also a natural solution to alleviate communication cost and
accelerate FL. Xu et al. [37] propose the ternary FL protocol,
which compresses both uploading and downloading com-
munications to nearly one-sixteenth of the standard method.
The authors in [38] design a compression control scheme
to balance the energy consumption of local computing
and wireless communication from the long-term learning
perspective. 5) There are also some other approaches to
conduct resource allocation or hyper-parameter adjustment
in FL for improving the training performance. The authors
in [32] introduce the game-theoretic incentive mechanisms
to provide efficient resource management for FL at the
network edge for federated learning acceleration. Ma et al.
[39] study the relationship between batch size and learning
rate, and formulate a scaling rule to guide the setting of
learning rate in terms of batch size.

Some approaches (e.g., adaptive training, model com-
pression, and hyper-parameter adjustment) are orthogonal
to our work and can be used in conjunction with our
techniques for achieving better training performance, while
the other approaches (e.g., asynchronous aggregation and
client selection) are difficult to obtain good convergence
performance and address resource constraints simultane-
ously. Besides, the aforementioned studies mainly focus on
the traditional parameter server based FL architecture. The
bottleneck of this architecture lies in the high communica-
tion cost on the centralized parameter server, which can also
cause network congestion and worse model convergence.

2.2 Hierarchical Federated Learning

To conquer the above challenges, the hierarchical FL has
received increasing attention in the past two years. The
approach in [22] has built a basic client-edge-cloud fed-
erated learning architecture for achieving faster conver-
gence, and reducing the communication cost. However, this
work adopts a pre-defined system architecture and ignores
the possible heterogeneous communication conditions and
computing resources among different clients, which will se-
riously affect the training efficiency, especially for a scenario
with large-scale clients. Chai et al. [21] first propose a hier-
archical blockchain-enabled FL framework in the internet of
vehicles. They aim to model the training process as a trading
market and each client chooses to sell their models to servers
according to the bidding prices, rather than considering the
resource consumption and the client heterogeneity.

Three researches [23], [40], [41] further consider the
heterogeneity among clients. Luo et al. [40] aim to perform
resource allocation of each device for training cost mini-
mization in terms of energy and delay. This approach will
restrict the clients’ maximum computing capacity (slows

down the training speed of fast clients) to reduce energy
consumption. Besides, it performs synchronous training
among all clients and edge servers, thus, each training epoch
only processes as fast as the slowest client. The author
in [41] employs gradient sparsification and periodic aver-
aging to minimize the communication latency. This work
has not considered the heterogeneous computing resource
among clients. Besides, the gradient sparsification tech-
nology (with additional computing cost) and synchronous
training method further deteriorate its system performance.
To release the computing workload of less powerful devices
and fully utilize the computing resource of edge servers or
even cloud, the authors in [23] propose the solution. They
target to determine which controllers (edge servers) should
process data from which sensors (clients), and make the data
collection and transfer solutions based on the heterogeneous
resources of edge servers. Since the clients’ private data
is transmitted through the network, this approach violates
the increasing privacy concern. The work [42], which was
presented very recently, joint consider hierarchical FL and
cluster construction for non-independent and identically
distributed (non-IID) data. They propose to assign clients
to edge servers by considering both the statistical properties
of local datasets and wireless communication connectivity.
TiFL [43] groups clients into several tiers (e.g., fast, and slow
tiers) for training. However, it groups clients into a pre-
defined number of tiers while we will determine the number
of clusters based on the resource constraints and conver-
gence bound. Besides, it randomly selects partial clients
from a tire for synchronous training in each epoch, leading
to a waste of resource and poor convergence performance.
In the contrast, all clusters in our mechanism perform
training simultaneously and asynchronously, by which we
can take the full use of resources of clients and achieve
good convergence performance. The authors in [44] aim
to relieve global imbalance by adaptive data augmentation
and downsampling, and address local imbalance by creating
the mediators to reschedule the training of clients based on
Kullback–Leibler divergence of their data distribution. The
advanced technologies (e.g., data augmentation) proposed
in [44] can be simply combined with our approach for
achieving performance improvement.

In contrast to the above researches, our work addresses
the resource constraints and client heterogeneity by con-
structing an efficient cluster topology and then performing
the proposed hierarchical aggregation for FL. Each global
aggregation consumes resources of the clients in one cluster,
and the global model eventually converges after hundreds
of global aggregations. Intuitively, the more clusters, the
fewer clients will be assigned to each cluster and the less
resources will be consumed for each global aggregation. But
as the number of clients in each cluster decreases, the num-
ber of global aggregations required for model convergence
will increase. Therefore, it is challenging but meaningful
to construct the cluster topology under a given resource
budget for achieving good training performance.

3 PRELIMINARIES

In this section, we first describe the training process of
FedCH and then prove its convergence. We finally give the
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TABLE 1: Summary of main notations.

Symbol Definition
N the number of clients
K the number of clusters
nk the number of clients in each cluster k
H the number of local updates
T the total number of training epochs
M the total number of resource types
Rm the total budget of resource m
E the total time budget
Tb the preset constant for the fixed re-clustering
Tk the epochs that cluster k performs under time budget
K̃ the preset constant for the adaptive re-clustering
xki whether client i is assigned to cluster k or not
w the model parameter

F (wT ) the global loss function after T epochs
F (w∗) the optimal value of loss function F (w)

problem definition.

3.1 Gradient Descent-based FL

In FL, each client trains its own local model based on a
collection of data samples. Let j denote a training sample,
including feature xj and label yj . Given a model, e.g., lo-
gistic regression (LR) [45], or convolutional neural network
(CNN) [46], the loss function is denoted as fj(w, xj , yj),
written as fj(w) for simplicity, where w is the model vector.
The loss function on dateset D is

f(w) =
1

|D|
∑
j∈D

fj(w) (1)

where |D| is the number of training samples in D. Then, the
learning problem is to find the optimal model vector w that
minimizes the loss function f(w), expressed as

w∗ = argmin f(w) (2)

It is almost impossible to solve Eq. (2) directly, especially
for deep learning models. Alternatively, each client will
perform gradient-descent in each local update (i.e., iteration)
to gradually approach the optimal solution. For iteration t,
the local update rule is described as follows:

w(t) = w(t− 1)− η∇f(w(t)) (3)

where η > 0 is the step size.

3.2 Training Process of FedCH

Assume that there are N clients, which cooperate to train
a model in edge computing. For FedCH, we consider that
all clients are divided into K clusters, with nk clients in
each cluster k ∈ {1, 2, ...,K} (i.e.,

∑K
k=1 nk = N ). Let T

be the total number of training epochs, with one global
aggregation in each epoch. LetH denote the number of local
updates (i.e., iterations) that each client performs between its
two consecutive cluster aggregations. Then, we introduce
the training process of FedCH in three steps, i.e., local
updates, cluster aggregation and global aggregation.

Client 1

Client 2

Client 3

Client 4

Client 5

Epochs t t+1

Cluster 1

Cluster 2

Cluster 3

Local 

Updates
Model 

Transmission

Cluster 

Aggregation

Global 

Aggregation

t+2 t+4 t+5 t+6t+3

Fig. 1: Illustration of training process of FedCH.

Local Updates. Each client i ∈ {1, 2, ..., N} in cluster k
is associated with a local loss function based on the local
dataset Di

k, i.e.,

F ik(w
i
k) =

1

|Di
k|

∑
j∈Di

k

fj(w
i
k) (4)

where wik is the local model of client i in cluster k. To
minimize the local loss function, client i iteratively updates
the local model by Eq. (3).

Cluster Aggregation. After H iterations, each client in
cluster k will forward the updated local model to the se-
lected leader node, denoted as LNk, for aggregation. Once
collecting local models from all clients in cluster k, LNk
will perform the cluster aggregation. The new model after
cluster aggregation is defined as

w(k) =

∑nk

i=1 |Di
k|wik∑nk

i=1 |Di
k|

(5)

This model will be further forwarded to the PS for global
aggregation.

Global Aggregation. Since each cluster asynchronously
performs the cluster aggregation, the parameter server per-
forms global aggregation as soon as it receives one model
from an arbitrary cluster without waiting for all other
clusters. The PS updates the global model wt at epoch
t ∈ {1, 2, ..., T} by staleness-aware global update approach
(Section 3.3), and distributes the up-to-date global model
back to the corresponding cluster. Then, the global loss
function F (wt) after t epochs is

F (wt) =

∑K
k=1

∑nk

i=1 |Di
k|F ik(wt)∑K

k=1

∑nk

i=1 |Di
k|

(6)

The global loss function F (wt) cannot be directly computed
without sharing global model to all clients by the PS.

To illustrate the training timeline of FedCH more clearly,
we give an example in Fig. 1, where there are 5 clients,
numbered from 1 to 5, respectively. The length of each
bar denotes the time consumption of the corresponding
operation (e.g., local updates). For FedCH, we first assign 5
clients into 3 clusters based on their heterogeneous training
speed, i.e., client #1 belongs to cluster #1, clients #2 and
#3 belong to cluster #2, and clients #4 and #5 belong to
cluster #3. Based on the constructed cluster topology, each
cluster then performs the training process independently,
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Algorithm 1 Training process of FedCH

1: Initialize w0, and t = 0;
2: Determine the cluster number by Section 4.1 ;
3: Construct the cluster topology based on Alg. 2;
4: repeat
5: Global Aggregation at the Parameter Server
6: Receive update from LNk, and set t← t+ 1;
7: Compute wt according to Eq. (7);
8: Send wt back to LNk;
9: Cluster Aggregation at LNk

10: Receive local updates from all clients in cluster;
11: Compute w(k) by Eq. (5);
12: Send w(k) to PS;
13: Receive wt from PS and return it back to clients;
14: Local Updates at Client i in Cluster k
15: Receive wt from LNk;
16: Perform H local updates;
17: until Exceed the resource budget;
18: Return the final model parameter wt;

and different clusters always experience different global
aggregation frequencies. From epoch t to t + 6, clusters
#1, #2, and #3 performs 4, 2 and 1 global aggregations,
respectively. For cluster #2, assume client #3 is chosen as the
cluster header. During training, client #2 sends the updated
local model to clients #3 for cluster aggregation after local
updates, and client #3 forwards the aggregated model to the
parameter server for global aggregation.

We finally conclude the training process of FedCH as
shown in Alg. 1. We should note that FedCH is the gener-
alization of the previous FL solutions. For example, if the
cluster number K is 1, it becomes the synchronous FL [47].
If K is N , it is exactly the asynchronous FL [17].

3.3 Staleness-aware Global Update

Since clients in each cluster perform the synchronous FL
method, their staleness, denoted as τ , is the same. For cluster
k, its staleness is defined as the number of experienced
epochs since its last global update. PS updates the global
model wt at epoch t with staleness treatment, that is, the
weight of each newly received modelw(k) from an arbitrary
cluster k will be determined by τ ,

wt = (1− αtτ )wt−1 + αtτw(k) (7)

where αtτ is the weight of w(k) at epoch t with staleness τ .
Then, we adopt a function [17] to determine the value of αtτ ,
that is,

αtτ =

{
α, τ ≤ a
α · τ−b, τ > a

(8)

where a > 0, b ≥ 0, and α ∈ (0, 1) is an initial model
weight. This function implies that when τ > a, the weight
of model drops rapidly as the staleness becomes higher.
In fact, when we divide clients into different numbers of
clusters, the model weight of each cluster will drop with
the increasing number of clusters. We initialize weight α as
α = φ(K) = 1− K−1N , with K ∈ {1, .., N}, and we also set a
lower bound for α based on the analysis in Section 4. After

substituting α in Eq. (8), we obtain the expression of αtτ as
follows

αtτ =

{
1− K−1N , τ ≤ a
(1− K−1N )τ−b, τ > a

(9)

By Eq. (9), we have αt1 = 1 if K = 1. As a result, wt =∑N
i=1 |Di|wi∑N
i=1 |Di|

, which is same as that in the synchronous FL [6].

3.4 Convergence Analysis
To analyze the convergence of FedCH, we first make some
widely used assumptions as follows: [17].

Assumption 1. Assume that the loss function f satisfies the
following conditions:
1) f is µ-strongly convex, where µ ≥ 0, i.e.,

f(y)− f(x) ≥ ∇fT(x)(y − x) + µ

2
‖y − x‖2,∀x, y

2) f is β-smooth, where β > 0, i.e.,

f(y)− f(x) ≤ ∇fT(x)(y − x) + β

2
‖y − x‖2,∀x, y

3) There exists at least one solution x∗ for global optimiza-
tion that can minimize the loss function, i.e.,

x∗ = inf
x
f(x) and ∇f(x∗) = 0,∃x∗ ∈ Rd

The above assumptions can be satisfied for many models
with convex loss functions, e.g., linear regression [48], LR
[45] and SVM [49]. The loss functions f(w, xj , yj) of those
models are listed below.

• Liner regression: 1
2‖yj − w

Txj‖2, yj ∈ R

• LR: − log(1 + exp(−yjwTxj)), yj ∈ {0, 1}

• SVM: λ2 ‖w‖
2 + 1

2 max{0; 1− yjwTxj}, yj ∈ {−1, 1}
According to the above assumptions, we prove the con-

vergence of our two-layer FL mechanism in two steps. We
analyze the convergence bound afterH local updates. Based
on that, we will derive the bound after T epochs.

Definition 1. Assume that the global loss function F is β-
smooth and µ-strongly convex. ∀w ∈ Rd and ∀j ∈ Di

k,
where k ∈ {1, ...,K} and i ∈ {1, ..., nk}, we define an upper
bound Q1 of ‖∇f(w; j)−∇F (w)‖2, i.e.,

E‖∇f(w; j)−∇F (w)‖2 ≤ Q1

We also define Q2 as the upper bound of ‖∇f(w; j)‖2, i.e.,

E‖∇f(w; j)‖2 ≤ Q2

Theorem 1. When the following conditions are satisfied: 1)
η < 1

β
; and 2) F (w0) − F (w∗) > Q1+Q2

2ηµ2 , the convergence
bound of the global loss function F after T epochs is,

E[F (wT )− F (w∗)]

≤ [
K − 1

N
+ α(1− ηµ)H ]T (F (w0)− F (w∗))

+
(Q1 +Q2)(1− [K−1N + α(1− ηµ)H ]T )

2ηµ2
(10)

where w0 is the initial model parameter, and w∗ denotes the
optimal model which minimizes the global loss function F .
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Proof: Since some proof procedure can be found in the
previous work [6], [17], we only show the differences. After
client i in an arbitrary cluster k performs H local updates
by the model wt−τ , the convergence bound is

E[F (wt−τ,H)− F (w∗)]

≤ (1− ηµ)H [F (wt−τ,0)− F (w∗)] + ηQ1

2

H∑
h=1

(1− ηµ)h−1

≤ (1− ηµ)H [F (wt−τ,0)− F (w∗)] + ηQ1

2

1− (1− ηµ)H

1− (1− ηµ)

≤ (1− ηµ)H [F (wt−τ,0)− F (w∗)] + ηQ1

2

Hηµ

1− (1− ηµ)

≤ (1− ηµ)H [F (wt−τ,0)− F (w∗)] + HηQ1

2
(11)

where wt−τ,H is derived from wt−τ by H iterations. Appar-
ently, wt−τ,0 and wt−τ are equal. Then, the asynchronous
FL mechanism in [17] will perform one global aggregation
immediately. But for our FL mechanism, only after nk clients
in cluster k have performed H iterations and the LNk
aggregates their local models based on Eq. (5), the PS will
update the global model by Eq. (7). Thus, the convergence
bound of FedCH after t epochs is:

E[F (wt)− F (w∗)]
≤ (1− αtτ )F (wt−1) + αtτE[F (w(k))]− F (w∗)

≤ (1− αtτ )F (wt−1) + αtτE[F (
∑nk

i=1 |Di
k|wik∑nk

i=1 |Di
k|

)]− F (w∗)

≤ (1− αtτ )F (wt−1) + αtτ

nk∑
i=1

|Di
k|∑nk

i=1 |Di
k|
E[F (wik)− F (w∗)]

≤ (1− αtτ )[F (wt−1)− F (w∗)] + αtτE[F (w
i
k)− F (w∗)]

(12)

From the second term and the fifth term, we note that the
expected loss of the aggregated model of each cluster k
is smaller than that of any client i in this cluster. This is
because the aggregated model learns information from all
local dataset of clients in cluster k while the local model
of client i is only trained over the local dataset. Since the
clients in cluster k adopt wt−τ to perform H local updates,
the weight of the new model wk is αtτ , where αtτ ≤ αt1
according to Eq. (9) and E[F (wik)− F (w∗)] can be replaced
with E[F (wt−τ,H) − F (w∗)] in Eq. (11). Based on Eqs. (11)
and (12), we can derive the convergence bound after T
epochs as shown in Theorem 1.

For the potentially non-convex loss function, the conver-
gence can also be guaranteed as in [17], and the result is
shown in Theorem 2. However, this paper mainly focuses
on the convergence bound of convex functions for ease
of discussion, and the experimental results also verify the
efficiency of FedCH for non-convex functions.

Theorem 2. The loss function f is µ-weakly convex if the
function f(x) = f(x) + µ

2 ‖x‖
2 is convex, where µ ≥ 0. If

µ = 0, f is convex. Otherwise, f is potentially non-convex.
Thus, when η < min{ 1β ,

2
ρ−µ} where ρ > µ, we have

E[F (wT )− F (w∗)]
≤ βT (F (w0)− F (w∗)) + (1− βT )O(Q1 +Q3) (13)

where β = 1 − α + α(1 − η(ρ−µ)
2 )H and Q3 is the upper

bound of E‖∇f(w; j)‖ (i.e., E‖∇f(w; j)‖2 ≤ Q3).

3.5 Problem Formulation
To train models among distributed clients by FL, it is
inevitable to consume resources (e.g., network traffic and
CPU cycles). Formally, we consider M different types of
resources, and each resource m ∈ {1, 2, ...,M} has a budget
Rm. We assume that it consumes cm of resource m for
performing H local updates at each client. Meanwhile, let
bm denote the average consumption of resource m for each
global aggregation of an client. Thus, the total resource
consumption of T epochs is T · nk · ptk · (cm + bm), where
ptk is a binary variable to indicate whether cluster k is
involved in global aggregation at epoch t or not. Since
each cluster runs asynchronously, ptk is determined in real-
time during training. Due to the client heterogeneity, we
will assign clients with similar training speed together
(Section 4.2) and performs asynchronous training among
clusters. Specifically, we denote the time consumption be-
tween two consecutive global aggregations of cluster k as
ek. For a given time budget E, total number of training
epochs that K clusters can perform is

∑K
k=1

E
ek

. To con-
struct an efficient cluster topology for performing hierar-
chical aggregation, we formulate the problem as follows:

min
T∈{1,2,3,...}

F (wT )

s.t.



T∑
t=1

nkp
t
k(cm + bm) ≤ Rm, ∀m, k

T ≤
∑K
k=1

E
ek
, ∀m

K∑
k=1

ptk = 1, ∀t

nk = bNK c+ βk, ∀k
ptk ∈ {0, 1}, βk ∈ {0, 1} ∀t, k

(14)

The first set of inequalities indicates that the resource
consumption on each type during T epochs should not
exceed its budget. The second set of inequalities indicates
that T should not exceed the total number of training epochs
that all clusters can perform under a given time budget E.
The third set of formulas represents that all clusters asyn-
chronously perform the global update, and the PS updates
the global model when it receives the model parameters
from an arbitrary cluster. The fourth set of formulas denotes
that we adopt the balanced clustering algorithm to balance
the cluster size [50], [51]. Our objective is to minimize the
global loss function after T epochs. In fact, it is difficult
to directly solve the problem in Eq. (14) for the following
two reasons: 1) It is impossible to solve Eq. (14) by finding
an exact expression among K, T and F (wT ) [6]. 2) For
each cluster k, its per-epoch training time ek is always
associated with the constructed cluster topology. Hence, we
will decompose the original problem into two subproblems
and solve them step by step.

4 ALGORITHM DESIGN

To construct an efficient cluster topology so as to accelerate
FL, in this section, we formally propose the algorithms
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for solving the problem in Eq. (14) in two steps. We first
determine how many clusters (i.e., K) should be created
under the given resource (time) budget. Then, we target to
decide to which cluster should each client be assigned.

4.1 Cluster Number Determination of FedCH

Given a loss function, its minimum value F (w∗) is always a
constant. Therefore, we can rewrite the objective function
F (wT ) in Eq. (14) as F (wT ) − F (w∗). Then we replace
F (wT )− F (w∗) by the approximate value which is derived
by convergence analysis in Eq. (13). As a result, we rewrite
the objective function as:

min
T,K

γ(F (w0)− F (w∗)) + (Q1 +Q2)(1− γ)
2ηµ2

(15)

where γ = [K−1N + α(1− ηµ)H ]T < 1, which is related to T
and K. To determine the cluster number based on Eq. (15),
we make an assumption as follows,

Assumption 2. Assume the executed number of training
epochs E

ek
under the time budget E of each cluster k is with

the Gaussian distribution, in which the constant expectation
is denoted as Te.

By Theorem 1, we note that Eq. (15) always decreases
as T increases. Based on the first constraint of Eq. (14), we
derive that T ≤ bmin

m

Rm

dNK e(cm+bm)
c since βk ∈ {0, 1}. We

omit the rounding operation for simplicity. By the second
constraint of Eq. (14), we have T ≤

∑K
k=1

E
ek

= KTe. As a
result, the optimal value of T can be expressed as,

T = min{min
m

RmK
N(cm + bm)

,KTe} (16)

We first assume that min
m

RmK
N(cm+bm)

≤ KTe, and substitute
T into the objective function in Eq. (15), yielding

L(K) = [
K − 1

N
+ α(1− ηµ)H ]

RmK
N(cm+bm) [F (w0)− F (w∗)]

+
(Q1 +Q2)[1− (K−1

N
+ α(1− ηµ)H)

RmK
N(cm+bm) ]

2ηµ2
(17)

After that, the optimal value of K can be determined as

K∗ = arg min
K∈{1,2,...,N}

L(K) (18)

from which we can obtain the value of T , i.e.,

T ∗ = min
m

RmK∗

N(cm + bm)
(19)

Theorem 3. We set Rmin = min
m

Rm. When Rmin →∞, we

have F (wT )− F (w∗) ≤ Q1+Q2

2ηµ2 .

Proof: Because Rmin →∞, that is, Rm →∞,∀m, we
have T = bmin

m

RmK
N(cm+bm)c → ∞. We also have K−1N +α(1−

ηµ)H < 1 based on Eq. (9). Thus, [K−1N +α(1− ηµ)H ]T → 0
and γ → 0. Then it follows γ(F (w0) − F (w∗)) → 0 and
(1 − γ) → 1. As a result, F (wT ) − F (w∗) ≤ Q1+Q2

2ηµ2 .
This result denotes that the global model will eventually
converge regardless of the value of K in the condition
without resource constraint.

However, the resource constraints are unavoidable in
MEC. Therefore, we demand to study the impact of K on

Eq. (17) under limited resources, which is important for
improving the training performance of FedCH. We set

g(K) = [1− N + 1−K
N

(1− (1− ηµ)H)]
RmK

N(cm+bm) (20)

Then, we focus on the monotonicity of this function instead
of L(K) in Eq. (17). For simplicity, we define

A =
1

N
(1− (1− ηµ)H), B =

Rm
N(cm + bm)

(21)

We rewrite Eq. (20) as g(K) = (1 + KA − (N + 1)A)KB .
Taking the derivative, we get

∂g(K)
∂K =(1 +KA− (N + 1)A)KB [B ln(1 +KA− (N + 1)A)

+
KBA

1 +KA− (N + 1)A
] (22)

The second derivative result is

∂2g(K)
∂2K = (1 +KA− (N + 1)A)KB [B ln(1 +KA− (N + 1)A)

+
KBA

1 +KA− (N + 1)A
]2 +

2BA[A(K − 1) + (1−NA)]
[1 +KA− (N + 1)A]2

(23)

According to Eq. (21), we have A ∈ (0, 1
N
). It follows A(K −

1)+ (1−NA) > 0, and ∂2g(K)
∂K > 0. So ∂g(K)

∂K is monotonically
increasing with K. We define

H(K, A) = B ln(1 +KA− (N + 1)A) +
KBA

1 +KA− (N + 1)A

The partial derivative of function H(K, A) on A is

∂H(K, A)
∂A

=
B[A(K −N − 1)2 + 2K −N − 1]

[1 + (K −N − 1)A]2
(24)

We note that H(K, 0) = 0 if A = 0.

Theorem 4. If Rm < R,∀m, where R a finite real number,
we have K∗ ∈ {1, ..., bN+1

2 c}.

Proof: If N+1
2 < K ≤ N , we obtain ∂H(K,A)

∂A > 0. For
H(K, 0) = 0, we have H(K, A) > 0 if A > 0. Thus, we get
∂g(K)
∂K > 0, making the loss upper bound increase with K.

On the contrary, assume that 1 ≤ K ≤ N+1
2 . We consider

the following two propositions with different conditions.
1) N−1

N2 < A < 1
N . We have ∂H(K,A)

∂A > 0,∀K, and
∂g(K)
∂K > 0. Thus, the minimum value of function g(K)

is g(1), which means K∗ = 1. This case becomes the
synchronous FL.

2) 0 < A ≤ N−1
N2 . If K = 1, we have ∂H(1,A)

∂A < 0.
Since H(1, 0) = 0, we derive H(1, A) < 0. Meanwhile, if
K = N+1

2 , we have H(N+1
2 , A) > 0 for ∂H(N+1

2 ,A)

∂A > 0,
and H(N+1

2 , 0) = 0. Due to the continuity of H(K, A), there
exists K∗ ∈ (1, N+1

2 ), making H(K∗, A) = 0. As a result,
g(K) will takes the minima at K∗ where ∂g(K∗)

∂K∗ = 0.
By Eq. (16), if min

m

RmK
N(cm+bm)

> KTe, then we have T =

KTe. 1) When E → ∞, we simply obtain the similar result
as in Theorem 3. 2) By setting B = Te in Eq. (21), we also
obtain the same result as in Theorem 4.

Since the solution of ∂g(K)∂K = 0 is difficult to be obtained
directly and K∗ is a positive integer with less than N+1

2 , we
can explore a proper value of K∗ within a finite range that
minimizes g(K). To calculate the value of g(K), we should
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estimate some parameters (i.e., cm, bm, Te and µ) during
training in practice. Specifically, each client can calculate µ
based on Assumption 1, and the average value of µ among
all client will be adopted by the parameter server. For Te, we
first measure the average per-epoch training time among
N clients, and then compute Te by the time budgets E.
For the resources such as network traffic and CPU cycles,
cm and bm can be estimated offline. Specifically, given
fixed batch size and the number of local updates (H), the
computing workload for local updates of each client is the
same. Besides, the network traffic consumption for global
aggregation of each client is also constant for the reason that
the model size is constant. Since Eq. (20) increases with K
when K > N+1

2 , we can take the lower bound of α as 0.5 for
better convergence performance. After that, we can search
K∗ by Eq. (20) with a time complexity of O(log N+1

2 ).

4.2 Effective Balanced Clustering Algorithm
After determining the number of clusters (i.e., K), we then
perform the clustering algorithm to construct the cluster
topology for effective federated learning. In this section, we
first review the most widely used K-means algorithm [52],
[53], and point out three disadvantages. Then, we formally
present the proposed clustering algorithm.

4.2.1 K-means Clustering [52]
Clustering is a process of dividing a given set of objects
into multiple disjoint clusters based on some pre-defined
clustering criteria such that the objects in the same cluster
are more similar to each other than those in different clusters
[54], [55]. A lot of algorithms have been proposed in the
literature, in which the K-means method [53] remains to be
the widely used one for many practical applications. Let
V = {V1, V2, ..., Vq} be a set q objects. Each object Vi is
denoted as a vector, which is always composed of multiple
attributes. Then, we can apply the K-means algorithm for
clustering so as to minimize the objective function depend-
ing on the clustering criterion and the cluster centers:

E =

q∑
i=1

K∑
k=1

xki · d(Vi,C∗k) (25)

where xki indicates whether the object Vi belongs to the
cluster k or not and C∗k is the centroid of cluster k. The
most widely used clustering criterion is the sum of the
squared Euclidean distance, i.e., d(Vi,C∗k), between each
object Vi and the centroid C∗k of its cluster [56]. The K-means
algorithm is initialized by randomly selecting K objects as
the centroid of each cluster, and then the target function
in Eq. (25) is iteratively optimized by two steps. Firstly,
the algorithm assigns each object Vi to the cluster k that
minimizes d(Vi,C∗k),∀k ∈ {1, 2, ...,K}. Then, it updates the
centroid of each cluster according to the current clustering
result (i.e., C∗k =

∑q
i=1 x

k
i Vi∑q

i=1 x
k
i

). The algorithm terminates until
the clustering result remains unchanged or the objective
function E does not changes significantly.

4.2.2 Problem Definition of Cluster Construction
There are three drawbacks of the K-means algorithm that
prevents us from constructing the efficient cluster topology

for FL directly. 1) The K-means algorithm treats all attributes
of an object independently and equally, and calculates the
mean square error of these attributes between objects to
evaluate their difference for deciding the cluster member-
ships. However, for two attributes (e.g., computing and com-
munication capacities) of clients, they always have different
effects on training efficiency of different models. For exam-
ple, the computing capacity dominates the training speed of
computing-intensive models. 2) Except for the centroids of
the K clusters in the initialization process, the centroid of
each cluster may be a virtual object with the given attribute
values during the iteration [57]. However, the cluster centers
in FedCH must be real clients for performing the cluster
aggregation. 3) The number of clients in each cluster will
range from 1 to N -K+1 by the K-means algorithm. In some
cases, each cluster may only contain one client [58]. Due
to the non-IID data among clients, the model from a single
client may severely destroy the convergence of the global
model. Based on the above considerations, we first give
computing and communication models of each client and
then provide the definition of the clustering problem for FL
with N clients.

To organize clients with similar model training capa-
bilities into a cluster, the PS demands to profile the local
training time (i.e., Ci,cmp) and the communication time (i.e.,
Cki,com) for model transmission of each client i. Specifically,
for each client, the local training time (i.e., Ci,cmp) at each
epoch is determined by its computing capacity (e.g., CPU
frequency), the dataset size and the number of local updates,
i.e.,

Ci,cmp = H
|Di|f
fi

(26)

where f and fi are the computing workload of each data
sample (which is a constant for the trained model) and
computing capacity of client i, respectively. For the commu-
nication delay, we denote the model size as M , therefore,
we have

Cki,com =
M

Bi,k
(27)

where Bi,k is the transmission rate of client i for forwarding
the updated model to the corresponding cluster header
LNk. Based on the above definition, we give the problem
definition as follows,

min
xk
i

N∑
i=1

K∑
k=1

xki · d(i, LNk)

s.t.



d(i, LNk) = |Ci,cmp + Cki,com − Ck,cmp|, ∀i, k
K∑
k=1

xki = 1, ∀i
K∑
k=1

nk = N

nk ∈ {bNK c, d
N
K e}, x

k
i ∈ {0, 1} ∀i, k

(28)

Since each client i performs the local updates and for-
wards the updated model to the cluster header LNk for
aggregation, we define the dissimilarity measure between
client i and the centroid of cluster k as d(i, LNk) as the
first set of equalities in Eq. (28), where Ck,cmp is the local
training time of the client LNk. The second equation in
Eq. (28) denotes that each client must be assigned to one
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... .  .  . ...

.  .  .
1 2 3 N-1 N

Edge 

Nodes:

Cluster 

Headers:

LN1 LNK LN1 LNN%K

1 d(1, LN1) d(1, LNK) d(1, LN1) d(1, LNN%K)

2 d(2, LN1) d(2, LNK) d(2, LN1) d(2, LNN%K)

N d(2, LN1) d(N, LNK) d(2, LN1) d(N, LNN%K)

...

... . . . ...

Fig. 2: The constructed bipartite graph and the matrix A.

cluster. The third and fourth sets of formulas indicate that
we adopt the well-known balanced clustering method to
improve the convergence performance of model training
and balance the weight of each cluster. The model from a
single client will be aggregated with other nk − 1 clients.
Even if a local model get stuck at locally optimal value and
deviate from the direction of global optimization due to the
non-IID data, the intra cluster aggregation can minimize its
impact on the global model for the reason that the weight
of this model is reduced by nk times for global aggregation.
Besides, Eq. (12) has already shown that the expected loss of
the aggregated model of each cluster k is that smaller than
that of client i in this cluster. After we minimize the objective
function in Eq. (28), the clients with similar model training
abilities will be assigned together, and perform the low-cost
synchronous training. In the following, we will propose an
effective balanced clustering algorithm based on the existing
K-means algorithm.

4.2.3 Algorithm for Cluster Construction
In the clustering algorithm, we will match each client with
the corresponding cluster header. Since there are only two
types of entities (i.e., cluster headers and clients) in this
matching problem, a bipartite graph [59], [60] is introduced
to deal with this problem. However, a normal bipartite
graph, which is composed of K cluster headers and N
clients, can not address the fourth constraint in Eq. (28).
To this end, we construct a bipartite graph as shown
in Fig. 2. Specifically, for each cluster header LNk with
1 ≤ k ≤ N%K, we generate bN/Kc+1 vertexes. Moreover,
we generate bN/Kc vertexes for each cluster header LNk
withN%K < k ≤ K. As a result, there are totallyN vertexes
on one side of the bipartite graph. On the other side, we also
generate N vertexes, one for each client. To construct the
optimal cluster structure is equivalent to find a maximum
matching of this bipartite graph. For simplicity, we create an
N×N matrix A in Fig. 2, in which each element denotes the
distance between the corresponding client and the cluster
header. We demand to search N values of different rows
and columns in A to minimize their sum, then, the optimal
matching of the bipartite graph is obtained. This problem
can be solved by using the Hungarian algorithm [61] in four
steps.

• Each value in A subtracts the minimum value of its
row.

• Each value in A subtracts the minimum value of its
column.

Algorithm 2 Balanced Clustering for FedCH

1: Initialize the centroid LNk of each cluster k;
2: Initialize the N×N matrix A;
3: repeat
4: for Each client i ∈ {1, 2, ..., N} do
5: for Each cluster center LNk ∈ {LN1, ..., LNK} do
6: Compute d(i, LNk) based on Eq. (28);
7: end for
8: end for
9: Update the matrix A ;

10: Construct clusters using A by Hungarian algorithm;
11: for Each cluster k ∈ {1, 2, ...,K} do
12: for Each client i ∈ {1, 2, ..., N} do
13: Compute

∑
j d(j, i);

14: end for
15: Update the centroid LNk of cluster k;
16: end for
17: until the cluster structure does not changes or the objective

function in Eq.(28) does not decrease;
18: Return the final cluster topology;

• We count the minimum number of lines (horizontal
or vertical) that can cover all zeros in the A. If the
number is equal to N , the algorithm terminates and
outputs the assignment.

• We find the smallest uncovered value from A after
the previous step, subtract it from all uncovered
values and add it to all values that are covered twice.
We return to the previous step until the algorithm
stops.

We have stated the matching method for a given centroid
of each cluster, however, the cluster headers dynamically
change during the whole clustering process. We formally
introduce the effective balanced clustering algorithm in
three phases, as shown in Alg. 2.

1) Initialization (Line 1-2): We select K arbitrary clients
from N nodes as the centroid of each cluster and
create the matrix A.

2) Cluster Construction (Line 4-10): We compute
d(i, LNk) for each client i and LNk based on the
first set of equation in Eq. (28), and put these values
in A. We construct the clusters by the Hungarian
algorithm over the matrix A.

3) Cluster Topology Adjustment (Line 11-16): After as-
signing each client i to cluster k (i.e., xki = 1), we
demand to update the centroid of each cluster. For
cluster k with nk clients, we calculate

∑
j d(j, i) for

each node i, where j denotes the other clients in the
same cluster as node i. To minimize the objective
function in Eq. (28), the client i that can minimize
the value of

∑
j d(j, i) in each cluster k will be

selected as the new LNk.

We iteratively perform two phases of Cluster Construction
and Cluster Topology Adjustment until the cluster structure
does not change or the objective function in Eq. (28) does not
decrease any more. The time complexity of Alg. 2 mainly
depends on the process of Cluster Construction, which can
be solved in O(n3) time by using the Hungarian algorithm
[61]. Since the algorithm is executed by the PS with powerful
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computing resource, its running time is negligible compared
with the model training time.

4.3 Extension to Dynamic Scenarios

In this subsection, we extend FedCH to dynamic scenario, in
which the network conditions may vary with time. We pro-
pose two approaches, i.e., fixed re-clustering, and adaptive
re-clustering.

4.3.1 Fixed Re-clustering
Fixed re-clustering means clustering all clients after every
Tb epochs, where Tb is a pre-set constant. Obviously, the PS
maintains a counter tb to record the number of experienced
epochs since the last re-clustering. If tb ≥ Tb, re-clustering
will be triggered. To determine the value of Tb, we should
consider the specific value ofK. A small value ofK indicates
that there are more clients in one cluster. Thus, the FL
mechanism is more susceptible to the stragglers effect, and
we adopt a small Tb. But for K = 1 and K = N , we set
Tb → ∞, because both FL mechanisms can not implement
re-clustering. However, the way to obtain the optimal value
of Tb demands future study.

4.3.2 Adaptive Re-clustering
Fixed re-clustering is only triggered after every Tb epochs.
Thus, it can not fully adapt to the sudden deterioration
of network status. To be more flexible, we propose an-
other approach, called adaptive re-clustering. PS adopt sk
to record the condition of each cluster k, where sk = 0
indicates that no straggler appears in cluster k, otherwise
sk = 1. Specifically, PS will set sk as 1 when it discovers the
occurrence of straggler in cluster k, i.e., the time between
two consecutive global aggregations of cluster k is greatly
increased. When a certain number, e.g., K̃ ∈ {1, ..,K}, of
clusters report the presence of stragglers, i.e.,

K∑
k=1

sk = K̃ (29)

re-clustering will be triggered. After adaptive re-clustering,
we reset tb = 0 and sk = 0,∀k. Even though some clients
may die during training, the fixed re-clustering and adap-
tive re-clustering can be triggered normally to discard the
dead nodes and construct new clusters for future training.
Therefore, the combination of two approaches can deal with
the slow or sudden degradation of training conditions, e.g.,
straggler effect and nodes failure, and maintain efficient
training until the ML task is completed.

We then briefly introduce the training process of FedCH
when adopting the above two approaches, namely Dyn-
FedCH. For each client, it uploads the real-time computing
delay and communication delay together with the updated
model to the cluster header and then the PS after local up-
dates. The PS will update the corresponding information of
each client for constructing new clusters. The computing de-
lay can be directly obtained by each client, which is set as the
time consumption of the latest completed local updates. For
the communication delay, each client demand to measure
the transmission rate for forwarding the updated model to
all other clients, which can be implemented by using some

TABLE 2: The different computing capacities of 20 clients in
the experiments.

Mode Denver 2 ARM A57 GPU Device id
0 2.0GHz×2 2.0GHz×4 1.3GHz 1, 2, 3, 4
1 0.0GHz 1.2GHz×4 0.85GHz 5, 6, 7, 8
2 1.4GHz×2 1.4GHz×4 1.12GHz 9, 10, 11, 12
3 0.0GHz 2.0GHz×4 1.12GHz 13, 14, 15, 16
4 1.4GHz×2 1.4GHz×4 0.0GHz 17, 18, 19, 20

transmission rate measurement tools (e.g., iperf3 [62]) or
bandwidth prediction kits [63], [64] to obtain the dynamic
network condition. By profiling the real-time computation
delay of each client and the communication delay among
them, the PS can perform effective re-clustering. In Dyn-
FedCH, whenever the PS collects updates from a cluster, it
checks whether the conditions for re-clustering are satisfied
or not. Re-clustering only occurs when the conditions for
fixed re-clustering (i.e., tb ≥ Tb) or adaptive re-clustering
(i.e.,

∑K
k=1 sk ≥ K̃) are met. Then PS will re-compute the

value of K∗, construct new clusters based on the proposed
algorithms, and distribute the re-clustering results. Each
client will forward the local model after local updates to the
new cluster headers based on the updated cluster topology
in its next training epoch.

5 PERFORMANCE EVALUATION

In this section, we conduct abound experiments on both
the physical platform and the simulated environment to
evaluate the effectiveness of our proposed algorithms. We
firstly discuss the experimental settings in detail, and then
present the experimental results on the prototype system
and simulated environment, respectively. Finally, we pro-
vide a brief summary of those results.

5.1 Experiment Settings
5.1.1 Experiment Environment
The deployment of our testbed spans two parts: one pa-
rameter server and twenty clients. As shown in Fig. 3, we
use an AMAX deep learning workstation as the parameter
server in the experiments. This machine is carrying an 8-core
Intel(R) Xeon(R) CPU (E5-2620v4) and 4 NVIDIA GeForce
RTX 2080Ti GPUs with 11GB RAM, and the OS is Ubuntu
16.04.1 LTS. We also adopt 20 NVIDIA Jetson TX2 as devices,
labeled from 1 to 20. Each TX2 is equipped with one GPU
and one CPU cluster, which consists of a 2-core Denver2
and a 4-core ARM CortexA57 with 8GB RAM, and its OS is
Ubuntu 18.04.4 LTS. In the implementation of experiments,
we place the PS and clients at different locations at least
1,000 meters apart and let them communicate via WAN.
This represents the real-world edge computing environment
where the PS is located at a remote cloud and communicates
with the clients at the network edge through WAN. The
clients are arranged together and communicate through a
WLAN. Meanwhile, to reflect the heterogeneity of clients,
we by default adopt 5 different modes of computing capaci-
ties for 20 TX2 clients, and each computing mode is used by
four devices, as shown in Table 2.

5.1.2 Models and Datasets
We carry out the experiments over four different models
(i.e., SVM [49], LR [45] and two CNN models [46]) and
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Fig. 3: The physical platform for the experiments.

two real datasets (i.e., MNIST [65] and CIFAR-10 [66]). Two
models SVM and LR with convex loss functions (Section
3.2) are trained over MNIST, which is composed of 60,000
handwritten digits for training and 10,000 for testing. They
divide the digits into odd and even categories. Two CNN
models with different structures are trained over MNIST
and CIFAR-10, respectively. Though the loss functions of
CNN are non-convex and do not satisfy Assumptions 1, we
also conduct experiments by using CNN to prove the gen-
eral applicability of our proposed mechanism. CNN has two
5×5 convolution layer, two max-pooling layers and three
fully-connected layers for CIFAR-10 (two fully-connected
layers for MNIST). CIFAR-10 includes 50,000 color images
for training and 10,000 for testing, and has ten different
types of objects. We perform stochastic gradient descent to
process the mini-batch samples for training [17].

5.1.3 Benchmarks
We compare our proposed algorithms with two well-known
FL algorithms for performance evaluation. 1) The first
benchmark is FedAsync [17], which is a typical asyn-
chronous FL algorithm with staleness treatment. The global
update of FedAsync is performed as soon as one model
from an arbitrary client is received by the PS, and this al-
gorithm can guarantee a near-linear convergence to a global
optimum. 2) We also choose an improved communication-
efficient synchronous FL algorithm FedAvg [67] as the
baseline, which can significantly reduce the communication
round during federated learning compared with normal
synchronized stochastic gradient descent. It randomly se-
lects a fixed number of clients (i.e., a subset) in each epoch
and aggregates the local models from these clients for global
update. We set the subset size as z. For a fair comparison,
we take multiple values of z in different experiments.

5.1.4 Performance Metrics
We mainly adopt four widely used metrics for performance
evaluation. 1) Loss function measures the difference between
the predicted values and the actual values. 2) Classification
accuracy is the proportion of correctly classified samples to
all samples for testing of the image classification tasks. 3)
Network traffic, which is defined as the total size of data
transmitted through the network. We adopt this metric to
quantify the communication cost of different algorithms.
4) Completion time denotes the time spent until training
terminates, which is used to evaluate the model training
speed. Loss function and classification accuracy are used

to validate whether a federated learning algorithm can
effectively guarantee the convergence of the model or not.
Meanwhile, the network traffic and completion time show
if the algorithms are resource-efficient.

5.1.5 Data Distribution
Data, as the foundation of model training, will directly
influence the training efficiency. Therefore, to evaluate the
impact of data distribution on the performance of different
algorithms, we will consider two main factors while dis-
tributing the entire dataset (with its size D) into separate
clients. 1) We first investigate the effect of non-independent
and identical distributed (non-IID) data on model training
efficiency by distributing the dataset in different non-IID
levels. In level 1, the data is IID in each client. In level 2, each
node only has the data samples with half labels. In level 3,
the data samples in each node are always with the same
label. 2) We also consider the data imbalance. In case 1, data
samples are assigned to each client uniformly (i.e., D

100 for
each node). In case 2 and case 3, the dataset is distributed to
each client according to the Gaussian distribution with the
same expectation (e.g., D

100 ) but different standard deviation
σ (e.g., 100 for case 2 and 300 for case 3), which denotes the
data size of each client mainly ranging from D

100 − 3σ to
D
100 + 3σ with a probability of 99.73%.

5.1.6 Experiment Parameters
In all experiments, we by default set the learning rate η
as 0.01, and the number of local updates in each epoch
as H = 10 [6]. We also by default distribute the data to
all clients uniformly and randomly. For our proposed algo-
rithm, we compare its training performance under the time
and network budget constraints. We consider one resource
type in each experiment for the convenience of presentation
of experiment results. We adopt a = 5 and b = 1 to deal with
staleness. We adopt the average results of 5 independent
experiments to avoid accidents.

5.2 Experimental Results on the TestBed
5.2.1 Effect of Time Budgets
Our first set of experiments compares the different perfor-
mances of FedCH and baselines with time budgets. The
results are shown in Figs. 4-6. Firstly, we observe how the
loss function and classification accuracy change with the
training time for SVM and LR over MNIST with a total
time budget of 1,000s in Figs. 4(a) and 4(b). We note that
FedCH converges faster than the other two algorithms at
the beginning of training and always achieves a lower loss
and a higher accuracy compared with FedAsync. Although
we set different computing capacities of clients to simulate
the system heterogeneity, the model training speed of the
fastest clients is only about twice as fast as that of the slowest
one. As a result, FedCH only achieves slightly better perfor-
mance for SVM over MNIST and obtains a similar perfor-
mance for LR over MNIST compared with FedAvg (z = 20).
As the heterogeneity among clients increases, FedCH will be
more effective. Secondly, we measure the completion time of
FedAsync and FedAvg when they achieve the final accuracy
of FedCH with a smaller time budget (i.e., 100s). The left
plot of Fig. 6 shows that FedCH substantially outperforms
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(a) SVM over MNIST.
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(b) LR over MNIST.
Fig. 4: Loss and Accuracy vs. Time for SVM and LR over MNIST.
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(b) LR over MNIST.

Fig. 5: Loss and Accuracy vs. Network Traffic for SVM and LR over MNIST.
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Fig. 6: The Comparison of Resource Consumption. Left plot:
Time; Right plot: Network Traffic.

two benchmarks for both SVM and LR over MNIST. For
example, the completion time of FedAvg and FedAsync is
198s and 486s, respectively. Thus, compared with baselines,
FedCH achieves a completion time reduction of 49.5-79.5%.
That is because FedCH clusters the clients with similar train-
ing capacities together and adopts the proposed hierarchical
aggregation for training, which can effectively handle the
straggle effect and help to achieve a faster convergence with
time budgets.

5.2.2 Effect of Network Traffic
We also conduct experiments to evaluate the communica-
tion cost of different algorithms by analyzing the influence
of the network traffic on the training efficiency. Figs. 5(a)
and 5(b) show that FedCH always achieves the best per-
formance under different traffic budgets for SVM and LR
over MNIST, compared with both FedAvg and FedAsync.
For example, the classification accuracy of FedCH with a
budget of 100Mb is 90.1% for SVM over MNIST, which is
higher than that of FedAvg (89.5%) and FedAsync (89.15%).
Meanwhile, the right plot of Fig. 6 shows the network
traffic by two baselines when they achieve the accuracy
of FedCH with a budget of 20Mb. We observe that Fe-
dAvg and FedAsync consume 47Mb and 104Mb for LR
over MNIST respectively. In other words, FedCH reduces
the consumption of network traffic by about 57.4-80.8%
compared with the two benchmarks. The reason for the

performance improvement of FedCH under the network
traffic budgets is that FedCH performs global aggregation
asynchronously among clusters and guarantees the model
convergence. On the contrary, FedAvg consumes too much
traffic in each epoch and FedAsync requires a large number
of training epochs to achieve a similar accuracy.

5.2.3 Effect of Different non-IID levels

We also evaluate how the data distribution with differ-
ent non-IID levels influences the training performance. We
conduct the experiments for SVM and LR over MNIST
with different non-IID levels on the prototype system. The
results are shown in Fig. 7. Since we have presented the
performance for SVM and LR with IID data (i.e., non-IID
level 1) in the first set of experiments, we omit it here.
We make three observations from the results. Firstly, Figs.
7(a)-7(b) show that FedCH performs better than FedAvg
and FedAsync with non-IID level 2 where each client only
have the data samples with half labels. For example, FedCH
achieves an accuracy of 88.2% for LR over MNIST, which is
higher than that of two baselines. Secondly, when we only
assign the data samples with the same label to each client
(i.e.,non-IID level 3), the synchronous algorithm FedAvg
achieves a better performance than FedCH. Finally, we also
note that as the non-IID level increases, the highest accuracy
that each algorithm can achieve also decreases. Since FedCH
can perform more training epochs than FedAvg under the
same time budgets, and aggregate multiple local models
from clients in the same cluster in each epoch to alleviate
the negative effect of data distribution, FedCH reasonably
converges faster than baselines with low non-IID levels.
Besides, FedAvg performs model aggregation by collecting
local models from all clients, the global model will not be
severely affected by the data distribution. For FedAsync,
the global model will be easily deteriorated by the adverse
model from an arbitrary client as the non-IID level increases,
leading to poor convergence performance.
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(a) SVM over MNIST with non-IID level 2.
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(b) LR over MNIST with non-IID level 2.
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(c) SVM over MNIST with non-IID level 3.
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(d) LR over MNIST with non-IID level 3.

Fig. 7: Loss and Accuracy vs. Time for SVM and LR over MNIST with Different non-IID Levels.
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Fig. 8: Loss and Accuracy vs. Time with Different Clustering
Algorithms for SVM.
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Fig. 9: Loss and Accuracy vs. Time with Different Clustering
Algorithms for LR.

5.2.4 Performance of Clustering Algorithm

Figs. 8-9 compare the loss and accuracy of the proposed
clustering algorithm with different clustering algorithms
under non-IID level 2. For FedCH, the clients are assigned to
each cluster uniformly. We also introduce three baselines to
evaluate the impact of distribution of client number among
clusters on the performance of FedCH, namely FedCH-χ
(e.g., 0.5, 0.7, and 0.9). Specifically, FedCH-χ (e.g., 0.5, 0.7,
and 0.9) denotes that the number of clients in each cluster
can fluctuate between (1 − χ)NK and (1 + χ)NK , where
N = 20 in the experiments. Besides, we also take the K-
means clustering algorithm as one of the baselines. The
experiments for SVM and LR over MNIST are conducted
on the physical platform. Two observations are as follows.
Firstly, we see that our proposed clustering algorithm out-
performs the other four clustering algorithms during train-
ing. For example, when training MNIST by SVM, FedCH

achieves an accuracy of 89.5% when adopting the proposed
clustering algorithm after 1,000s. But the accuracy is 88.2%,
87.5%, 87.3% and 86.6% for K-means, FedCH-0.5, FedCH-
0.7 and FedCH-0.9, respectively. Secondly, as χ increases, the
greater the difference in the number of clients in each cluster,
and the worse the convergence performance of the trained
model. This result verifies the efficiency of the balanced
clustering algorithm. This is because if the number of clients
in some clusters is too small, the aggregated cluster models
of those clusters are more possible to get stuck at locally
optimal values and deteriorate the global model, leading to
a poor convergence performance.

5.3 Simulation Results
To evaluate the performance of our proposed algorithms in
a larger-scale scenario, we also conduct our evaluations in
a simulated environment with 100 clients. The simulations
are performed on the AMAX deep learning workstation,
which is equipped with an 8-core Intel(R) Xeon(R) CPU
(E5-2620v4) and 4 NVIDIA GeForce RTX 2080Ti GPUs with
11GB RAM. We adopt the same parameter settings (e.g.,
η = 0.01 and H = 10) as the experiment in the prototype
system. Based on the tests on TX2 devices with different
computing modes (0-4) in Table 2, we randomly assign each
virtual client with a different capacity factor (0-4) accord-
ingly that denotes the time consumption for performing
local updates. Specifically, the computing capacity of a client
is gradually decreasing in the order of modes 0, 2, 3, 1 and 4.
For mode 0, each client only consumes 4-6s for local updates
(i.e., training 6,000 data samples) for SVM over MNIST.
But for mode 4, the time consumption is increased to 15-
18s. The transmission rates between clients are randomly
set to 1-10Mbps by default to simulate the heterogeneous
network condition. For a fair comparison, all algorithms are
implemented under the same settings.

5.3.1 Convergence Performance
We first conduct experiments in a simulated environment
to observe the convergence performance of different al-
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(a) SVM over MNIST.
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(b) LR over MNIST.
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(c) CNN over MNIST.
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(d) CNN over CIFAR-10.

Fig. 10: Loss and Accuracy vs. No. of Epochs for SVM, LR and CNN over MNIST and CNN over CIFAR-10.
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Fig. 11: Loss and Accuracy vs. K for SVM and LR.
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Fig. 12: Loss and Accuracy vs. K for CNN.

gorithms with different numbers of epochs, ranging from
0 to 1,000. Since Assumption 1 is not satisfied for the
loss function of CNN (e.g., non-convex), we conduct the
experiments on several values of K (e.g., 10, 20, and 50)
for FedCH without considering the time budget. FedCH(10)
denotes the algorithm with K = 10. The results for SVM, LR
and CNN over MNIST and CNN over CIFAR-10 are shown
in Figs. 10. We make two observations from those results.
Firstly, we note that FedCH(10) achieves the best conver-
gence performance compared with other settings, and the
increase of K leads to a performance degradation of FedCH.
For example, after training 1,000 epochs over CIFAR-10
using CNN, the accuracy of FedCH(10) and FedAvg is 56%
and 39%, and the performance of FedAvg is similar to that
of FedCH(20). Besides, FedCH requires about 300 epochs to
achieve the same accuracy of FedAsync after 1,000 epochs
for CNN over MNIST, which reduces the number of training
epochs by 70%. Secondly, the superiority of FedCH is better
reflected on the complex model (i.e., CNN) and dataset (i.e.,

CIFAR-10). For example, FedCH(10) only achieves an accu-
racy improvement of 4.2% for SVM over MNIST, compared
with FedAsync. But for CNN over MNIST and CIFAR-10,
the accuracy of FedCH(10) is 40.8% and 103% higher than
that of FedAsync. Those results demonstrate the efficiency
of FedCH when training models with non-convex functions.
By cluster aggregation, each aggregated model wk of the
cluster k can be trained over a virtual big dataset (i.e.,
the union of local datasets of all clients in cluster k). As
K increases, the number of clients as well as the size of
this virtual big dataset in each cluster decreases. Therefore,
FedCH(10) converges faster than FedCH(20), FedCH(50),
FedAvg and FedAsync with respect to the training epochs.

5.3.2 Effect of Cluster Number

We further study the effect of cluster number K on the
training efficiency of FedCH in the simulated environment.
The cluster number varies from 1 to 100 for SVM, LR and
CNN over MNIST. Apparently, if K is 100, FedCH becomes
FedAsync for the reason that the PS will perform the global
update when one model from an arbitrary client is collected.
Meanwhile, FedCH is same as FedAvg(z = 100) if K = 1.
The results are shown in Figs. 11-12. Two observations are
as follows. Firstly, we note that there are always different
optimal values of K for different models and datasets under
a certain time budget (e.g., 600s for SVM/LR and 1,800s for
CNN). For instance, FedCH achieves an accuracy of 74.2%
with CNN over MNIST when it takes the optimal value
of K (i.e., 25), which is about 15% and 26% higher than
FedAvg and FedAsync, respectively. But for SVM and LR,
the optimal values of K are about 10 and 25, respectively.
Different models always require different computing and
communication resources during training, leading to a dif-
ferent training speed. To handle this, FedCH will construct
different cluster topologies for improving the training ef-
ficiency. Secondly, from the results, we also observe that
loss first decreases then increases when K ∈ [1, 50), and
gradually increases when K ∈ [50, 100], which can verify
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the proof in Theorem 3, i.e., there always exists an optimal
K between 0 and bN+1

2 c under a given time budget.

5.3.3 Effect of Data Imbalance
To analyze the impact of data imbalance, we test the com-
pletion time of different algorithms while achieving the
same training accuracy in cases 1-3 (Section 5.1.5). We set
the target accuracy as the accuracy that all algorithms can
achieve, i.e., 80% for SVM and 50% for CNN over MNIST.
The completion time of different algorithms (e.g., FedCH,
FedAvg, and FedAsync ) using SVM or CNN to train
MNIST is shown in Fig. 13. Firstly, we observe that as the
degree of data imbalance increases, the completion time
of FedAvg and FedAsync also rapidly increases. However,
the completion time for FedCH remains stable in all cases,
especially for CNN over MNIST. We speculate that this
may be attributed to the positive effect of clustering, which
avoids the adverse effects of single clients (i.e., FedAsync)
and prevents the situation for waiting for all clients in each
epoch (i.e., FedAvg). In comparison, FedCH demands less
training time than both FedAvg and FedAsync. For example,
by the left plot of Fig. 13, the completion time of FedCH is
about 1,036s in case 1 where data samples are assigned to
each client uniformly, which is 56.8% and 67.2% less than
that of FedAvg and FedAsync, respectively.

5.3.4 Effect of Dynamic Scenarios
To emulate a dynamic scenario in edge computing, and
observe the performance of the Dyn-FedCH algorithm, we
conduct the following configurations for communication
and computation. We simulate two different network con-
ditions, i.e., the high and low dynamic scenarios. In the high
dynamic scenario, we let the transmission rates between
clients fluctuate between 1Mbps and 10Mbps, and randomly
change the speed of those links every epoch. According
to the experiments in the physical platform, we set the
computation delay of each client for local updates to vary
between 5s and 10s for CNN over MNIST. In the low
dynamic scenario, the transmission rates between clients
vary between 4Mbps and 6Mbps, and we only change the
link speed every 10 epochs. Meanwhile, the computation
delay fluctuates between 5s and 7s. For our proposed mech-
anism, we set the latency of profiling the network band-
width and the computing capacity of each client for cluster
construction as a relatively large proportion (e.g., 10%) of
the completion time of the current epoch. For Dyn-FedCH,
we also adopt two settings, i.e., Dyn-FedCH-(1,1) and Dyn-
FedCH-(10,5). Specifically, Dyn-FedCH-(10,5) means that we
adopt Tb = 10 and K̃ = 5 for performing low-frequency
re-clustering. Meanwhile, Dyn-FedCH-(1,1) will update the
constructed clusters in each training epoch based on the
real-time computing power and network status. The results
for CNN over MNIST are shown in Figs. 14-15. Three
observations are as follows.

Firstly, the right plots in Figs. 14-15 shows that our
proposed approaches, including FedCH, Dyn-FedCH-(10,5)
and Dyn-FedCH-(1,1), converge faster than baselines. Fe-
dAvg (z = 100) achieves a slighter better convergence
performance with respect to training epochs in two dy-
namic scenarios, compared with our proposed approaches.
However, since its per-epoch completion time depends on
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Fig. 13: Completion Time vs. Data Distribution Cases. Left
plot: SVM; Right plot: CNN.
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Fig. 14: Accuracy vs. No. of Epochs and Time for CNN over
MNIST in Low Dynamic Scenarios.

the maximum training time among all clients, its training
speed is much slower than our approaches. For example,
when achieving an accuracy of 60% (an accuracy that all
algorithms can reach) under high dynamic scenario, Dyn-
FedCH-(10,5) reduce the time consumption by about 76.5%
and 79.4% compared with FedAvg and FedAsync. Sec-
ondly, both Dyn-FedCH-(10,5) and Dyn-FedCH-(1,1) con-
verge faster than FedCH for the reason that the static cluster
structure cannot adapt to dynamic scenarios, leading to
performance degradation. For example, the time consump-
tion for achieving an accuracy of 60% in the high dynamic
scenario is 48s, 130s and 273s for Dyn-FedCH-(1,1), Dyn-
FedCH-(10,5) and FedCH, respectively. Thirdly, we also note
that the frequency of re-clustering will affect the training
performance to a certain extent. Specifically, Dyn-FedCH-
(10,5) converges faster than Dyn-FedCH-(1,1) under low
dynamic scenario while Dyn-FedCH-(1,1) outperforms Dyn-
FedCH-(10,5) in the high dynamic scenario. This is because
re-clustering can effectively reduce the per-epoch training
time and adapt to the dynamic scenario, but it also incurs
additional cost by profiling the network status. However,
determining the optimal frequency of re-clustering of Dyn-
FedCH for further accelerating FL remains to be studied.

5.3.5 Sensitivity of a and b
We finally analyze the influence of parameters a and b on
convergence performance, which are adopted to handle the
staleness during global aggregation. We adopt three values
of a (i.e., 5, 10 and 20) and b (i.e., 0.5, 1 and 2) to train CNN
over MNIST for 1,000 epochs in the simulated environment.
The results are shown in Fig. 16. Two observations are as fol-
lows. Firstly, we note that the loss (accuracy) first decreases
(increases) and then remains stable as b increases. In fact,
for a model with high staleness τ (i.e., τ > a), its weight
decreases with the increase of b during global aggregation.
Therefore, a large value of b can effectively prevent the
global model from being destroyed by the model with high
staleness from the clusters. Secondly, we also observe that
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Fig. 16: Impact of Parameters a and b for CNN over MNIST.
Left plot: Loss; Right plot: Accuracy.

different values of a have a slight impact on the training
efficiency of FedCH except when a = 1, 000. For example,
when a = 10 and b = 1, FedCH achieves the accuracy
of 91.8%, whereas if a = 1, 000, the accuracy would be
26% lower. That is because a = 1, 000 indicates that we
have not taken measures to deal with staleness, and all the
local models share the same weight when executing global
aggregation, leading to a poor convergence performance.

5.4 Summary of Experiment Results
To summarize, our proposed algorithms can substantially
outperform benchmarks in the following aspects. Firstly,
FEDCH always outperforms two baselines under resource
budgets. For example, FedCH reduces the resource con-
sumption (i.e., time and network traffic) by about 49.5-80.8%
while achieving a similar performance in Figs. 5-6. Secondly,
we observe that FedCH effectively deals with non-IID data.
FedCH performs better than or similar to the synchronous
method (i.e., FedAvg) in different non-IID levels in Fig. 7.
Furthermore, FedCH converges faster than benchmarks for
different models and datasets during training. From Fig.
10, FedCH only requires 300 epochs to achieve the same
accuracy as FedAsync after 1,000 epochs. We also realize
that Dyn-FedCH handles the network dynamics well. Fig.
14-15 show that Dyn-FedCH reduces the time for achieving
the target accuracy of about 76.5-79.4%, compared with
baselines. Finally, Fig. 16 shows that FedCH with staleness
treatment improves the classification accuracy by 26% com-
pared with the algorithm without dealing with staleness.

6 CONCLUSION

In this paper, we have designed an effective federated learn-
ing mechanism, FedCH, to accelerate the model training
with the cluster construction and hierarchical aggregation in
heterogeneous edge computing. We have proposed efficient
algorithms to determine the optimal number of clusters
with resource constraints and construct cluster topology for

model training. We have further extended our algorithm
to deal with the network dynamics in practice. The experi-
mental results have indicated that the proposed mechanism
can obtain excellent performance compared with baselines.
We believe that our proposed mechanism will provide a
valuable solution for federated learning.
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