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Abstract—Data generated at the network edge can be processed locally by leveraging the paradigm of Edge Computing (EC). Aided
by EC, Federated Learning (FL) has been becoming a practical and popular approach for distributed machine learning over locally
distributed data. However, FL faces three critical challenges, i.e., resource constraint, system heterogeneity and context dynamics in
EC. To address these challenges, we present a training-efficient FL method, termed FedLamp, by optimizing both the Local updating
frequency and model compression ratio in the resource-constrained EC systems. We theoretically analyze the model convergence rate
and obtain a convergence upper bound related to the local updating frequency and model compression ratio. Upon the convergence
bound, we propose a control algorithm, that adaptively determines diverse and appropriate local updating frequencies and model
compression ratios for different edge nodes, so as to reduce the waiting time and enhance the training efficiency. We evaluate the
performance of FedLamp through extensive simulation and testbed experiments. Evaluation results show that FedLamp can reduce the
traffic consumption by 63% and the completion time by about 52% for achieving the similar test accuracy, compared to the baselines.
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1 INTRODUCTION

With the development of mobile computing technology and
Internet of Things (IoT), there have been nearly 7 billion
connected IoT devices and 3 billion smartphones by 2020
all over the world [1]. The data source of the network
has undergone a complete transformation from cloud data
center to widely used terminal devices, on which the emerg-
ing technique of Federated Learning (FL) is launched to
perform distributed machine learning over the distributed
data [2]–[6]. Many interesting applications in different fields,
e.g., keyword spotting [7], medical imaging [8], finance risk
prediction [9], etc., have been boosted by FL.

In addition, due to the growing storage and computing
capabilities on terminal devices, it is increasingly attractive
to store data locally and push more applications that re-
quire high computing power to the network edge, which
is called Edge Computing (EC) [10]–[12]. Aided by EC, FL
has been widely deployed for various crowdsensing tasks
and on-device intelligent applications, e.g., human gesture
recognition [13] and augmented reality (AR) [14], etc. In
EC, the basic process of FL includes two main steps, i.e.,
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local updating on edge nodes and global aggregation on
the parameter server (PS). Firstly, each edge node performs
gradient descent to update its local model and minimize the
loss function on its own dataset, and then sends the updated
model to the PS. Subsequently, the PS aggregates these
models from different edge nodes and sends the aggregated
model back to the nodes for the next training round. Since
the edge nodes expose not their raw training data but the
trained models to the PS, FL can efficiently protect users’
privacy [2], [15].

However, to implement highly efficient FL in EC, we
should take into account the following challenges in practi-
cal applications. 1) Resource Constraint. In EC, the commu-
nication and computing resources of edge nodes are always
limited [16]. In contrast, the edge nodes will frequently per-
form local updating and send/receive the models, causing
an enormous resource overhead (e.g., network bandwidth)
[17]. 2) System Heterogeneity. The EC system involves het-
erogeneous edge nodes with varying capabilities [1], [18]–
[20]. For example, there can be a tenfold difference in
computing capabilities (i.e., CPU frequency and battery life)
or communication capabilities (i.e., bandwidth, throughput)
for the edge nodes as illustrated in Section 5. 3) Context
Dynamics. Owing to the intrinsic and/or external conditions
(i.e., context), such as ambient temperatures, CPU states,
network connections to the server and so on, the per-round
training time (i.e., computing time) and model aggregation
time (i.e., communication time) at each edge node may vary
significantly [21], [22].

There are many previous works focusing on resource
constraints in FL. A natural solution is to perform model
training for multiple local iterations (one local iteration is
referred to as local updating based on a sample/mini batch)
before global aggregation, which contributes to reducing the
overall communication rounds for global aggregation and
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saving the communication resource. Stich et al. [23] give a
theoretical analysis of the convergence rate with respect to
local updating frequency (i.e., the number of local iterations
between two successive global aggregations). Wang et al.
[24] and Luo et al. [25] adaptively determine proper local up-
dating frequency for participating nodes on the basis of both
the constrained resource and dynamic context so as to re-
alize communication-efficient FL and speed up the training
process. To further reduce communication consumption, the
technique of model compression [1], [26] is widely utilized
by compressing the gradients or model parameters to be
transmitted through sparsification [27]–[31] or quantization
[32]–[38], for efficient model aggregation. For example, Nori
et al. [39] consider both the communication frequency and
communication data volume during training, and determine
local updating frequency and model compression ratio for
the participating nodes to further speed up training and
reduce resource consumption. However, the existing works
always assign identical or fixed model compression ratios
and local updating frequencies for all the heterogeneous
edge nodes, which can not make full use of the nodes’
capacities. Although Han et al. [31] apply adaptive model
compression to overcome the communication heterogeneity,
they still cannot balance the computing time given the iden-
tical local updating frequency. For the popular synchronous
FL, the synchronization barrier requires heterogeneous edge
nodes to wait for others to finish local updating before
model transmission and aggregation, which will incur non-
negligible waiting time and deteriorate training efficiency
[18], [19].

In this paper, we propose a training-efficient FL method,
termed FedLamp, by optimizing both the Local updating
frequency and model compression ratio in the resource-
constrained EC systems. Unlike the previous works, we
explore to adaptively adjust the local updating frequencies
and model compression ratios for different edge nodes.
Generally, the models updated with more iterations of local
updating will be assigned with larger compression ratios to
reserve more parameters for global aggregation. However,
a very large local updating frequency may lead the local
models converging to the local optimal solutions rather
than the global optima, which will hinder model conver-
gence. The core mission of FedLamp is to quantify the
relationship between local updating frequency and model
compression ratio regarding the training performance, and
jointly optimize these two variables for different edge nodes
so as to better improve the training efficiency. The main
contributions of this paper are summarized as follows:
• We design an efficient FL method, called FedLamp,

which integrates adaptive control of local updating
and model compression to better overcome the chal-
lenges of system heterogeneity and context dynamics
in the resource-constrained EC systems.

• We theoretically analyze the model convergence rate
and obtain a convergence upper bound related to the
local updating frequency and model compression ra-
tio. Upon the bound, we propose a control algorithm,
that adaptively determines diverse and appropriate
local updating frequencies and model compression
ratios for different edge nodes, so as to reduce the
waiting time and enhance the training efficiency.

• The performance of FedLamp is evaluated through
extensive simulation and testbed experiments. The
evaluation results show that FedLamp can reduce the
traffic consumption by 63% and the completion time
by about 52% for achieving the similar test accuracy,
compared to the baselines.

The rest of this paper is organized as follows. Section 2
formalizes the optimization problem of our proposed Fed-
Lamp. Section 3 gives the convergence analysis of FedLamp.
Based on the analysis, we propose an efficient algorithm
to adaptively determine the local updating frequency and
model compression ratio for each edge node in Section
4. Then we report our simulation and test-bed results in
Section 5. Section 6 describes some related works and we
conclude the paper in Section 7.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Federated Learning in Edge Computing

In EC, there are N workers (i.e., edge nodes) and a pa-
rameter server (PS) constituting a edge computing cluster,
where federated learning is proposed to solve the learning
tasks through a loose federation of participating workers
controlled by the PS (e.g., edge server). The PS maintains
a globally-shared model, i.e., the global model, w ∈ Rd,
where w is the model vector and d is the dimension size.
Each worker keeps its local dataset Di and maintains a local
model wi ∈ Rd. The global loss function F (w) : Rd → R in
FL can be formulated as: [24], [40]

min
w∈Rd

F (w) ,
1

N

N∑
i=1

Fi(wi) (1)

where Fi(wi) = Eξi∼Di
[Fi(wi)] is the local loss function

corresponding to worker i, Eξi∼Di
[·] denotes expectation

over a random sample ξi chosen from the local dataset Di.
FL aims to find an optimal global model w∗ that satisfies:

w∗ := arg min
w∈Rd

F (w) (2)

Due to the inherent complexity of most machine learning
tasks, trying to find a closed-form solution of Eq. (2) is
always difficult [41]. Nonetheless, Eq. (2) can be solved
by the gradient descent algorithms [18], [24]. For the mini-
batch stochastic gradient descent (SGD), a gradient descent
step over a mini batch on each worker is regarded as a
local iteration (or a local update). After performing one or
multiple local iterations, each worker first pushes its local
model to the PS for global aggregation, and then pulls
the updated global model from the PS for further training.
Such a training process is regarded as a communication
round. w(k,h)

i denotes the local model of worker i at the k-
th iteration within communication round h. Therefore, the
local updating step of worker i is expressed as follows:

w
(k+1,h)
i = w

(k,h)
i − ηg(k,h)

i (3)

where g
(k,h)
i = ∇Fi(w(k,h)

i , ξ
(k,h)
i ) is an unbiased stochastic

gradient estimator and η is the local learning rate.
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TABLE 1: Key Notations.

Symbol Semantics
N number of workers
Di local dataset of worker i
w global model
wi local model of worker i
F (w) global loss function
Fi(wi) local loss function of worker i
F (w∗) the optimal value of loss function F (w)
H total number of communication rounds
th completion time of round h
thi completion time of round h on worker i
Wh average waiting time of round h
B bandwidth resource budget
bi bandwidth consumption of worker i
C computing resource budget
ci computing resource consumption of worker i
µhi computing time of one local iteration of

worker i at round h
ηhi communication time of one full model of

worker i at round h
γhi model compression ratio at round h

on worker i
τhi local updating frequency at round h

on worker i
ε waiting time threshold

In the global aggregation step, the PS updates the global
model w by aggregating the local models with global aggre-
gation weight αi

N corresponding to worker i as follows:

wh+1 = wh +
N∑
i=1

αi
N

(wh
i −wh) (4)

where
∑N
i=1

αi

N = 1. Some important notations in this paper
are listed in Table 1.

2.2 Joint Optimization of Local Updating Frequency
and Model Compression Ratio
In this section, we propose FedLamp to optimize both the
local updating frequency and model compression ratio. Due
to system heterogeneity, the computing time of one local
iteration and transmission time of one full model among
workers are highly different. As illustrated in Section 5.1,
the highest-performance (or fastest) worker can be 10 times
faster than the lowest-performance (or slowest) one. How-
ever, in traditional synchronous schemes, local updating
frequencies and model compression ratios among workers
are usually identical or fixed at each communication round.
Accordingly, some fast workers have to wait for slow ones,
incurring non-negligible waiting time and significantly re-
ducing the training efficiency [18], [20]. Whereas, we pro-
pose to dynamically adjust the local updating frequencies
and model compression ratios for different workers to ad-
dress the system heterogeneity and context dynamics in the
resource-constrained EC systems.

Considering the heterogeneous computing and commu-
nication capabilities of workers, before global aggregation,
the workers with higher computing capabilities can perform

more local iterations while the workers with lower comput-
ing capabilities only perform less local iterations. During
model transmission, for saving communication resource,
model compression is employed to compress the model
parameters to be transmitted through sparsification [27]–
[31]. We employ topk sparsification [27] as our compression
operator while other compression operators (e.g., randomk

[30]) can also be applied in FedLamp. The definition of topk
sparsification is as follows:
Definition 1. Given a parameter 1 ≤ k ≤ d, the compression

operator topk: Rd → Rd is defined for w ∈ Rd as

topk(w)i :=

{
wπ(i), if i < k

0 otherwise
(5)

where π is a permutation of [d] such that |wπ(i)| ≥ |wπ(i+1)|
for i = 0, · · · , d−1. The compression ratio of topk compres-
sion operator is defined as γ = k

d , where k is the number of
parameters retained after compression and d the number of
original parameters. As stated in [30], the topk compression
operator satisfies the following contraction property:

E‖w − topk(w)‖2 ≤ (1− γ) ‖w‖2, ∀w ∈ Rd (6)

According to the contraction property, a smaller model com-
pression ratio γ can help to save more bandwidth resource
but deteriorate the model quality and reduce training accu-
racy. Section 3 will further explain the relationship between
model compression ratio and local updating frequency.

Generally, the workers with higher communication ca-
pabilities can apply larger model compression ratios to
reserve more model parameters, while the workers with
lower communication capabilities can apply smaller model
compression ratios. After that, the waiting time among
workers would be significantly reduced. We define the
local updating frequency and model compression ratio at
the h-th communication round on worker i as τhi and γhi ,
respectively. The computing time of one local iteration and
communication time of one full model at the h-th communi-
cation round on worker i are denoted as µhi and βhi , respec-
tively. Considering the upload bandwidth is usually much
smaller than the download bandwidth in typical WANs [3],
[42], we focus on the communication time of pushing the
models from workers to PS during the model exchanging.
Therefore, the completion time of communication round
h (include computing time and communication time) on
worker i can be formulated as:

thi = τhi · µhi + γhi · βhi (7)

Note that, the topk compression operator needs to traverse
all the parameters to obtain the largest k parameters, which
can be implemented with the efficient quicksort-based se-
lection method. We conducted a pre-experiment for training
AlexNet on CIFAR-10 and recorded the time required by
the compression algorithm and the completion time of each
communication. Specifically, the average time taken by topk
is about 0.02s, while the average completion time of a
communication round is about 4s. The compression time
accounts for only about 0.5% in a certain communication
round, and thus can be reasonably negligible.

Then, the waiting time of worker i can be expressed
as th − thi , where th = max{thi |∀i ∈ [N ]} denotes the
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completion time of round h on the slowest worker. Then
the average waiting time of all workers at round h can be
formulated as:

Wh =
1

N

N∑
i=1

(th − thi ) (8)

FedLamp ensures that the average waiting time will be
small enough to mitigate the effects of the synchronization
barrier.

2.3 Problem Formulation

This section defines the problem of efficient FL with adap-
tive local updating and model compression given the con-
strained communication and computing resources in EC
systems. Herein, we mainly consider the resource con-
sumption from the system point of view. For the sake of
description, we adopt the summation form to formulate
the computing and communication resource consumptions
on workers during the whole training procedure, which
are expressed in Eqs. (9) and (10). Due to system hetero-
geneity among workers, the local updating on workers will
consume different amounts of bandwidth and computing
resources. We define the computing resource consumption
of one local iteration as ci and the transmission bandwidth
consumption of one full model as bi on worker i. Assuming
that the total computing resource budget and bandwidth re-
source budget are C and B, respectively, the computing and
bandwidth resource constraint are formulated as follows:

H∑
h=1

N∑
i=1

τhi · ci ≤ C (9)

H∑
h=1

N∑
i=1

γhi · bi ≤ B (10)

Given an FL task in the EC system, we will determine
the value of τhi and γhi so as to minimize the training time∑H
h=1 t

h. Accordingly, we formulate the problem as follows:

min
H∑
h=1

th

s.t.



F (wH)− F (w∗) ≤ ε
thi = τhi · µhi + γhi · βhi , ∀i ∈ [N ],∀h ∈ [H]

Wh = 1
N

∑N
i=1(t

h − thi ) ≤ ε, ∀h ∈ [H]∑H
h=1

∑N
i=1 τ

h
i · ci ≤ C∑H

h=1

∑N
i=1 γ

h
i bi ≤ B

(11)

The first inequality expresses the convergence requirement,
where ε > 0 is the convergence threshold (close to zero) of
the training loss between the optimal F (w∗) and F (wH)
after H training communication rounds. The second set of
equalities denotes the formulation of the completion time
of communication round h on worker i. The third set of
inequalities indicates that the average waiting time of all
workers at each communication round should not exceed
the predefined threshold ε > 0 (close to zero). The fourth
inequality indicates the accumulated computing resource
can not exceed the computing resource budget afterH train-
ing communication rounds. The last inequality indicates
the accumulated bandwidth resource can not exceed the

bandwidth resource budget afterH training communication
rounds. Our objective is to minimize the training time under
the resource constraints and performance requirements (e.g.,
convergence, average waiting time).

3 CONVERGENCE ANALYSIS

In this section, we analyze the convergence bound of the
global loss function after H communication rounds. For the
sake of analysis, we make the following three assumptions
as suggested in [24], [37], [38], [43].
Assumption 1. (Lipschitz Continuous Gradient) There exists

a constant L > 0, such that:

‖∇Fi(x)−∇Fi(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd (12)

Assumption 2. (Unbiased Local Gradient Estimator) Let ξhi
be a random local data sample at the h-th communica-
tion round on worker i. The local gradient estimator is
unbiased as follows:

E
[
∇Fi(wh

i , ξ
h
i )
]
= ∇Fi(wh

i ) (13)

Assumption 3. (Bounded Local Variance) There exists a
constant σ, such that the variance of each local gradient
estimator is bounded by:

E
[
‖∇Fi(wh

i , ξ
h
i )−∇Fi(wh

i )‖2
]
≤ σ (14)

These assumptions are standard in non-convex opti-
mization problems (e.g., training deep neural networks) and
commonly used in the analysis of FL with model compres-
sion [37], [38].

In order to facilitate the proof of Theorem 1, we present
several important lemmas as follows. The proofs of the
lemmas mainly refer to Lemmas D.1-D.3 in [37], which can
be directly applied to support our lemmas with little modifi-
cation. Therefore, to better highlight our main contributions,
we omit the detailed proofs.
Lemma 1. According to Assumption 1, the expected inner

product between the full batch gradient and stochastic
gradient can be bounded with:

− E
[〈
∇F (wh),gh

〉]
≤ η

2N

N∑
i=1

τ−1∑
k=0

[
−‖∇F (wh)‖2 − ‖∇Fi(w(k,h)

i )‖2
]

+
η

2N

N∑
i=1

τ−1∑
k=0

[
L2‖wh −w

(k,h)
i ‖2

]
(15)

Lemma 2. Under Assumption 2, Assumption 3 and con-
traction property Eq. (6) of topk, we have the following
bound:

Etopk

[
‖gh‖2

]
≤ τ(2− γ) 1

N

N∑
i=1

[
τ−1∑
k=0

‖g(k,h)
i ‖2 + σ2

]
(16)

Lemma 3. Under Assumption 3, we have:

E
[
‖wh −w

(k,h)
i ‖2

]
≤ η2τ

τ−1∑
k=0

‖g(k,h)
i ‖2 + η2τσ2 (17)

Given these assumptions and lemmas, we have the fol-
lowing theorem about convergence bound.
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Theorem 1. If all local models are initialized at the same
parameters w0, then the mean square gradient after H
communication rounds is bounded as follows:

1

H

H−1∑
h=0

‖∇F (wh)‖2

≤
2
(
F (w0)− F (w∗)

)
ηατH

+
Lη α(2− γ)σ2

N

+ L2η2τσ2 (18)

where τ = max{τhi }, γ = max{γhi }, α = max{αhi } and
local learning rate η satisfy:

τ2L2η2 + (2− γ) ηαLτ ≤ 1 (19)

The proof is presented in APPENDIX A.

On basis of Theorem 1, we can specify ηα = O(
√
N√
Hτ

)
to achieve a linear speedup convergence rate, and further
obtain the following convergence bound for our FedLamp
with proper decisions of global aggregation weight α

N and
local learning rate η.

Corollary 1. Let η = c1
γ√
HτL

and α = c2
√
τN , where c1

and c2 are constant coefficients, then the convergence
rate can be transformed as:

1

H

H−1∑
h=0

‖∇F
(
wh
)
‖2

≤
2L
(
F (w0)− F (w∗)

)
c1c2γ

√
τHN

+
c1c2γ(2− γ)σ2

√
τHN

+
c21γ

2σ2

Hτ
(20)

With Corollary 1, FedLamp can achieve a linear speedup
of convergence rate O( 1√

τHN
) as many previous works

[24], [37], [43], which indicates that FedLamp can con-
tribute to saving resource consumption while still maintain-
ing the similar convergence performance. Upon the setting
α = c2

√
τN , we can formulate a rule to assign the global

aggregation weight α
h
i

N for worker i at round h, where αhi is
expressed as follows:

αhi = c2

√
τhi N (21)

which indicates that a model trained with larger local up-
dating frequency will be assigned with a larger global aggre-
gation weight, so as to improve overall training efficiency.
Since

∑N
i=1

αh
i

N = 1, we can obtain that c2 =
√
N∑N

i=1

√
τh
i

.

Given the local learning rate η = c1
γ√
HτL

, we can
formulate a scaling rule to guide the setting of model com-
pression ratios for different workers with respect to their
local updating frequencies as follows:

γhi
τhi

= v (22)

where v = ηL
√
H

c1
is a constant indicating that model

compression ratio of worker is proportional to its local up-
dating frequency. Then the local updating completion time

(including computing time and communication time) at the
h-th communication round on worker i can be rewritten as:

thi = τhi (µ
h
i + v · βhi ) (23)

Considering the above analysis, we can solve the problem
in Eq. (11) by determining the local updating frequencies
and model compression ratios for workers upon the com-
puting time µhi and communication time βhi , which will be
elaborated in Section 4.

4 ALGORITHM DESIGN

In this section, we first present an approximation of Eq. (11).
Then, we propose an update algorithm that dynamically ad-
justs the local updating frequencies and model compression
ratios for different workers. Finally, we analyze the time
complexity of the proposed algorithm.

4.1 Approximation of Eq. (11)
In order to guarantee the convergence, we let the bound
of mean square gradient be less than ρ (ρ is a positive
number close to zero), which is equivalent to ensuring
F (w) − F (w∗) ≤ ε. Given the model compression ratio
0 < γ ≤ 1 and γ = v · τ , we can formulate the convergence
bound as:

g(H, τ) =
2L · F (w0)

v · τ
√
τHN

+
v · τ · σ2

√
τHN

+
v2 · τ · σ2

H
≤ ρ (24)

For purpose of minimizing the average waiting time of all
workers, we let the thi among workers be approximately
equal. Then we can have the following formulation:

τhi = bτhl ·
µhl + v · βhl
µhi + v · βhi

c (25)

where l denotes the index of the fastest worker with the
largest local updating frequency τ at round h. Thus, τhl = τ .
Then the total training time can be formulated as follows:

T (H, τ) =
H∑
h=1

τ(µhl + v · βhl ) (26)

Hence, the problem of Eq. (11) can be approximated as:
minT (H, τ)

s.t.



g(H, τ) ≤ ρ

τhi = bτ · µ
h
l +v·β

h
l

µh
i +v·βh

i
c, ∀i ∈ [N ],∀h ∈ [H]∑H

h=1

∑N
i=1 τ

h
i · ci ≤ C∑H

h=1

∑N
i=1 v · τhi · bi ≤ B

(27)

4.2 Update Algorithm
On the basis of the above explanation, we propose an update
algorithm to first estimate the maximum local updating
frequency τh+1

l at the (h+1)-th communication round that
minimizes T (H, τh+1

l ) according to the training information
at the h-th communication round. Then τh+1

l is applied
to calculate the local updating frequencies τh+1

i of other
workers by Eq. (25) at round h+ 1 to minimize the average
waiting time. With τh+1

i in each worker, γh+1
i and αh+1

i can
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Algorithm 1 Procedure at worker i

Output: wH

1: Estimate computing resource consumption ci
2: Estimate bandwidth resource consumption bi
3: Initialize h← 0 and learning rate η
4: Initialize mh

i as a zero vector
5: Send ci and bi to PS
6: while STOP flag is not received do
7: Receive wh, τhi and γhi from PS
8: Set ĥ← h and h← h+ 1
9: if h > 1 then

10: Estimate Li ← ‖∇Fi(w
ĥ)−∇Fi(w

ĥ
i )‖

‖wĥ−wĥ
i ‖

11: Estimate
12: σi ← E

[
‖∇Fi(wĥ, ξĥi )−∇Fi(wĥ)‖2

]
13: end if
14: Set w0,ĥ

i ← wĥ

15: for each local iteration k ∈ {1, 2, ..., τ ĥi } do
16: Compute g

(k,ĥ)
i ← ∇Fi(w(k,ĥ)

i , ξ
(k,ĥ)
i )

17: Update w
(k+1,ĥ)
i ← w

(k,ĥ)
i − ηg(k,ĥ)

i

18: end for
19: Set wh

i ← w
(τ ĥ

i ,ĥ)
i

20: Record computing time µĥi and communication time
βĥi

21: Push submodel topk(w
h
i − wĥ + mĥ

i ), µ
ĥ
i and βĥi to

PS
22: mh

i ←mĥ
i + (wh

i −wĥ)− topk(w
h
i −wĥ)

23: if h > 1 then
24: Send Li and σi to PS
25: end if
26: end while
27: Receive wH from the server

be obtained accordingly. It is noted that the variables L and
σ may be unknown in practice, and need to be estimated
in real-time during training, which will be explained later.
Besides, the computing and bandwidth resource budgets C
and B, are initialized in advance and remain unchanged
during training. Bh and Ch are regarded as the practical
resource consumption by communication round h and Th

denotes the accumulated training time by communication
round h. Furthermore, τh+1

i is explored in a search space to
minimize T (H, τh+1

l ).
We present the update algorithm for workers (Alg. 1)

and the server (Alg. 2) to achieve the efficient FedLamp.
At the worker side, Alg. 1 begins with the estimation of
computing and bandwidth resources consumption ci and
bi, which are sent to the server for calculating the resource
consumption. The local updating is performed on each
worker (Lines 14-18 of Alg. 1), and the rest of Alg. 1 aims to
interact with the PS for global aggregation which is mainly
implemented in Alg. 2. It is worth noting that we introduce
error compensation (keeping track of accumulated errors in
memory) in Lines 21-22 of Alg. 1, where mh

i is initialized
by a zero vector. Error compensation ensures that the model
compression algorithm does not destroy the training effect,
and better reflects the advantages of model compression. Let
τhi and γhi denote the local updating frequency and model
compression ratio at round h on worker i, respectively. In

Algorithm 2 Procedure at the server
Input: computing and bandwidth resource budgets C and
B
Output: wH

1: Initialize h← 0, C0 ← 0, B0 ← 0, T 0 ← 0
2: Initialize w0 as a random vector
3: Initialize τ0i , γ0i , α0

i , τe, τs, v
4: Receive ci and bi from all workers
5: while Ch ≤ C and Bh ≤ B do
6: for i = 1 to N do
7: Send wh, τhi and γhi to worker i
8: end for
9: Set ĥ← h and h← h+ 1

10: Receive topk(w
h
i − wĥ + mĥ

i ), µ
ĥ
i and βĥi from all

workers
11: wh ← wĥ +

∑N
i=1

αĥ
i

N · topk(w
h
i −wĥ +mĥ

i )

12: Calculate tĥi ← τ ĥi (µ
ĥ
i + v · βĥi )

13: Update Ch ← C ĥ +
∑N
i=1 τ

ĥ
i · ci

14: Update Bh ← Bĥ +
∑N
i=1 γ

ĥ
i · bi

15: Update Th ← T ĥ +max{tĥi }
16: if h ≤ 1 then
17: Update τhi ← τ ĥi , γhi ← γĥi , αhi ← αĥi
18: else
19: Estimate µhi and βhi with moving average
20: l← argmini(µ

h
i + v · βhi )

21: Receive Li and σi from all workers
22: L← 1

N

∑N
i Li

23: σ ← 1
N

∑N
i σi

24: Search τhl ∈ [τs, τe] to minimize T (H, τhl )
25: for i = 1 to N do
26: Update τhi ← bτhl ·

µh
l +v·β

h
l

µh
i +v·βh

i
c

27: Update γhi ← v · τhi
28: end for
29: for i = 1 to N do
30: Update αhi ←

N
√
τh
i∑N

i=1

√
τh
i

31: end for
32: end if
33: end while
34: Send STOP flag to all workers
35: Set H ← h− 1 and send wH to all workers

addition, αh
i

N is the global aggregation weight of worker i
at round h. The value of τh+1

i is recomputed during each
global aggregation step. There are two cases, depending on
whether the latest variable estimations (i.e., L and σ) are
accessible or not. (i) When the estimations are unavailable
(i.e., h ≤ 1), τh+1

i , γh+1
i and αh+1

i are set as τhi , γhi and αhi
(Lines 16-17 in Alg. 2), respectively. (ii) When h > 1, we
search the pre-defined space [τs, τe] for a new τh+1

l which
minimizes T (H, τh+1

l ), based on the updated estimations
(Lines 19-24 in Alg. 2). Then the new τh+1

l is used to derive
the local updating frequency τh+1

i , model compression ratio

γh+1
i , and αh+1

i for global aggregation weight αh+1
i

N for
worker i at round h+ 1 (Lines 25-31 of Alg. 2).

Next, we present the method to estimate the unknown
variables such as L and σ. The values of L and σ are
estimated based onLi and σi of worker i (Lines 22-23 in Alg.
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2 and Lines 9-13 in Alg. 1), and each worker has to maintain
a replica of global variables and a version of local variables.
Note that F (w0) can be calculated straightforwardly when
we initialize w0 as a random vector. As shown in Lines 13-14
of Alg. 2, in terms of the limited computing and bandwidth
resource budgets in Eq. (9) and Eq. (10), the algorithm
terminates when Ch exceeds the budget C (or Bh exceeds
the budget B). Then the penultimate communication round
is regarded as the last one when the constraints Eq. (9) or Eq.
(10) are satisfied. This explains why the server setsH = h−1
and sends wH to each device (Lines 35 in Alg. 2).

4.3 Time Complexity Analysis
We now compare the time complexity of the typical dis-
tributed SGD and our algorithm. For the sake of analysis,
we denote Uf , Ub and Up as the time complexity of forward
pass, backward pass and parameter update, respectively.
For typical SGD, the forward pass, backward pass and
parameter update are conducted iteratively, and the time
complexity of typical SGD on a worker and the PS is
O(
∑H
h=1 τ

h(Uf + Ub + Up)) and O(H ·N · Up) [44], where
τh = 1

N

∑N
i=1 τ

h
i . On the worker side, compared with

the typical SGD, Alg. 1 introduces extra cost on worker
i to estimate Li and σi and compress (wh

i − wĥ + mĥ
i )

with topk compression operator. To estimate Li and σi, we
demand to calculate ‖∇Fi(wĥ) − ∇Fi(wĥ

i )‖, ‖wĥ − wĥ
i ‖

and ‖∇Fi(wĥ, ξĥi ) − ∇Fi(wĥ)‖ when h ≥ 2, and the
time complexity of ‖·‖ is O(2Up). Hence, the time com-
plexity to calculate Li and σi is O((H − 1) · 6Up). For
the topk compression operator, it needs to traverse all the
parameters to obtain the largest k parameters, which can
be implemented with the efficient quicksort-based selec-
tion method [27], and the topk compression operator in-
curs O(Uf ) computational cost at a certain communication
round. Therefore, the total time complexity of Alg. 1 is
O(
∑H
h=1 τ

h(Uf + Ub + Up) + (H − 1) · (6Up) + H · Uf ).
Considering that O(

∑H
h=1 τ

h(Uf + Ub + Up)) is far larger
thanO((H−1) ·(6Up)+H ·Uf ), the time complexity of Alg.
1 is O(

∑R
r=1 κ

r(Uf +Ub+Up)), which is similar to the time
complexity of typical SGD. On the PS side, Alg. 2 requires
more computational cost than typical SGD on calculating
µhi , βhi , τhi and αhi , each of which requires computational
cost of O(R · N). Thus, the time complexity of Alg. 2 is
O(R ·N · (Up + 4)), i.e., O(R ·N ·Up), which is also similar
to that of typical SGD.

5 EXPERIMENTATION AND EVALUATION

This section first conducts some intuitive tests to exhibit
system heterogeneity and dynamics (Section 5.1). Then the
datasets and models are described for experiments (Section
5.2), and we introduce baselines and metrics for perfor-
mance comparison (Section 5.3). Simulation settings and
results are given in (Section 5.4). Finally, we evaluate Fed-
Lamp through a small-scale test-bed experiment and give
the results (Section 5.5).

5.1 Testing of System Heterogeneity and Dynamics
First of all, we conduct some intuitive tests to exhibit the
heterogeneous capacities of the commercial edge devices,

TABLE 2: Device Technical Specifications.

AI Performance GPU Type
Jetson TX2 1.33 TFLOPS 256-core Pascal
Jetson NX 21 TOPS 384-core Volta

CPU Type ROM
Jetson TX2 Denver 2 and ARM 4 8 GB LPDDR4
Jetson NX 6-core Carmel ARM 8 8 GB LPDDR4x

CPU Frequency GPU Frequency
Jetson TX2 2.0GHz 1.12GHz
Jetson NX 1.9GHz 1100MHz
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Fig. 1: Illustrations of computing and communication het-
erogeneity of devices.

e.g., NVIDIA Jetson TX21 and NVIDIA Jetson Xavier NX2.
Both Jetson TX2 and Jetson Xavier NX can be configured
to work under different performance modes, specifying the
number of working CPUs and the frequency of CPU/GPU,
so that they have different computing capacities. Moreover,
Jetson Xavier NX accelerates the NVIDIA software stack
with more than 10× the performance of Jetson TX2. The
detailed technical specifications of the Jetson TX2 and Jetson
Xavier NX are listed in Table 2. It is worth noting that the
proposed algorithm and theoretical analysis in this paper
are not limited to mentioned devices, like TX2 or NX.
They can also be applied to various edge devices with
different computing and communicating capabilities, e.g.,
mobile phones, laptops and so on.

For computing test, we adopt two NX devices (de-
vice #1 with low-performance mode and device #3 with
high-performance mode) and two TX2 devices (device #2
with high-performance mode and device #4 with low-
performance mode) as the heterogeneous workers. Both the
TX2 and NX devices are implemented to perform matrix
multiplication over two 1500×1500 sized tensors for 30
times, and the computing time of each device is illustrated
in Fig. 1(a). Device #4 takes the highest average computing
time of 11.2s among all the devices, while device #3 needs
the lowest average computing time (i.e., 1.6s). The average
computing time of device #2 and device #3 is 3.2s and 6.3s,
respectively. The computing time of the low-performance
device is almost seven times as long as that of the high-
performance one, which obviously illustrates the computing
heterogeneity.

1. More details about NVIDIA Jetson TX2 are available at https://
developer.nvidia.com/embedded/jetson-tx2-developer-kit.

2. More details about NVIDIA Jetson Xavier NX are available at https:
//developer.nvidia.com/embedded/jetson-xavier-nx-devkit.
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Except for the computing heterogeneity among workers,
the bandwidth of each worker may also be different (i.e.,
communication heterogeneity). In EC, workers are usually
connected to the edge server through wireless links, and the
signal strength of the wireless link may vary with the trans-
mission distance [45]. We put two NX devices and two TX2
devices in two different rooms, which are about 50 meters
far from each other for the communication test. Concretely,
device #1 and device #2 are close to the wireless router,
while device #3 and device #4 are far away from the wireless
router. Four devices synchronously send a 1500×1500 sized
tensor to the server, which is also connected to the wireless
router, and we record their communication bandwidth. By
Fig. 1(b), the bandwidth of device #1 and device #2 is almost
6 times as much as that of device #3 and device #4, which
reveals the communication heterogeneity.

5.2 Datasets and Models
Datasets: We conduct extensive experiments on three real-
world datasets: (i) Fashion-MNIST3 (FMNIST for short), (ii)
CIFAR-104, and (iii) CIFAR-1005. Specifically, FMNIST [46]
contains a training set with 60,000 samples and a test set
with 10,000 samples. Each sample in FMNIST is a 28 ×
28 grayscale fashion products from 10 categories. CIFAR-
10 contains 60,000 32 × 32 color images labeled in 10 classes
with 50,000 samples for training and 10,000 samples for test.
CIFAR-100 has the same total number of image samples
as CIFAR-10 but consists of 100 classes, which is more
challenging to train models for classification. Except for the
experiments for evaluating model performance on non-IID
data, all datasets are distributed uniformly across workers
by default.

Models: Three models with different types and struc-
tures are implemented on the above three real-world
datasets for performance evaluation: (i) CNN on FMNIST,
(ii) AlexNet on CIFAR-10, (iii) ResNet9 on CIFAR-100. The
plain CNN model [3] specialized for the FMNIST dataset
has two 5 × 5 convolutional layers, a fully-connected layer
with 512 units, and a softmax output layer with 10 units.
The CNN model is about 5M in size. An 8-layer AlexNet [47]
which is composed of three 3 × 3 convolutional layers, one
7 × 7 convolutional layer, one 11 × 11 convolutional layer,
two fully-connected hidden layers, and one fully-connected
output layer is adopted for CIFAR-10. The size of AlexNet
is about 15M, which is larger than the size of plain CNN
model. For the CIFAR-100 dataset which is more challenging
to train, a famous model ResNet9 [48] with size of 25M is
adopted.

5.3 Baselines and Metrics
Baselines: We choose four classical and efficient algorithms
as baselines for performance comparison, which are sum-
marized as follows
• FedAvg [3] is a famous algorithm in federated learn-

ing with fixed (non dynamic) and identical (non di-
verse) local updating frequency for workers without
model compression.

3. https://github.com/TalwalkarLab/leaf
4. https://www.cs.toronto.edu/∼kriz/cifar.html
5. https://www.cs.toronto.edu/∼kriz/cifar.html

TABLE 3: Different strategies of baselines and FedLamp.

algorithms
strategies

LUF* MCR*

dynamic diverse dynamic diverse
FedAvg × × - -

ADP X × - -
Qsparse × × × ×

FFL X × X ×
FedLamp X X X X
* LUF denotes local updating frequency.
* MCR denotes model compression ratio.

• ADP [24] adaptively determines the identical local
updating frequency for all workers at each com-
munication round on the basis of both the con-
strained resource and context dynamics so as to
realize communication-efficient FL and speed up the
training process.

• Qsparse [38] combines aggressive sparsification with
quantization as model compression operator to re-
duce communication resource consumption without
controlling the local updating frequency and model
compression ratio.

• FFL [39] is a state-of-the-art algorithm, and it jointly
and dynamically determines identical local updating
frequency and model compression ratio for all work-
ers at each communication round without consider-
ing the system heterogeneity.

The strategies of adjusting local updating frequency and
model compression ratio in FedLamp and the baselines are
summarized in Table 3.

Metrics: The following metrics are adopted to evaluate
the performance of our FedLamp and the baselines.
• Test accuracy is measured by the proportion between

the amount of the right data predicted by the model
and that of all data. Specifically, during the training
process, at each communication round, we evaluate
the test accuracy of the global model trained with
different algorithms on the test sets.

• Training loss is the quantification difference of prob-
ability distributions between model outputs and the
corresponding labels.

• Completion time is defined as the total training time
until the global model achieves a target accuracy. In
addition, we also record the average waiting time to
reflect the training efficiency of different algorithms.

• Network traffic is calculated by summing the net-
work traffic for model transmission between workers
and the PS when achieving a target accuracy.

5.4 Simulation Experiments
5.4.1 Simulation Setup
We evaluate the performance of FedLamp through exten-
sive simulation experiments, which are conducted on an
AMAX deep learning workstation equipped with an Intel(R)
Core(TM) i9-10900X CPU, 4 NVIDIA GeForce RTX 2080Ti
GPUs and 128 GB RAM. On the workstation, we simulate
a resource-constrained EC system with 10 workers and 1
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Fig. 2: Test accuracy of five algorithms on the three datasets in simulation.
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Fig. 3: Training loss of five algorithms on the three datasets in simulation.

PS (each is implemented as a process in the system) for
federated learning. The implementation for model training
on each worker is based on the PyTorch framework [49],
and we use the socket library of Python to build up the
communication between workers and the PS.

We consider the common situation where each worker
communicates with the PS through either LANs or WANs.
To reflect the heterogeneity and dynamics of networks in
our simulations, we let the inbound bandwidth of each
worker fluctuate between 10Mb/s and 20Mb/s. Consider-
ing the outbound bandwidth in typical WANs is usually
smaller than the inbound bandwidth [3], we configure it
to fluctuate between 0.5Mb/s and 5Mb/s. In addition, for
simulating the computing heterogeneity, we assume the
computing time of one local iteration on a certain simulated
worker is subject to the Gaussian distribution. Different
simulated workers are randomly assigned with a specific
Gaussian function whose mean and variance are derived
from the time records of performing one local update on a
commercial device (e.g., laptop, Jetson TX, Xavier NX).

In simulation experiments, the number of communica-
tion rounds are specified as 400, 500 and 500 for FMNIST,
CIFAR-10 and CIFAR-100, respectively, which will guaran-
tee the convergence of the models. For CNN on FMNIST
and AlexNet on CIFAR-10, the learning rates are separately
initialized as 0.05 and 0.1, and the corresponding decay
rates are specified as 0.99 and 0.993. Besides, for ResNet9
on CIFAR-100, the momentum-SGD optimizer is adopted in
our experiments to optimize the models, and the momen-
tum is set as 0.9 while the weight decay is 0.001 [48]. Then
the learning rate and the learning rate decay is initialized as

TABLE 4: Training performance of CNN on FashionMNIST.

Metrics FedLamp FFL Qsparse ADP FedAvg
Accuracy 91.51% 91.38% 91.32% 91.31% 91.03%

Accuracy = 91% Time (s) 900 1778 2571 3805 6167
Traffic (MB) 527 1436 718 3231 4491

TABLE 5: Training performance of AlexNet on CIFAR-10.

Metrics FedLamp FFL Qsparse ADP FedAvg
Accuracy 77.54% 77.46% 77.15% 77.42% 76.83%

Accuracy = 76% Time (s) 2089 4918 5878 7570 10733
Traffic (MB) 1352 3368 1684 10104 11227

TABLE 6: Training performance of ResNet9 on CIFAR-100.

Metrics FedLamp FFL Qsparse ADP FedAvg
Accuracy 55.93% 55.72% 54.99% 54.9% 54.31%

Accuracy = 54% Time (s) 4057 7903 9716 13678 17075
Traffic (MB) 2654 7455 3727 16773 18637

0.1 and 0.99, respectively. The batch size is set as 32 for all
three models.

5.4.2 Simulation Results
We implement one group of experiments of these algorithms
for the three models and datasets. The training processes
of FedLamp and the baselines are presented in Fig. 2 and
Fig. 3. The results demonstrate that all the algorithms can
achieve similar accuracy but FedLamp achieves the fastest
convergence rate for all the three datasets, which indicates
the effectiveness of adaptively determining diverse and
appropriate local updating frequencies and model com-
pression ratios for heterogeneous workers. For example, by
Table. 5 and Fig. 2(b), FedLamp takes 2089s to achieve 76%
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Fig. 4: Average waiting time of five algorithms on the three datasets in simulation.
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Fig. 5: Network traffic consumption of five algorithms when achieving the target accuracy on the three datasets in
simulation.
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Fig. 6: Training process of five algorithms on the non-IID (p=0.8)
CIFAR-10 dataset.
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Fig. 7: Training performance for different
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accuracy for AlexNet on CIFAR-10, while FedAvg, ADP,
Qsparse, FFL takes 10733s, 7570s, 5878s, 4918s, respectively.
Besides, by Table. 4 and Fig. 2(a), we observe that FedLamp
can speed up training by about 6.8×, 4.2×, 2.8× and 1.9 ×,
compared to FedAvg, ADP, Qsparse and FFL, respectively.
Moreover, by Table. 6 and Fig. 2(c) for ResNet9 on CIFAR-
100, FedLamp can reduce the completion time of training
by about 48%, 58%, 70% and 76%, compared to FedAvg,
ADP, Qsparse and FFL, respectively. It is worth noting that
in Tables 4, 5 and 6, the accuracy is set as the target that all
the algorithms can achieve.

To further illustrate the efficiency of FedLamp, the av-
erage waiting time of all algorithms for three datasets

are listed in Fig. 4, where the horizontal axis denotes the
number of training communication rounds. By Fig. 4, we
can find that FedLamp takes much less waiting time than
FedAvg and ADP. For instance, by Fig. 4(b), the average
waiting time of FedLamp is 1.5s while FedAvg and ADP
incur 13s and 11.5s average waiting time, respectively. This
is because both FedAvg and ADP assign identical local
updating frequencies for workers without considering the
impacts of computing heterogeneity and synchronization
barrier, resulting in non-negligible waiting time. Moreover,
the variance of waiting time in FedAvg is quite large while
the waiting time in FedLamp is relatively stable, since
FedAvg cannot deal with the challenge of context dynamics
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in FL. Besides, ADP, which adaptively determines the local
updating frequency at each communication round on the
basis of both the constrained resource and dynamic context,
can reduce the variance of waiting time to some extent. That
explains why FedLamp can achieve much faster converge
rate than FedAvg and ADP in Figs. 2 and 3 while ADP
takes less completion time than FedAvg. The results in
Fig. 4 demonstrate that FedLamp can well overcome the
challenges of system heterogeneity and context dynamics.

To demonstrate the communication efficiency of Fed-
Lamp, we show network traffic consumption of different al-
gorithms when they achieve different target accuracy in Fig.
5. We can find that the network traffic consumption of all al-
gorithms for all datasets increases with the increasing accu-
racy. However, FedLamp can always consume the minimum
network traffic. In addition, the algorithms with model
compression can save much more network traffic than the
algorithms without model compression. For example, by
Table. 6 for ResNet9 on CIFAR-100, FedLamp, FFL and
Qsparse consume 2654MB, 7455MB and 3727MB while ADP
and FedAvg consume 16773MB and 18637MB, respectively,
when they achieve the target accuracy. Moreover, model
compression can reduce the communication time, which
explains why Qsparse and FFL incur less average waiting
time and completion time than ADP and FedAvg. However,
both FFL and Qsparse assign identical local updating fre-
quency and model compression ratio for different workers,
without overcoming the system heterogeneity (including
communication heterogeneity and computing heterogene-
ity), so that they take more waiting time and training time
than FedLamp. With dynamic local updating frequencies
and model compression ratios for workers, FFL can achieve
faster convergence rate than Qsparse, but it cannot assign
low model compression ratio, resulting in more network
traffic compared to Qsparse. FedLamp, which is faster than
FFL, can still achieve lower model compression ratio than
Qsparse. Concretely, by Tables. 5 and 4, FedLamp can save
network traffic consumption by about 59%, 19%, 86%, 87%
for AlexNet on CIFAR-10, and by about 909MB, 191MB,
2704MB, 3964MB for CNN on FMNIST, compared to the
baselines (FFL, Qsparse, ADP, FedAvg), respectively.

In a word, since FedLamp is designed to adaptively de-
termine diverse and appropriate local updating frequencies
and model compression ratios for heterogeneous workers,
it can overcome the challenges of system heterogeneity,
context dynamics in resource-constrained EC systems, and
can take few waiting time and network traffic consumption
to achieve fast convergence rate.

5.4.3 Impacts of non-IID levels
Considering that the workers in FL collect data from their
physical locations directly, the data on different workers in
FL are not independent and identically distributed (i.e., non-
IID). Thus, we further evaluate FedLamp and the baselines
on non-IID data. Concretely, we create non-IID data of the
CIFAR-10 dataset with different partition schemes for the
workers. Each worker has p (p = 0.1, 0.2, 0.4, 0.6 and 0.8) of a
unique class in 10 classes and the remaining samples of each
class are partitioned to other workers uniformly. Note that
p = 0.1 is a special case, where the distribution of training
dataset is IID. We denote the non-IID levels of CIFAR-10

TABLE 7: Training performance of test-bed experiments.

Metrics FedLamp FFL Qsparse ADP FedAvg
Accuracy 77.06% 76.06% 76.52% 76.17% 76.86%

Accuracy = 76% Time (s) 2109 4697 6748 10508 13450
Traffic (MB) 1453 3488 1886 9134 10257

as 0.1, 0.2, 0.4, 0.6 and 0.8. Note that the test datasets are
partitioned uniformly among workers for a fair comparison.
For the non-IID CIFAR-10 dataset, the training process of
FedLamp and the baselines are presented in Fig. 6(a) and
Fig. 6(b) in terms of training time. The experiment results
demonstrate that even in the non-IID settings, FedLamp
can still achieve the fastest convergence with higher test
accuracy compared to the baselines. Besides, we show the
impacts of non-IID levels on test accuracy of different algo-
rithms in Fig. 7, where the horizontal axis is non-IID levels
and the vertical axis is test accuracy. The result indicates
that all algorithms suffer from a loss of accuracy with the
increasing of non-IID level on CIFAR-10, while FedLamp
is more robust than other baselines. In the future, we will
pay more attention to the challenge of non-IID data and
attempt to overcome it with more advanced techniques for
FedLamp.

5.5 Test-bed Experiments
5.5.1 Test-bed Setup
To better evaluate the performance of different algorithms
on practical hardware platform, we further conduct some
test-bed experiments. The test-bed experiments are per-
formed on an AMAX deep learning workstation (CPU:
Intel(R) E5-2620v4, GPU: NVIDIA GeForce RTX TITAN), 5
NVIDIA Jetson TX2 developer kits and 5 NVIDIA Jetson
Xavier NX developer kits, where the AMAX workstation
acts as the server while Jetson TX2 and Jetson Xavier NX
serve as workers. The detailed technical specifications of the
Jetson TX2 and Jetson Xavier NX are listed in Table 2. The
experimental network is established via a router, where the
server is directly connected to the router by Ethernet while
Jetson TX2 and Jetson Xavier NX are accessed via wireless
link. Besides, the Jetson TX2 and Jetson Xavier NX devices
are powered with different modes to represent the comput-
ing heterogeneity and dynamics, and the different distances
between the devices and the router as well as the random
channel noise can result in the communication heterogeneity
and dynamics. Our software implementation is based on
the PyTorch deep learning framework [49], which enables
the model training on the workers. Furthermore, commu-
nication among workers is established based on socket,
which provides a set of sending and receiving functions
contributing to much more efficient parallel communication.
In addition, we can directly record the average waiting time,
completion time and network traffic consumption in the
test-bed experiments.

5.5.2 Test-bed Result
We implement the training of AlexNet on CIFAR-10 in the
test-bed environment. First of all, the training process of
FedLamp and the baselines are shown in Fig. 8 and Fig.
9. Furthermore, we show the average waiting time and net-
work traffic consumption of different algorithms in Fig. 9(a)
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Fig. 8: Training processes of the algorithms on CIFAR-10 in
test-bed experiments.
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Fig. 9: Average waiting time and network traffic consump-
tion of the algorithms on CIFAR-10 in test-bed experiments.

and Fig. 9(b). The results which are similar with the simula-
tion results indicate that FedLamp can achieve similar accu-
racy with the baselines, but incurs shortest average waiting
time and least network traffic, so that FedLamp achieves
the fastest convergence rate. Concretely, the training perfor-
mance of FedLamp and the baselines is listed in Table 7. We
set the target accuracy as 76% as it is the accuracy that all
algorithms can achieve. FedLamp takes 2109s and consumes
1453MB network traffic to achieve the target accuracy, which
are the best performance compared with the baselines. ADP
with dynamic local updating frequency takes less waiting
time and converges faster than FedAvg, so that ADP saves
more network traffic consumption than FedAvg. For in-
stance, FedAvg needs 13450s and 10257MB network traffic
while ADP needs 10508s and 9134MB network traffic when
they achieve the target accuracy. Qsparse and FFL with
model compression save a lot of network traffic and reduce
the communication time. Thus, their average waiting time
is less than that of ADP and FedAvg. Qsparse takes 6748s
and consumes 1886MB network traffic while FFL only needs
4697s but consumes more network traffic (3488MB). This
is because FFL with dynamic local updating frequency can
further speed up training compared to Qsparse but cannot
achieve lower model compression ratio than Qsparse. In
a word, compared to the baselines (FFL, Qsparse, ADP,
FedAvg), FedLamp can reduce the traffic consumption by
58%, 22%, 84%, 85% and the completion time by 55%, 68%,
79%, 84%, respectively. The test-bed results further prove
the effectiveness and efficiency of our FedLamp.

6 RELATED WORK

6.1 FL with Multiple Local Updates

Federated learning has become a practical and promising
approach for distributed machine learning over distributed
local data [2]–[6]. The concept of federated learning was first
proposed in [3], which proved the effectiveness of federated
learning through extensive experiments on various datasets.
However, McMahan et al. [3] did not provide theoretical
convergence guarantee for federated learning with fixed
local updating frequency. Although Li et al. [50] analyzed the
convergence of FedAvg on heterogeneous local data, they
assumed the problems were strongly-convex and smooth,
while we concentrate more on the popular non-convex
problems involving the majority of Deep Neural Networks
(DNNs). Besides, the approaches in [23], [51]–[53] only per-
formed one local update before global aggregation, which
significantly increase the model transmission frequency and
result in a large amount of bandwidth consumption. From
a theoretical perspective, the convergence analysis of dis-
tributed machine learning with multiple local updates was
obtained in [23], [51]–[53]. Hsieh et al. [54] developed a geo-
distributed machine learning system, which employed an
intelligent communication mechanism with multiple local
updates before global aggregation and a new synchro-
nization method, called Approximate Synchronous Paral-
lel (ASP). But the local updating frequency in [54] varies
with the thresholding procedure and cannot be specified
as a given constant. Communication-efficient distributed
SGD algorithms with fixed local updating frequency were
proposed in [55] and [56]. Whereas, the communication-
efficient approaches in [55] and [56] were not suitable for
federated learning in EC systems, since they did not con-
sider the constrained computing resource, context dynamics
and system heterogeneity.

In contrast to the above research, Wang et al. [24]
proposed to dynamically determine the local updating
frequency to optimize the model training in resource-
constrained EC systems.

Moreover, Luo et al. [25] analyzed the convergence upper
bound and established the relationship between the total
cost (including computing and communication resources)
and the local updating frequency. Nevertheless, they only
considered the resource constraint but ignored the effect of
synchronization barrier, resulting in non-negligible waiting
time and low convergence rate. In addition, Yang et al. [43]
explained that training with large local updating frequency
would increase the noise of the system, resulting in the
model training converging to the local optimal solutions
instead of the global optimal solution [35], and they for-
mulated the maximum local updating frequency in FL. Shi
et al. [57] investigated how to develop energy-efficient FL
over 5G+ mobile devices by making a trade-off between
energy consumption for local updating and that for model
transmission in order to boost the overall energy efficiency.
The above methods always assign identical local updating
frequencies for different workers. However, due to the sys-
tem heterogeneity and context dynamics in EC, workers
with identical local updating frequency have to wait for the
slowest workers, resulting in low training efficiency. Thus,
it is necessary to employ diverse local updating frequencies
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for different heterogeneous workers, so as to reduce the
waiting time and enhance the training efficiency.

6.2 FL with Model Compression
Performing multiple local updates in FL can reduce the
overall communication rounds for global aggregation.
Moreover, model compression is proposed as a commonly-
used technique in distributed machine learning or FL to
further reduce communication data volume during training
[26]. Model or gradient compression can produce a compact
model update, rather than a full model for transmission,
through sparsification schema [27]–[31] or quantization op-
erator [32]–[38].

For sparsification schema, it reduces communication
consumption by transmitting an ”important” sparse sub-
set of the gradient for global aggregation [27], [58]. The
convergence bound of sparsification schema is derived in
[28]. Since the compression may introduce noise and reduce
model accuracy, Stich et al. [30] introduced error compen-
sation (keeping track of accumulated errors in memory) to
improve the training performance with model compression.

For quantization operator, it quantizes the gradient (per-
haps with randomization) to a small number of bits to
save communication bandwidth. The application of quanti-
zation for efficient communication has decades history [59].
Gradient compression using unbiased stochastic quantizers
has been theoretically analyzed and justified in [33], [36].
Wu et al. [32] analyzed error compensation for [33], and
proposed error compensated quantized SGD for large-scale
distributed optimization. Moreover, Basu et al. [38] com-
bined a (stochastic or deterministic 1-bit sign) quantizer and
sparsification with error compensation to further compress
model and save communication resource, and Prakash et
al. [60] incorporated quantization and model pruning to
reap the benefits of DNNs while meeting the capabilities
of resource-constrained devices.

However, all the above literatures employ fixed and
identical model compression ratio for model training, which
can not make full use of the workers’ capacities due to
system heterogeneity and context dynamics. Although Han
et al. [31] applied adaptive model compression to overcome
the communication heterogeneity, they still cannot balance
the computing time by assigning the workers with the
identical local updating frequency.

6.3 Combination of Multiple Local Updates and Model
Compression
Considering the benefits of the above two strategies, Nori
et al. [39] explored to jointly determine local updating
frequency and model compression ratio for the workers
to speed up training and reduce resource consumption.
However, they only assigned identical local frequency and
model compression ratio for all the heterogeneous workers,
which still cannot make full use of the workers’ capabilities
and incurs non-negligible waiting time.

On the contrary, when taking the impacts of resource
constraint, system heterogeneity and context dynamics si-
multaneously into consideration, we adaptively determine
diverse and appropriate local updating frequencies and
compression ratios for heterogeneous workers, so that our

FedLamp can achieve the promising training performance
with convergence guarantee.

7 CONCLUSIONS

In this paper, we focused on the critical challenges, i.e.,
resource constraint, system heterogeneity and context dy-
namics for FL in edge computing. To overcome these chal-
lenges, we proposed FedLamp to jointly optimize both the
local updating frequency and model compression ratio in
FL. We theoretically analyzed the model convergence rate
and obtained a convergence upper bound related to the
local updating frequency and model compression ratio.
We proposed a control algorithm to adaptively determine
diverse and appropriate local updating frequencies and
compression ratios for heterogeneous edge nodes, which
contributes to reducing the waiting time under resource con-
straints and enhancing the training efficiency. We evaluated
the performance of FedLamp through extensive simulation
and testbed experiments with baselines and the results
demonstrated the efficiency of FedLamp.
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APPENDIX A
PROOF OF THEOREM 1

Proof: According to the smoothness property in As-
sumption 1 and the definition of stochastic gradient gh in
Eq. (3), we have:

F (wh+1)− F (wh) ≤ −α
〈
∇F (wh),gh

〉
+
α2L

2
‖gh‖2

After applying the model compression technique with topk
operator, the expectation of the above inequality is ex-
pressed as:

E
[
Etopk

[
F (wh+1)− F (wh)

]]
≤ −αE

[〈
∇F (wh),gh

〉]
+
α2L

2
E
[
Etopk

[
‖gh‖2

]]
For the sake of expression, we use Etopk

[
∇F (wh)

]
to de-

note E
[
∇F

(
topk(w

h)
)]

. We proceed to use Lemmas 1-3 to
bound right hand side of the inequality, and obtain:

E
[
Etopk

[
F (wh+1)− F (wh)

]]
≤ αη

2N

N∑
i=1

τ−1∑
k=0

[
−‖∇F (wh)‖2 − ‖g(k,h)

i ‖2
]

+
αη

2N

N∑
i=1

τ−1∑
k=0

[
L2η2

τ−1∑
c=0

[
τ‖g(k,h)

i ‖2 + σ2
]]

+
(2− γ)α2L

2

[
η2τ

N

N∑
i=1

τ−1∑
k=0

‖g(k,h)
i ‖2 + τη2σ2

N

]
1
≤ αη

2N

N∑
i=1

τ−1∑
k=0

[
−‖∇F (wh)‖2 − ‖g(k,h)

i ‖2
]

+
αη

2N

N∑
i=1

τ−1∑
k=0

[
τL2η2

[
τ‖g(k,h)

i ‖2 + σ2
]]

+
(2− γ)α2L

2

[
η2τ

N

N∑
i=1

τ−1∑
k=0

‖g(k,h)
i ‖2 + τη2σ2

N

]
= −ηατ

2
‖∇F (wh)‖2

−
(
1− τ2L2η2 − (2− γ)ηαLτ

) ηγ
2N

N∑
i=1

τ−1∑
k=0

‖g(k,h)
i ‖2

+
Lταη2

2N
(NLτη + α(2− γ))σ2

2
≤ −ηατ

2
‖∇F (wh)‖2 + Lταη2

2N
(NLτη + α(2− γ))σ2

where in 1 we incorporate outer summation
∑τ−1
k=0, and

2 follows from Eq. (19). Finally, when summing up for
all H communication rounds and rearranging the terms, we
can get Eq. (18), and the proof is completed.


