IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

Adaptive Asynchronous Federated Learning in
Resource-Constrained Edge Computing

Jianchun Liu, Student Member, IEEE, *Hongli Xu, Member, IEEE, Lun Wang, *Yang Xu, Chen
Qian, Senior Member, IEEE, Member, ACM, Jinyang Huang, Student Member, IEEE,
He Huang, Member, IEEE, ACM

Abstract—Federated learning (FL) has been widely adopted to train machine learning models over massive data in edge computing.
However, machine learning faces critical challenges, e.g., data imbalance, edge dynamics, and resource constraints, in edge
computing. The existing FL solutions cannot well cope with data imbalance or edge dynamics, and may cause high resource cost. In
this paper, we propose an adaptive asynchronous federated learning (AAFL) mechanism. To deal with edge dynamics, a certain
fraction « of all local updates will be aggregated by their arrival order at the parameter server in each epoch. Moreover, the system can
intelligently vary the number of local updated models for global model aggregation in different epochs with network situations. We then
propose experience-driven algorithms based on deep reinforcement learning (DRL) to adaptively determine the optimal value of « in

each epoch for two cases of AAFL, single learning task and multiple learning tasks, so as to achieve less completion time of training
under resource constraints. Extensive experiments on the classical models and datasets show high effectiveness of the proposed
algorithms. Specifically, AAFL can reduce the completion time by about 70% and improve the learning accuracy by about 28% under

resource constraints, compared with the state-of-the-art solutions.

Index Terms—Edge Computing, Asynchronous Federated Learning, Adaptive, Resource Constraint.

1 INTRODUCTION

ITH the development of Internet of Things, many smart

devices, e.g., mobile phones, and wearable devices, are
generating a massive amount of data each day [1], [2], [3]. Due
to the growing storage and computational power on these devices,
it is increasingly attractive to store data locally and push more
computation function to the network edge, which is called edge
computing [4]. It motivates the application of federated learning
(FL), which enables distributed machine learning at the network
edge [5], [6], [7].

As shown in Fig. 1, a federated learning system is usually
composed of one or more parameter servers and a large number of
workers (e.g., edge nodes), following the typical parameter server
architecture [8]. Each parameter server (PS) maintains a partition
of the globally shared parameters. Each worker is responsible
for computing local statistics such as gradients by training the

e J Liu is with the School of Data Science, H. Xu, L. Wang and
Y. Xu are with the School of Computer Science and Technology, U-
niversity of Science and Technology of China, Hefei, Anhui, China,
230027, and also with Suzhou Institute for Advanced Study, Univer-
sity of Science and Technology of China, Suzhou, Jiangsu, China,
215123. E-mail: jsen617 @mail.ustc.edu.cn, xuhongli@ustc.edu.cn, wan-
glun0@mail.ustc.edu.cn, xuyangcs @ustc.edu.cn

e J. Huang is with CAS Key Laboratory of Electromagnetic Space Infor-
mation, University of Science and Technology of China, Hefei, 230026,
China.

e C. Qian is with the Department of Computer Science and Engineering,
Jack Baskin School of Engineering, University of California Santa Cru.
E-mail: cqianl2@ucsc.edu

e H. Huang is with the School of Computer Science and Technology,
Soochow University. E-mail: huangh@suda.edu.cn

local data, and communicates only with the parameter server.
Specifically, the workers will send the local updated models to the
parameter server, and receive the global updated model from the
parameter server. Since the workers expose not their training data
but the trained model to the parameter server, federated learning
can efficiently protect users’ privacy [9].

To implement highly efficient FL in edge computing, we
should take into account the following constraints and factors
from practical applications, e.g., mobile keyboard prediction [9],
vehicle-to-vehicle (V2V) communication [10]. 1) Data Imbalance.
The amount of data on the edge node(s) varies significantly
with time and space. For example, due to device mobility, e.g.,
vehicles, each edge node will process data from varied numbers
of devices at different times. The authors in [11] have shown
that the amount of data on an edge node may vary from about
500MB to 50GB in a period of one hour. 2) Edge Dynamics.
Since edge nodes are usually deployed outdoors, some nodes may
fail to work occasionally because of system crash, dead battery,
or network disconnection [12]. 3) Resource Constraints. Last but
not least, edge nodes may frequently send and receive the updated
models, which requires an enormous resource cost (e.g., network
bandwidth) [13]. However, the bandwidth between edge nodes and
remote parameter servers is constrained [14]. For example, the size
of parameters in the AlexNet model is about 60MB [15]. Given
the bandwidth constraint of 1GB, the network is easily congested
because of the frequent transmission of local and global models.

There are two main ways for federated learning in edge com-
puting, including the synchronous scheme [16], [17], [18] and the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

server group

g 9 9

~N
~+= Control flow |

,
|

<—> Data flow |

|

server manager server ‘
I/ N f
resource task
manager HT \:j scheduler

-

4 U
worker ¢ v

PR

data

(o

Fig. 1: Illustration of a Typical Parameter Server Architecture.

asynchronous scheme [19], [20], [21], [22]. Under both schemes,
on receiving the trained local models from a fixed number of edge
nodes, the server will aggregate the models and send the updated
global model to all the edge nodes. However, these solutions can
not better conquer the aforementioned challenges.

o For the synchronous scheme, the parameter server will ag-
gregate the local updated models from all or a specified
set of edge nodes. Wang et al. [16] presented a control
algorithm that aggregated the global model after receiving
the trained local models from all the edge nodes in each
epoch. Wang and Niu et al. [18] proposed a synchronous
scheme, called FAVOR, aiming to improve the performance
of training through intelligent edge nodes selection. How-
ever, due to data imbalance and edge dynamics caused by
heterogeneous node capacities and network connections, the
training time on different edge nodes (even on a set of
selected edge nodes) may be varied significantly, e.g., from
about 5 mins to 2 hours [23]. Due to synchronization barrier
[24], the completion time of each epoch mainly depends
on the maximum training time among these edge nodes,
which will lead to long completion time. Moreover, it is
difficult to determine the optimal number of local updated
models for global aggregation in each epoch to improve the
training speed, which increases the difficulty of the network
management and system configuration.

o The asynchronous scheme is proposed for FL. In the previous
solutions, a local updated model from an arbitrary edge node
is gathered for global aggregation, which helps to conquer the
edge dynamics [19], [20], [21]. The advantage of this solution
is simple and with low management/configuration cost. How-
ever, there remain other challenges. There is only one local
updated model involved in the global model aggregation in
each epoch. Thus, more number of training epochs, as well
as more training time are required to achieve similar training
performance (e.g., loss and accuracy) of the synchronous
scheme. Besides, the frequency of communication between
the server and the workers is greatly increased, which will
lead to massive bandwidth consumption. However, most of
the existing solutions ignore the impact of limited network
resources on training performance.

To accommodate data imbalance, edge dynamics and resource
constraints, we propose an adaptive asynchronous federated learn-
ing (AAFL) mechanism for resource-constrained edge computing.
Different from the existing schemes [16], [18] which assign the

2
Symbol \ Semantics
\% a set of edge nodes
T the local dataset on the edge node v;
D the number of iterations in a local update
T the total number of training epochs until the training
terminates
T the vector’s transposition
K the number of resource categories
the consumption of resource k for local updates on an
9k edge node
the consumption of resource k for communication
by, between a server
and a worker
By, the total budget for each category of resource k
L a set of learning tasks
a certain fraction of local updates that will be involved
a; in the global
aggregation of learning task j on the server
d the set of o;, with j € {1,2,...,L}
wP the model parameter after D local updates
F(w™) the global loss function after T epochs
F(w*) the optimal value of loss function F'(w)

TABLE 1: Key Notations

specified participating workers for model training, our proposed
scheme adopts the model updates from one or several arbitrary
workers. Specifically, the server will aggregate the local updated
models only from a fraction of edge nodes by their arrival order in
each epoch, and adaptively determine the optimal fraction values
in different epochs according to real-time system situations (e.g.,
network resource and state). Thus, AAFL can effectively cope
with the synchronization barrier problem, avoiding long waiting
time for model aggregation. The main contributions of this paper
are as follows:

e We design an adaptive asynchronous federated learning
(AAFL) mechanism for edge computing, and formally prove
the convergence of AAFL.

o We then propose experience-driven algorithms based on deep
reinforcement learning (DRL) to adaptively determine the
optimal fraction value o at each epoch for two cases of
AAFL, single learning task and multiple learning tasks, so as
to achieve less training time and bandwidth resource usage
with low network management complexity.

« Extensive experiments on the typical models and datasets
show the high effectiveness of the proposed algorithms.
Specifically, AAFL can reduce the training time by about
70% and improve training accuracy by about 28% under
resource constraints, compared with the state-of-the-art so-
lutions.

2 PRELIMINARIES AND PROBLEM FORMULATION
2.1 Federated Learning (FL)
2.1.1 The Goal of FL

Federated learning provides a decentralized computation strategy
to train machine learning models [7]. Edge nodes, referred to as

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

workers, generate large volumes of personal data for training.
Instead of uploading data to the server for centralized training,
workers process their local data and forward updated models to
the parameter server [8], which maintains globally shared model
parameters. On receiving local updated models from workers,
the parameter server will perform the model aggregation using
different algorithms, e.g., FEDAVG [17]. For ease of description,
some key notations are listed in Table 1.

In edge computing, the sample data generated on the edge
nodes may be inter-dependent and not obey the independent
identical distribution (IID). For the classification problem, each
worker has all labels (e.g., 10 classes) in IID setting, while there
are only part of labels (e.g., 5 classes) on any worker in non-
IID setting. Thus distributed machine learning (DML) cannot
handle these data efficiently. On the contrary, FL can handle non-
IID training data that are massively distributed on the workers.
For convenience, given a training dataset I" with A/ data points,
I' = {z;,5:}) . the parameters of the machine learning model
w € RY are learned by minimizing a loss function f (45, y:;w)
(or written as fl(w) in short) on I':

1 N
min, 3 25 50) ™
=1

where R? denotes the d-dimension real-number space. In general,
there is no closed-form solution for Eq. (1). To this end, learning
starts from an initial model, and iteratively refines this model by
processing the training data, to approach the solution. It terminates
when a (near) optimal solution is found or the convergence is
reached. For A" input-output pairs {z;,y; }Y |, 2; € R™ is the
input of the model (such as the pixels of an image) and y; € R or
yi € {—1, 1} is the desired output of the model (such as the label

of an image). Some typical examples of loss functions include

o Linear regression: f;(w) = 1(2Tw — y;)%,y; € R

o Logistic regression: f;(w) = —log(1 + exp(—y;zTw)),
Yi € {_11 1}
« Support vector machines: f;(w) = max{0,1 — y;z;w},
Yi € {*1, 1}
where T denotes the vector’s transposition. More complicated non-
convex problems arise in the context of neural networks, in which
the network makes prediction through a non-convex function of
the feature vector x;, rather than via the linear-in-the-features
mapping w?w.

2.2 Adaptive
(AAFL)
Assume that there is a set of edge nodes V' = {v1,v2,...,0,},
with |[V| = n > 2 in edge computing. Each node trains the model
over a local dataset I';,¢ € {1,2,...,n}, with its size |T';|. For
each node v;, the loss function on the local dataset I'; is

F(w) = 57 3 fiw) @

q; €T

Asynchronous Federated Learning

where ¢; is a training sample in the local dataset I';.
In this section, we propose the adaptive asynchronous federat-
ed learning (AAFL) mechanism, described in Alg. 1. Workers (and

3
Algorithm 1 Adaptive Asynchronous Federated Learning
1: Initialize the model parameters w, fraction «
2: for each epoch t € {1,2,...,T} do
3: Processing at the Parameter Server
4: if the resource constraints are satisfied or the convergence
threshold is not reached then
5 for each global update in the epoch ¢ do
6 while No. of received local updates < a; - n do
7: Waiting for local updated models from workers
8 Perform the global update
9: Compute global loss function by Eq. (3)
10: Distribute the updated model to all the workers
11: Update the parameter a1
12: Update the resource budgets
13: Processing at the Edge Node v;
14 Receive the global model from the parameter server
15: for each local update d € {1,2,..., D} do
16: Update the local model w by stochastic gradient de-
scent (SGD) [25]
17: Push local update to the server

18: Return the final model and loss function

parameter servers) perform the local (and global) model updates.
Let variable 7" denotes the total number of training epochs until
the training terminates. Assume that there are D(>1) local updates
(i.e., iterations) on each worker before one global update. Let
ap € {%, %, .., 1} be a certain fraction of local updated models
from all edge nodes for global model aggregation on the parameter
server in each epoch ¢t € {1,...,T}. After the parameter server
receiving oy - n local updated models from arbitrary workers in
epoch t, it updates the global model through model aggregation
(Line 4-9). For simplicity, we assume one single parameter server,
and the solution can be easily extended to multiple parameter
servers. Then, the server distributes the global updated model to
all the workers (Line 10) and updates the parameter oy for
the next global update according to the control algorithm, which
will be introduced in detail in Section 3 (Line 11). Besides, the
resource budgets are also updated (Line 12) for the next training
epoch at the edge nodes (Line 14-17). The global loss function
F(w™) of the model after T epochs is

o Xgyer, BLLWT) o BT | F(w”) 3)

Z:’l:l Bl Z?:l Bl IL]

where Bf is a binary variable to indicate whether the local update
of worker v; is involved in the global update or not in epoch t.
Thus, it follows Y ;" ; Bf > «a; - n,Vt € {1,...,T}. The whole
training process will continue until the resource budgets are used
up or the global convergence is achieved, i.e., F(w?) — F(w*) <
€, where ¢ is an arbitrarily small positive value, and w* is the
optimal solution for F'(w).

Fw") =

For a better explanation of AAFL, we illustrate the syn-
chronous scheme (left plot) and AAFL (right plot) under the
same time period in Fig. 2. Assume that there is one parameter
server and four workers in the edge computing system. In the syn-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

X /
\ /
\ /
. /

#Server [T T #Server [T T _TCTTTT]

||
worker #1 n : In worker #1 | } Il: -
| | | | |
worker #2 | [worker #2 | I . 1|
| | | [
worker #3 I : n worker #3 Il} | || : |
| | | [

worker #4 B N ¢ worker #4] =)

4 t

b,
[

Local Update |

Global Update B Push Update

Fig. 2: Illustration of synchronous scheme and AAFL under the same
time period. Left plot: synchronous scheme; right plot: AAFL. If
we set a1 = %, on receiving three local updated models from workers
#1, #2, #3 in turn, the PS performs the global update.

chronous scheme, only when the server receives all local updated
models from four workers, it will perform model aggregation to
derive the updated global model. Thus, only one global update
is performed during the training. In AAFL, the global update
will be performed after the PS receives 4 - a local updated
models from an arbitrary combination of edge nodes. Moreover,
the value of « changes with training epochs according to the
environment (e.g., loss value and resource usage). At the beginning
of training, the global model needs more local updated models to
achieve convergence quickly, with more resource consumption.
The value of o, will be determined in a real-time manner (e.g.,
a1 =3 ay =az = %). As shown in the right plot of Fig. 2, as
a1 = %, on receiving three local updated models from workers
#1, #2, and #3 in turn, the PS performs the global update. As
Qg = % the PS aggregates two local models from workers #4 and
#1. By this figure, AAFL will converge faster than the synchronous
scheme with more global updates, making efficient resource usage.

Note that AAFL may suffer from another problem, delayed
update. For example, when worker #4 sends its local updated
model to the server at the first time, the server has aggregated
the local updated models from workers #1, #2, and #3 at time
point t;. We adopt the delay compensation mechanism [26] to
alleviate this problem. In Fig. 2, we use M to denote the current
global model and M;,Vi € {1,...,4}, to denote the latest local
updated model from worker . These models will be recorded on
the server to perform delay compensation for outdated models. For
example, considering a time point ¢ between t3 and t4, worker #2
has sent the local updated model to the server only once, while
the server has performed three global model aggregations. Then,
the staleness of worker #2 is the gap between the number of
global updates and the number of local model updates, e.g., here
3 — 1 = 2. After the server receives the local model from worker
#2 twice, the model My will be updated with decay coefficient ¢,
with0 < ¢ < 1,ie, My =¢% - My + (1 —¢%) - Mg, where z
denotes the staleness of worker #2. By this way, the impact of the
outdated models can be alleviated.

Besides, we give an example to show how our proposed
solution solves the problem of edge dynamics. As shown in Fig.
3, the parameter server cannot receive local updates from worker

4
#Server T TN #Server LT T T T 1700
worker #1 |— worker #1 |— | ———
| | I
worker #2 |m—. worker # |H—. ———

worker #3 | IE———) worker #3 —I}—|| [

worker #4 #
t »t
t t, 3
BN Push Update

worker #4 | E——

or [
! A ™ Llocal Update |

| Global Update

Fig. 3: Illustration of how AAFL handles edge dynamics. Left plot:
synchronous scheme; right plot: AAFL.

#4 because of system crash or network disconnection. Thus, there
is no global model aggregation in the synchronous scheme (left
plot). The parameter server perform global update after receiving
local updates from worker #1, #2 and #3 (@ = %) in the first
epoch, and worker #1, #3 (o = %) in the second epoch. Even
though we haven’t received the local model update from the
worker #4, AAFL (right plot) still has three global updates. Thus,
our proposed solution can effectively solve the edge dynamics
problem.

2.3 Convergence Analysis

To analyze the feasibility of the proposed model training mech-
anism, we prove that AAFL can achieve a constant convergence
bound. For convergence analysis, we make the following three
assumptions according to [20].

Assumption 1. (Smoothness) Let L > 0. Assume that the loss
Sunction f is L-smooth w.r.t. the model parameter if Vx,y,

[)~ F@) < (Vi@ y—a)+ Syl @

Assumption 2. (Strong Convexity) Let ¥ > 0. Assume that the
loss function f is ¥-strongly convex if Vx,y,

F)~ 1@ 2 (V@ -+ Sy -2l ©

This assumption can be satisfied for models with convex
function, e.g., linear regression and SVM.

Assumption 3. (Existence of Global Optimization) Assume that
there exists at least one solution, denoted as w*, to achieve the
global minimum of the loss function f(w).

We analyze the convergence bound of AAFL based on the
above assumptions. AAFL will perform 7" epochs until the conver-
gence is achieved or the resource budget is used up. Moreover, D
local updates will be performed on an edge node in each epoch. In
the following, we first derive the convergence bound of each local
update d (Theorem 1). Then, we prove the convergence of each
epoch ¢ and give the convergence bound after 7" epochs (Theorem
2). Due to the space limitations, we omit the detailed proof here.

Theorem 1. Assume that the global loss function F' is L-
smooth and ¥-strongly convex, and each worker executes D local
updates before pushing the updated models to the parameter
server. For Yw € R™,q € Ty,i € {1,..,n}, it follows
E|V f(w;q) — VE(w)|* < Z, where Z is a positive number.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020
Let 1 denotes the learning rate which is used in SGD. When the
following three conditions are satisfied:

7 < l

. nﬂ >>1 —

.F()_ 4" DnZ

Fw?) > qaom
we have 2c;yn(1 —n9)P € (0,1) and
E[F(@”) - F(w")] < (1 = 19)"[F(u°) = F(w")] + =5~ (6)

where WP denotes the model parameter after D local updates
and wO is the initial model parameter.

Dnz
2

Proof. Without loss of generality, we first consider the conver-
gence analysis of the D local updates. For each loacl update
d € {1,..., D}, using the assumptions of smoothness and strong
convexity, we have

E[F (@) - F(w")

< P(@") ~ Fu*) — mE[(VF(@'), V7@ 00)]
+ L9 f@t)

< F(@') ~ Plw’) - N F@*)|
+ 5E[|IVF(@“) = Vi@)]

< F(@') ~ Plw’) ~ Nvr@h)* +

< P(@"") ~ F(uw) —ndP(@) — F)] + 22

< (1 -)F@*) ~ Fuw) + g

We have derived the convergence result of each loacl update
d € D. By telescoping and taking total expectation, after D local
updates, we have

E[F(@w") — F(w")]
<A =n))[F(@”") - F(w)]+7
nzZ. nz

< (L= m)[(1 =) [P(@P2) = P(w")] + 2=] + 2
(Telescoping by Eq. (7))

nz

D
< (PR~]+ 520 o)
< (1=) P[P - P+ I s
< (1=)P F(W?) — F™)] + 22
(®)
O

On the parameter server side, it will perform global model
aggregation with oy - n updated models after D local updates at

the epoch ¢, and we have
atn

——ZAD ©)

atn

where @iD denotes the model in the Worker node 7 after D local
updates.

5

Theorem 2. Let o, = maXe(1,... 1y %4 Based on Theorem I,
the convergence bound of AAFL after 'I" epochs is

EwwﬁwamsTww%fﬂww+ufﬂ%§
(1 —n9)P

(10)

where o = ,and T = (2a,ne)T.

Proof. Combing with Eq. (9), for each global update t € T, we
have

E[F(w') — F(w")]

an

sz (w")]

Smi (1=)P (F(w?) = Flw")) + 2]
< aunl(1 =)P (F(u) - F(w) + 20
< oyn[(1 =)P (F(w°) — F(w'™") + F(w'™") + F(w*))
DnZz
R
< agn(1 = i) (F(u”) = F(u'™))
am(l—)P (F(ut) - Flu) + 2212
< agn(1 - i) (F(w'™") = F(u"))
Fam(l)P (P) - Fw?) + 0"
< Gagn(1 =))@ = P + a0
(I

Then, the convergence bound after 7' training epochs can be
derived as follows
E[F(w") — F(w")]

< arn(1 —yi)P)[F(w") ~ F*)] + ar "0
...... (Telescoping by Eq. (11))

< amn(l —n9)?)T[F(w®) — F(w")]
(1 - 2amn(1 —n9)P)Na,,nDnZ

T TS0 = Qamn(l = 0)P))

(>n9>1- Y/1/4n,
1 - 2amn(l = n9)P) > 2a,n(1 —19))
< amn(1 —md)) [F () — F(w*)]
(1= 2amn(l — 792" a,,nDnZ
4dan(l — nd)P
< 2agn(l = n9)?) [F(w’) = F(w®)]

" %(1 — 2amn(1 —n9)P)7T)

(12)
where @, = maxeq1,... 1y ¢ To simplify expression, let ¢ =
(1 —n9)P, we write it as follows:

E[F(w") — F(w")]
DnZz
4

< 7[F(w”) = F(w)] + (1 -7)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

(13)
where 7 = (2, n0) 7. O

We note that the convergence bound (i.e., optimality gap),
F(wT) — F(w*), is related to the value of oy, Vt € {1,...,T}
and the number of epochs T' by Eq. (13). Furthermore, the
optimality gap becomes smaller when both a; and 1" become
larger, which may violate the resource constraints. Thus, it is
a challenge to determine the optimal values of o and 7' under
resource constraints.

2.4 Problem Formulation

We define the adaptive asynchronous federated learning with
resource constraints (AAFL-RC) problem as below. Given a fed-
erated learning task, we will determine the values of «;, where
t € {1,2,...,T}, and the number of epochs T so as to minimize
its training time with resource constraints and convergence guar-
antee (i.e., accuracy constraint). The local updates on the workers
and global updates on the parameter server need to consume sev-
eral categories of resources (e.g., network bandwidth, CPU, etc.).
Assume that there are totally X different categories of resources.
Let gi denote the consumption of resource k € {1,2,...,K}
for local updates on an edge node. Meanwhile, by denotes the
consumption of resource k for model exchanging once between an
edge node and a parameter server. Since the computing power on
the server is sufficient compared with workers, the consumption of
computing resource for global model aggregation can be ignored
[27]. Thus, for each category of resource k, the total resource
consumption of local updates and global updates at all nodes after
T epochsis T -n- gy, and 23:1 (¢ +1)-n-by, respectively. Some
entities (e.g., resource manager and task scheduler) in the proposed
architecture are deployed on the edge nodes or on the cloud servers
(i.e., parameter server) [7]. If these two modules are deployed on
an edge node, it may bring significant processing overhead on this
edge node with limited computing capacity between the edge node
and the parameter server. Thus, we deploy these two modules on
the cloud server by default in this paper. Let By denotes the total
budget for each category of resource k. Accordingly, we formulate
the AAFL-RC problem as follows:

min Zf:l H,
Fw™) < F
Sr o n-lge+ (o +1) - bi] < By, Vk
s.t. TLBE> e, vt (14)
Bt €{0,1}, Vi, Vit
are{L 2,1}, Vit

where H; denotes the completion time of epoch ¢, i.e., the time
that oz -n workers complete their local training after the last epoch.
The first inequality expresses the convergence requirement, where
F is the convergence threshold of the loss value of the learning
task after T training epochs. The second set of inequalities
expresses the constraints of resource Vk € {1,..., K} during
totally T training epochs. The third set of inequalities tells that
the parameter server will receive at least a; - n local updated
models from all edge nodes for model aggregation in each epoch,
where t € {1,...,T}. The objective of the AAFL-RC problem is
to minimize the completion time.

&

Policy Action
Network Probability

Reward 7
Environment
[CONee ;

S @.
0 ‘_,ﬁ -

worker worker,

Agent

State

Training Time
Loss Function
Resource Usage| ™

T

Fig. 4: The architecture of the DRL system. It mainly consists of two
parts: the agent and environment. The agent includes the state, policy
network and action probability. It receives the state and reward from
the environment and returns the action for the next training.

State 5y

In order to solve the problem, we discuss the following two
issues. On one hand, AAFL-RC is a sequential decision problem,
which can hardly be solved by the existing dynamic programming
(DP) algorithms, due to the absence of a deterministic mapping
from the current status and operations in DP. Thus, we propose an
experience-driven algorithm based on deep reinforcement learning
(DRL) to solve Eq. (14). Note that the resource budget may have
been used up, while the loss value has not reached the convergence
threshold. In order to achieve model convergence in the shortest
time under resource constraints, we adopt the reward with penalty
mechanism, which will be introduced in details in Section 3.

On the other hand, by the second set of constraints in Eq.
(14), we find that two parameters a; and T' are dependent. For
simplicity, we consider how to determine the value of oy at
each epoch t for two cases, single learning task and multiple
learning tasks, respectively. Then, the value of parameter 7' can
be accordingly determined. To avoid the complex management and
configuration, we adopt DRL based control algorithm to determine
the value of o at each epoch ¢.

3 ALGORITHM DESIGN FOR AAFL-RC

In this section, we first briefly introduce the agent deep reinforce-
ment learning (DRL) technique based algorithm (Section 3.1).
Then, we describe the training methodology of the algorithm for
single learning task in detail (Section 3.2). Finally, we extend
the algorithm for the general case with multiple learning tasks
(Section 3.3).

3.1 The DRL Agent

We consider a simple case with only one single learning task
in edge computing. To achieve training convergence with less
completion time under resource constraints, we need to adaptively
determine the value of ay, t € {1, ..., T}. For ease of description,
we just consider the bandwidth resource, which is the widely
considered communication bottleneck in edge computing [14].
Our solution can also be applied to other resource constraints. We
present the DRL technique based asynchronous federated learning
(DAFL) algorithm.

We illustrate the architecture of the DRL system in Fig. 4. The
standard reinforcement learning has an agent which interacts with
an environment over a number of discrete training epochs. The

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

agent mainly consists of three components: state, policy network,
and action probability. In each training epoch ¢, the policy network
in the agent receives a state s;_1 (e.g., completion time, loss
function and resource usage) and outputs the probability of some
actions, called policy 7, which is a mapping from state s;_; to
actions A. Then, an action a; will be picked from A according
to the policy 7. In return, the agent receives the next state s; and
a scalar reward r;. The return reward R; = ZZI:Ot 7d7°t+d is
the total accumulated return from epoch ¢ with a discount factor
v € (0,1]. The goal of the agent is to maximize the expected
return from each state s;. We describe the state, action and reward
of our DRL system in detail as follows.

State: We use a vector s; = (¢, Hy, wt, Fy, AFy, F, by, Gy)
to denote the state of epoch ¢. Here ¢ is the training epoch index.
H,; is the completion time of the learning task at epoch ¢ and
reflects the training speed under the previous action a;_1. w’ and
F denote the model parameter and loss function after epoch t,
respectively. AF} is the difference between current loss value and
the target loss value F, ie.,, AF; = F — F;, where threshold
F reflects the convergence degree of training. Besides, bandwidth
consumption at each epoch ¢ is represented as b;. We use G; to
denote the remaining resource budget at the end of epoch . With
the progress of the learning task, more and more resources are
consumed, and the remaining resource budget decreases.

Action: At each epoch t, a fraction, ie., a; € {%, ey 1},
of local updated models, which are involved in the global model
update, will be determined by the agent, called an action a;. Given
the current state, the DRL agent chooses an action based on a
policy, expressed by a probability distribution 7(a|s) over the
whole action space. We use neural network [28] to represent the
policy m, where the adjustable parameters of the neural network
are referred to as the policy parameter §. Our policy can be
represented as mw(at|st;0) — [0,1], which is the probability of
taking the action a, at the state s;. For example, as shown in
Fig. 4, the agent derives the probability of different actions (e.g.,
m(a; = a'lsy;0) = 0.1 and 7(a; = a3|sy;0) = 0.5) according
to the current state.

Reward: When an action a; is applied at epoch ¢, the agent
will receive a reward r; from the environment. We define the re-
ward r; as the combination of the completion time, the difference
of loss value and the resource usage at epoch , i.e.,

AF; t bt

F o (>
where T is a positive constant so as to enusre that r; decreases
exponentially with the completion time H,;. H; is the moving
average time which can alleviate the impact of data jitter at epoch
t and follows H; = wH; + (1 — w)H,;_1, with @ € (0,1).
The longer training time the epoch ¢ takes or more resource the
task consumes, the less reward the agent will receive. In contrast,
the closer to the degree of convergence, i.e., the smaller value
of |AFy|, the more reward the agent will obtain. At epoch T,
the learning task will stop because we have F'(w?) < F or the
resource budget is used up (i.e., Gr < 0). Then, the reward in the
final epoch T is defined as

. {LT+C if F(w”) < Fand Gr > 0,
-

Hy—Hy 3

’I"t:—T Hy1 —+ t<T

. (16)
L1 —C otherwise.

Algorithm 2 DRL-based Asynchronous FL. (DAFL)

1: Initialize the set of agents ¢, the global parameters of actor
network 6 and critic network
2: for each epoch t € {1,2,...,T} do

3 for each agent in ¢ do

4 df < 0,dy <0

5 Pull the global parameters of actor 6’ and critic 1)’

6: The agent interacts with the environment

7 Actor is updated t9wards the target

8 7810{%77(362‘3”9)A(shat;&w)

9 Critic is updated to minimize mean square error (MSE)
w.r.t target

10: Ly = (A(sy,a150,1))?

11: Compute gradients w.r.t. 6 and ¢’

12: df < df + Vo logm (at|se; 0") A (st, ar; 0,)

13: dip +— dp + VLU}/

14: Push the update to the global parameter 6 and v

15: Select the optimal action, i.e., the optimal value of o'

16: Update g1 < < in line 11 of AAFL

Hp—Hp_;

where L7 = =Y Hr-1 4 % — g—? and C is a positive
real number. If the learning task stops with success, i.e., the
convergence threshold J is met without overrunning the resource
budget, the reward will be added by C. Otherwise, if the learning
task fails, i.e., it dose not achieve convergence under the resource
budget, a negative value C will be added to the reward. The reward
will be sent to the agent for the next decision. If the reward of the
current action is larger compared with that of the other actions,
the probability of this action being selected in the next epoch will
increase. Otherwise, it will decrease.

3.2 Training Methodology of DAFL

In this section, we describe the techniques to train the DRL
agent. The goal of DRL is to maximize the expected value of
cumulative discounted reward. We train the agent using the cost-
effective and time-efficient asynchronous advantage actor-critic
(A3C) algorithm [29] in DAFL. A3C creates a master agent and
multiple subagents, and performs in parallel and asynchronously.
It can be run on a single machine with a standard multi-core CPU,
rather than those with GPUs or a cluster [29].

In our proposed DAFL algorithm, A3C maintains a policy
which has a softmax output 7(a;|s¢; 8) (the actor network) and an
estimate of the value function V (s;; 1) that will output the linear
value (the critic network). Here 6 is the policy parameter and
is the value function parameter. The value function is represented
with a function approximator (e.g., neural network) and estimated
as

V(se;9) = Elresr + yriqo + o 37 rrlsy] a7

The policy and the value function perform updates after every
tmaz actions or when a terminal state (e.g., the convergence
threshold is achieved or the resource budget is used up) is reached,
where %,,4, 1S the given number of maximum global iterations.
The actor network and the critic network share the previous
part of network parameters except for the last output layer. The

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

update can be seen as Vg logm (a¢|s¢;) A (s¢, ae;0,1)), where
A (8¢, a4;60,1) is an estimate of the advantage function given by

0 Y esi + YTV (s1443) — V (s431)), and q varies from
state to state and is upper-bounded by ?,,,,. The model updates
both the policy and the value function based on the returns of
every ¢4, actions or until reaching the terminal state.

The DAFL algorithm is described in Alg. 2. At the beginning,
the DAFL algorithm initializes some variables, e.g., the set of
subagents ¢, the global parameters of actor network 6 and critic
network 7 (Line 1). Each subagent initializes the gradients of two
networks and pulls the global parameters from the master agent
(Line 4-5). The subagent will interact with the environment and
independently update two networks with different targets (Line
6-10). Then the gradients will be computed and updated through
gradient ascent optimization process (Line 11-13). After that the
subagents push their updates to the master agent as an input (Line
14). At the end of each epoch, the optimal value of o will be
selected for the next epoch of traning by the output of actor
network in the master agent (Line 15-16).

3.3 Extending to the General Case

In many practical scenarios, there are usually multiple simultane-
ous learning tasks in edge computing [30], [31], [32]. Thus, we
consider the more general version, denoted as AAFL-RCG, for
multiple learning tasks. In this paper, we focus our attention on
independent learning tasks, while the case of multiple dependent
learning tasks will be regarded as our future work.

3.3.1 Problem Formulation

There are multiple learning tasks L = {ly,...,L,} in edge
computing. To minimize the maximum completion time of all
learning tasks with resource constraints, we will determine the
proper values of two parameters T and oz;- for each task [,
where T denotes the total number of epochs and a§- is the
fraction of local updated models for global aggregation in epoch

t. Accordingly, the AAFL-RCG problem can be described as
follows: -
it
jeax 3ty Hj

max;eqi,...,m} &y (wh) < F
T; ,
2je(tsmy 221 (1 + af) n-b <B

min

s.t. rBi;j>akn vj,t (18)
61{]‘ € {071} Vl,]7t
of e {%,..,1} Vi, t

where b/ denotes the bandwidth cost for forwarding a global
update to an edge node of task /;, and B is the total bandwidth
budget. ,Bf’j is a binary variable to indicate whether the local
updated model of task /; at edge node v; is involved in the global
update or not at epoch ¢. The first set of inequalities denotes that
the maximum loss value of these tasks should be less than the
convergence threshold F. The second set of inequalities means
that the bandwidth consumption by all learning tasks should not
exceed the budget B. The third set of equations tells that the
parameter server will receive at least a§ - n local updated models
from all workers of each task [; for model aggregation in each
epoch t.

3.3.2 Algorithm for AAFL-RCG

In this section, we extend the DAFL algorithm for multiple
learning tasks, called DAFL-G. Each task /; maintains a variable
qj» which denotes the current epoch index. When the global
model aggregation of a task [; is finished, we update the variable
qj = qj + 1. If we find that g; is the smallest epoch index among
all learning tasks, DAFL-G will be triggered. Besides, we use X},
and ¢}, to denote the smallest epoch index and the corresponding
time point, respectively, when DAFL-G is triggered at the k-th
time. The training speed and convergence degree of all tasks may
be different, which determines the number of local updated models
involved in the global update. Therefore, let @, be the set of ff’“,

where 5;(’“ € {1,...,1} denotes the fraction of local updated
models involved in the global update of task /; at the time point
X

Similar to DAFL, we also adopt A3C, which can train multiple
learning tasks without changes in the network architecture [33], to
determine the optimal value of ®;, at the k-th time point. DAFL-
G trains the global actor network and critic network with several
subagents, deriving the optimal action for each learning task at
each epoch. Different from DAFL, the operations of multiple
learning tasks increase the difficulty of management. Thus, we
need to keep the agent and environment stable as soon as possible,
instead of changing frequently.

To this end, we need to modify some agent settings, including
state, reward and action, for multiple learning tasks. Then, the
value of a® ™" for task l; at epoch g; will be updated, i.e.,
a?ﬁl = 5;(’“. During the training, the agent interacts with the
environment and observes the state. Under this setting, we redefine
the state s, = () Hy , By, For , Qur , F, Rtﬁc)' We use Hy; and
By, to record the completion time and bandwidth consumption
of each task during epochs Aj_1 and X}, respectively. [y, is
the set of loss function of all learning tasks at time point ¢},
and €y = {AF, 1;6, e AF;,:} denotes the set of differences
between the current loss value and the target loss value JF for
all m learning tasks. Each task keeps training until the maximum
loss value of these tasks reaches the threshold F. Finally, the
remaining bandwidth budget after the time point ¢}, is denoted as
Ry, .

Due to the different training speed of these tasks, some of them
may have reached the convergence, while others may still need to
train several epochs. Thus, we redefine the reward for task [; at
time point t;c (or epoch AX};) as
AF, b

_E ko t;c : .
; T=+ — Rt;chM ifl; < F,
Tt;g = B Ath/ bf/ (19)
—T=+ —% — == — M otherwise.
7 R,/
HI, —H
where 2 = —%___%k=1 and M is a positive number. When the

m,
loss value of taskklj1 has reached the convergence threshold F
under the resource constraint, the reward will be added by M so
that the probability of the current action will increase. Thus, the
actions will not change frequently and the agent tends to be stable
gradually.

Note that our action space is a discrete space including as

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

many as n"™ possible choices, where 7 is the number of workers
and m is the number of learning tasks. For example, given 3 tasks
and 100 edge nodes, there are 1,000,000 possible actions in each
epoch. Training a DRL agent with such a large action space would
be costly. Thus, we redefine the policy 7 as a Gaussian probability
density over a real-valued space [34] as follows:

1 (a— p(s,0)°
— exp|——
o(s,0)\V2m 20(s,0)2
where p denotes the expectation and o is the standard deviation.
The agent can choose an action ay, based on the conditional
probability 7(ax,|sx,_,,0). To make DAFL-G more efficient,
we just need to find the parameters (u(s,#),o0(s,#)) in a 2-D
continuous space, instead of learning the probability mass function
over a large discrete action space.

m(als, 0) = (20)

3.4 Discussion

In this section, we make some discussions about the proposed
mechanism and algorithms. In addition to bandwidth resource,
our proposed experience-driven solution also can be applied to
other resource budget constraints. For example, there are two
categories of resources (e.g., network bandwidth and energy). Let
o+ denote the energy consumption by the workers at each epoch
t. We use &; to denote the remaining energy budget at the end
of epoch . We need to collect more network information from
the workers for DRL training. To this end, we just need to modify
some agent settings, including state and reward. We add the energy
consumption g; and remaining energy budget &; to the state vector.
Besides, the reward is redefined as

AF, by Ot

t<T 21
F Gy = @b

In other words, more resources the task consumes, the less reward
the agent will receive. Thus, state and reward in DRL agent can
be easily modified, even if more network resources budgets are
considered.

Hy—Hy 4

ry=—_" -1 4

4 PERFORMANCE EVALUATION

This section first introduces the metrics and benchmarks for per-
formance comparison (Section 4.1). Then, we describe the datasets
and models for simulations (Section 4.2). Besides, simulation
settings and results are also given (Section 4.3). Finally, we
evaluate our proposed algorithm through a real small-scale test-
bed and give the results (Section 4.4).

4.1 Performance Metrics and Benchmarks

In this paper, we design the DRL-based asynchronous federated
learning algorithm for efficient model learning in edge computing.
We adopt the following metrics to evaluate the efficiency of
our proposed algorithm. (1) Training loss is the quantification
difference of probability distributions between model output and
observation results. The loss value reflects the quality of model
learning and whether convergence has been achieved or not as
described in Section 2.2. (2) Reward of DRL is the return of the
reward function in DRL training. (3) As one of the most common
performance metrics for classification, accuracy is measured by

9

the proportion between the amount of the right data by the
model and that of all data. (4) We adopt the completion time to
estimate the training speed of a learning task. (5) When there are
multiple learning tasks in the network, we measure the maximum
loss and minimum accuracy of all tasks to evaluate the training
performance.

We choose two recent algorithms as benchmarks for perfor-
mance comparison. The first one, called ADP-FL [16], belongs
to the synchronous FL scheme. In an epoch, the number of local
updates before one global update on each edge node are adaptively
determined by the coordinator and can be found via linear search
to minimize the loss function under given resource constraints.
The second one, called AFO [20], is an asynchronous federated
optimization algorithm with provable convergence, in which the
parameter server will perform the global update on receiving only
one local updated model from an arbitrary worker. Thus, we
choose these two algorithms, the synchronous scheme (o = 1)
and the asynchronous scheme (o = %), as benchmarks in our
work.

4.2 Datasets and Models

We evaluate the training process with two open-source datasets,
i.e., Fashion-MNIST [35], and CIFAR-10 [36], constructed for
image classification tasks. The Fashion-MNIST dataset (referred
to as FMNIST) contains 70,000 images of fashion handwritten
digits (60,000 for training and 10,000 for testing), each of which
is a 28x28 grayscale image associated with a label from 10
classes. CIFAR-10 includes 60,000 32x32 color images (50,000
for training and 10,000 for testing) of 10 different classes, with
6,000 images per class.

We choose two classical models with different structures and
parameters. One is the logistic regression (referred to as LR in
short) for the FMNIST dataset. LR is constructed of a fully
connected network with two hidden layers, each of which has
512 units. The other is the convolutional neural networks (CNN)
for both FMNIST and CIFAR-10. CNN has two 5X5 convolution
layers, a fully connected layer with 512 units, and a softmax output
layer with 10 units.

4.3 Simulation Evaluation
4.3.1 Evaluation Settings

The simulations are conducted on an AMAX deep learning
workstation! (CPU: Intel(R) E5-2620v4, GPU:NVIDIA GeForce
RTX 2080Ti), where we build an FL simulation environment
and implement all models with PySyft [37], a Python library for
privacy-preserving deep learning including FL, under the PyTorch
framework.

Network Resources: In the simulations, we mainly focus
on the bandwidth and time resource cost in edge computing.
Specifically, the bandwidth consumption can be measured by the
size of the model parameters transmitted. We train some models
under a fixed amount of resource budget (e.g., network bandwidth
and completion time). In order to implement the resource efficient

Thttps://www.amax.com/products/gpu-platforms/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

30 0
f e s "
25 [--=—-DRL -1 »*rf*éi*‘“ﬂw""'ir!"!i‘%?"!“ﬁ
20! o2y i
PR = i
B1571 g3y
o |t 3 i
— 1074 it
51 Y 5]
[I T PR 6] F-=-DRL
5 . | 7 |
10 0 20

2 4 6 8 5 10 15
Episodes (x10) Epochs (x10)

Fig. 5: Training Convergence of DRL Agent. Left plot: Loss vs. No.
of Episodes; Right plot: Reward vs. No. of Epochs.

Accuracy

=~ AAFL
F--- AFO

1i_2 3 4 5
Epochs (x100)

1_2 3 4 5
Epochs (x100)

Fig. 7: Training Performance of CNN over CIFAR-10 without
Resource Constraints. Left plot: Loss; Right plot: Accuracy.

asynchronous federated learning, we set the value of parameters
n =0.01,¢ = 0.9, = 2, w = 0.3 and estimate the values of
parameters L, ¥ in real time according to [38].

As suggested in [18], in order to efficiently simulate the train-
ing processing in FL of our proposed solution and benchmarks, a
total of 100 edge nodes are generated in the simulation, and 10
(or 20) of them are randomly activated to participate in the model
training. The solution can be easily extended to the case of more
edge nodes. We partition the training datasets for the workers with
a non-IID setting. At the beginning, each worker node is allocated
with the same amount of images which are grouped by their labels
as its local data. Besides, the test datasets are allocated to the
server for evaluating and testing the global models.

Data Distribution on Workers: To simulate the data imbal-
ance, we assign different amounts of data into the workers based
on the random distribution with parameter A for the maximum
value and B for the minimum value. For example, given 60,000
data samples and 10 workers, let A=1,000 and B=9,000. The
amount of data in the worker may be 1,000 ~ 9,000, i.e., the
maximum amount of data in the worker is 9,000 and the minimum
amount of data is 1,000. We mainly consider four different ways
of data distribution (Case 1-4) 2.

Model Training: Two models are separately trained using
ADP-FL, AFO and AAFL. For ease of interpretation of results,
AAFL performs only one local update between two global up-
dates, i.e., D = 1. Mini-batch SGD with batch size of 50 is
applied to optimize the local models. We repeat each simulation
10 times and compute the average results.

2Case 1: 5,500 ~ 6,500; Case 2: 5,000 ~ 7,000; Case 3: 3,000 ~ 9,000
Case 4: 1,000 ~ 11,000;

10

Q

<< e [—— ADP-FL.
03 - AAFL
0.2 ---- AFO
0.11

1_2 3 4 5
Epochs (x100)

1_2 3 4 5
Epochs (x100)

Fig. 6: Training Performance of CNN over FMNIST without Re-
source Constraints. Left plot: Loss; Right plot: Accuracy.

5 0.8
2.1, F==-AFO -
‘-‘ =-=- AAFL 0.7 !_f' ___________________
1840 —— ADP-FL 3 0.6 P
@ N S osll [
8 15 S 3 !
— ‘l .. QS 044
1241 Sl ¢ [—— ADP-FL
L T 03 K =~ AAFL
0.9 \\, 0.23; ---- AFO
~.
0.7 = 0.1

2 4 6 2 4 6
Epochs (x10) Epochs (x10)

Fig. 8: Training Performance of CNN over FMNIST with Comple-
tion Time Constraint. Left plot: Loss; Right plot: Accuracy.

4.3.2 Simulation Results

1) Training the DRL Agent: The experience-driven method
can be divided into two phases: (1) an offline training phase first
simulates the environment and generates a DRL policy network
based on rewards; and (2) an online running phase, which de-
ploys the policy network at the server to online determine the
value of ay; for FL system. Both two phases are performed on
the parameter server (e.g., cloud [39], [40]), which usually has
sufficient computation resource compared with workers (or edge
devices). Thus, the main workload of training a DRL policy
network can be luckily completed offline on the server. We first
test the performance of DRL training, including the training loss
and reward. The DRL training is conducted in a simulation system
with 5 edge nodes for 100 episodes. We first observe the change of
training loss with the increasing number of episodes in DRL. The
left plot of Fig. 5 shows that the training loss decreases quickly
in the earlier stages of DRL training process. That is because
the DRL agent has no information of the FL environment that
causes a large loss value. Thanks to the efficient explorations of
agent, the loss can be rapidly minimized with the model training
procession. After less than 20 episodes, the training loss becomes
stabilized, which means that the DRL agent learns to adapt to
the FL environment. By the right plot of Fig. 5, we observe
the change of reward with the increasing of epochs in one DRL
training episode. Specifically, the reward value increases with the
epochs and gradually tends to be stable. That is because the DRL
model is enabled to learn a better policy to achieve a better reward.
When reaching 200 epochs, the reward starts to saturate with slight
fluctuations.

2) Single Learning Task: The first set of simulations evaluates
the performance of the classification models (e.g., CNN) without
resource constraints. We train each set of model and dataset,
including CNN over FMNIST and CNN over CIFAR-10, for all

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

=== AFO
|=-= AAFL
|—— ADP-FL

Loss

[—— ADP-FL
—-—- AAFL
----AFO

8 9

2 4 6 8 2 4 6
Epochs (x10) Epochs (x10)

Fig. 9: Training Performance of CNN over FMNIST with Bandwidth
Constraint. Left plot: Loss; Right plot: Accuracy.

AAFL
ADP-FL
AFO

Y
2,

N
§
\

I/)k

Fig. 11: Completion Time vs. Different Cases. Left plot: LR-
FMNIST; right plot: CNN-FMNIST.

AN

C
-
N

>
@
IS

three solutions (i.e., AFO, ADP-FL and AAFL) with 600 epochs.
As shown in Figs. 6-7, AAFL can achieve similar training per-
formance with ADP-FL, which adopts the synchronous scheme.
Besides, AAFL can achieve better training performance than AFO
with an increasing number of epochs. For example, when CNN
training runs 600 epochs and over the FMNIST dataset, the
accuracy achieved by AAFL is about 75%, while that by ADP-FL
and AFO is about 78% and 65%, respectively. We can conclude
that our proposed AAFL framework can improve the accuracy of
the classification model by about 10% compared with AFO.

The second set of simulations observes the performance of
the classification models (e.g., CNN) with resource constraints. In
practice, some training tasks often need to be completed within
a specified time. We train CNN over FMNIST with a limited
completion time constraint (e.g., 1,800s). Due to synchronization
barrier, the completion time of each epoch mainly depends on
the maximum training time among these workers, which will
lead to long completion time. Thus, ADP-FL does not achieve
convergence within given completion time constraint. AFO will
run averagely 4 times as many training epochs as both AAFL and
ADP-FL within the same time constraint by Fig. 8. However, the
training performance (e.g., loss or accuracy) of AFO is worse than
that of AAFL, which achieves better performance than ADP-FL.
For example, given the fixed time constraint, the loss of AAFL is
0.74, while the minimum loss of AFO and ADP-FL is about 1.03
and 0.79, respectively. Accordingly, the accuracy of AAFL, AFO
and ADP-FL is about 74%, 65% and 71%, respectively. Thus,
AAFL can improve the accuracy by 9% and 3% compared with
AFO and ADP-FL, respectively.

The communication between the parameter server and the
workers will cause huge bandwidth consumption. We measure
the training performance of CNN over FMNIST with a limited
bandwidth constraint (e.g., 10Gb). As shown in Fig. 9, AAFL
can achieve higher accuracy than both AFO and ADP-FL. For

11

— Value of
Avg 20

1_2 3 4 5
Epochs (x100)

Epochs (x100)

Fig. 10: Value of « vs. No. of Epochs. Left plot: LR-FMNIST; right
plot: CNN-FMNIST.

11 2X:]

1.0] ——ADP-FL \ 27 —a— ADP-FL,
1 |em— AAFL e |—=— AAFL |
0.9 g
o 4 Py
1] 4
o008 £4
— 3] 4
0.7 " A I
Q2
0.6 S -
™ e e __ Bip e
0.5 €0
10 20 30 50 S 1020 30 50 100
No. of Workers o No. of Workers

Fig. 12: Loss and Completion Time vs. Different Number of Workers
within given constraint. Left plot: Bandwidth; right plot: Accuracy.

example, the accuracy of CNN over FMNIST using AAFL is about
74%, while that by AFO and ADP-FL is about 66% and 72%,
respectively. Thus, the proposed AAFL framework can improve
the accuracy by about 8% and 2% compared with AFO and ADP-
FL, respectively.

The third set of simulations observes the change of parameter
of o with the increasing number of epochs in AAFL. The value of
« is fixed in AFO (o = 0.1) and ADP-FL (o = 1). Our proposed
algorithm can adaptively adjust the value of « according to the
environment. At the beginning of training, the parameter server
aggregates more local updates so as to accelerate the convergence
of model training. When the model tends to converge, less local
updates are required for global model aggregation, which saves a
lot of network resources (e.g., network bandwidth). In Fig. 10, the
value of @ in AAFL is decreasing with the training epochs and
tends to be stable.

The fourth set of simulations tests the completion time of
three solutions with different data distributions at the workers. The
amount of data on the workers is always changing dynamically.
Fig. 11 shows that the completion time increases for all solutions
under four cases. However, the increasing ratio of AAFL is much
slower than that of the other two benchmarks. In comparison,
AAFL requires less completion time than AFO and ADP-FL. For
example, by the right plot of Fig. 11, the completion time of AAFL
is about 340s, while ADP-FL and AFO need about 690s and 750s,
respectively. In other words, AAFL can reduce the completion
time by about 51% and 55% compared with ADP-FL and AFO,
respectively.

In the fifth set of simulations, we observe the impact of
different number of workers on training performance (CNN over
FMNIST) within given bandwidth budget (e.g., 5Gb). We adopt
five different number of workers (e.g., 10, 20, 30, 50 and 100) to
test the loss value and completion time. The testing results in Fig.
12 show that the training performance of two schemes is rarely

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.,

Max. Loss

ooonA=22NDON
PooohdbroomoNdd

NO., DEC. 2020

---- AFO

0

Fig. 13: Max. Loss and Min. Accuracy for Multiple Learning Tasks

5 10 15 20 25 30
Epochs (x10)

without Resource Constraints.

0.60

0 5 10
Epochs (x10)

15 20 25 30

2.2
[—=— ADP-FL oAt
" 204 = —AFO 20.55
©
218 [4- AAFL 50.50
— Q
16 2045
© .
14 £0.40 [a- AAFL
= a2 g —e—AFO
1.2 tal 0.35; |—m— ADP-FL|
1.0 0.30

A

Fig. 14: Max. Loss and Min. Accuracy with Bandwidth Constraint

6 9 12 15
Bandwidth (x100 MB)

for Multiple Learning Tasks.

6 9 12 15
Bandwidth (x100 MB)

24 0.80
2 0.72]
w.1 5-7 _A.A'r.—u
918 So.64 A »
S 3 « e
s
§1.5 2086 & -
S1.2 < 0.48 1 - A - 4- AAFL
0.9 T,] =0.40 s - f\Eg’FL
0.6 0.32

6 12 18 24
Completion Time (x100 s)

30

6 12 18 24
Completion Time (x100 s)

30

Fig. 15: Max. Loss and Min. Accuracy with Completion time
Constraint for Multiple Learning Tasks.

improved, or even worse, when there are more than 20 workers.
For example, in the left plot of Fig. 12, we test the loss value of two
schemes within given bandwidth budget. In AAFL, the parameter
server will aggregate more (not all) local updates in each epoch
with the increasing number of workers in edge computing. Thus,
the global training model can well achieve convergence, and the
loss value gradually decreases. However, more workers will also
bring more resource consumption and waiting time. The total
number of training epochs will be reduced in ADP-FL, leading
to poor training performance. Besides, the testing results, in the
right plot of Fig. 12, show that the completion time is gradually
increasing in AAFL and ADP-FL, when the number of edge nodes
is more than 20. Accordingly, we choose 20 as the limitation of
workers to participate in the model training in the simulations.

3) Multiple Learning Tasks: The sixth set of simulation-
s observes the performance of multiple learning tasks without
resource constraints. We run two models over three different
datasets, including LR over FMNIST, CNN over FMNIST and
CIFAR-10, respectively. Each learning task performs 300 epochs.
Fig. 13 shows that the maximum loss and minimum accuracy of
the three learning tasks. By this figure, AAFL achieves a little
worse training performance (e.g., loss or accuracy) than ADP-FL,
but better than AFO. For example, given 300 training epochs, the
accuracy of AAFL is about 75%, while that of AFO and ADP-FL
is about 61% and 77%, respectively.

12

Fig. 16: The Test-bed Platform.

In the seventh set of simulations, we test the performance of
multiple learning tasks with limited bandwidth constraints. By Fig.
14, the maximum loss becomes smaller and the minimum accuracy
becomes higher by changing the bandwidth constraint from 300
Mbps to 1,500 Mbps for all three solutions. Our proposed AAFL
framework can achieve less loss and higher accuracy compared
with the other two benchmarks. For example, when the bandwidth
constraint is 900 Mbps, the minimum accuracy of AAFL is about
55%, while that of ADP-FL and AFO is only about 49% and 51%,
respectively. In other words, AAFL can improve the minimum
accuracy by about 6% and 4% compared with ADP-FL and AFO,
respectively.

The last set of simulations observes the performance of mul-
tiple learning tasks with a limited completion time constraint.
We test three learning tasks by changing the completion time
constraint from 600s to 3,000s. Fig. 15 shows that AAFL can
achieve significantly higher minimum accuracy than both ADP-
FL and AFO. For example, when the completion time constraint
is 1,800s, the minimum accuracy of three learning tasks by AAFL
is 69%, while that of AFO and ADP-FL is about 51% and 59%.
Thus, our AAFL framework can improve the minimum accuracy
by about 18% and 10% compared with AFO and ADP-FL, respec-
tively. These results show that AAFL can significantly improve
the classification accuracy compared with two benchmarks under
resource constraints.

In conclusion, our proposed AAFL mechanism can reduce
the completion time by about 55% compared with the existing
schemes even under data imbalance and edge dynamics in the
network. Moreover, AAFL can improve the maximum loss value
and minimum classification accuracy compared with AFO and
ADP-FL under the resource constraints.

4.4 Test-bed Evaluation
4.4.1 Implementation on the Platform

We implement AFO, ADP-FL and AAFL on a real small-scale
test-bed in Fig. 16, which is composed of two main parts: a
deep learning workstation with four NVIDIA GeForce RTX Titan

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

-= AFO
== AAFL
ADP-FL.

ADP-FL

== AAFL
-—= AFO

4 8 12 16 20 4 8 12 16 20
Epochs (x100) Epochs (x100)

Fig. 17: Loss and Accuracy with CNN over FMNIST in Test-bed.

0
B
600 o0l 7
B a00 b g
Baoo ' 2 15]i
[
200 .‘ & 20
A 25
e _ a0
6 8 10 30 40 50

2 4 10 20
Episodes (x10) Epochs (x100)

Fig. 19: Training Convergence of DRL Agent in Test-bed. Left plot:
Loss vs. No. of Episodes; Right plot: Reward vs. No. of Epochs.

GPUs and 10 Jetson TX2 developers > (CPU: ARMvS Cortex-
AS57, RAM: 8GB). Specifically, the workstation acts as the param-
eter server which is responsible for the model aggregation and
verifying the training performance of global model. We adopt
a Jetson TX2 developer as a worker to locally train the model
and send the updates to the parameter server for aggregation. We
develop a distributed model training framework with pytorch [41].
The workers and the parameter server are physically connected
through wireless network under the same router. Besides, they are
logically connected through forch.distributed package (gloo back-
end). Specifically, the IP address of the server and a designated
port are combined to establish a connection between the server
and the worker through TCP protocol. After the connection is
established, the server segments the training and testing datasets,
and sends the segmentation results to each worker. After receiving
the results, the worker generates the local dataset for training. All
our code is publicly available at github *.

Two typical CNN models with different types and structures
are implemented for CIFAR10 and FMNIST, respectively, on the
test-bed. The first CNN model is used for CIFAR10 dataset. It
has two 5 X 5 convolution layers (64, 64 channels, each followed
by 3 X 3 max pooling), two dense layers with 384 and 192 units
and a softmax output layer with 10 units. The second CNN model
which has two 5 X 5 convolution layers (32, 64 channels, each
followed by 2 x 2 max pooling), a dense layer with 1024 units
and a softmax output layer with 10 units (related to the 10 classes
in FMNIST), is used for the FMNIST dataset.

The different data distributions (e.g., quantity and category)
among the workers have great impact on the performance of
model training. In the test-bed, we mainly consider the following
two data distributions. First, the distribution of data amount is

3https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
“https://github.com/lyl617/AAFL

13

Loss
Accuracy

ADP-FL
== AAFL
-—= AFO

4 8 12 16 20
Epochs (x100)

42 8 12 16 20
Epochs (x100)

Fig. 18: Loss and Accuracy with CNN over CIFAR10 in Test-bed.

25

2.0

1.5

Loss
Loss

1.0

0.5

20 40 60 80 100
Epochs (x100)

15

36 9 12
Epochs (x100)

Fig. 20: Loss vs. Epochs with Bal- Fig. 21: Loss vs. Epochs under
anced Data in Test-bed. Cases 1-3 with IID Data.

often imbalanced, and significantly varies with time and space
on the workers. We adopt three different cases of data amount
distributions to simulate the data imbalance. (1) Case 1 (balance):
We allocate the same amount (e.g., 6,000) of training data among
the ten workers; (2) Case 2 (weak imbalance): There is little
difference in the amount of data among workers (e.g., 4,000-
8,000); (3) Case 3 (strong imbalance): The amount of data on
these workers varies greatly (e.g., 1,000-11,000). Second, different
categories of data distributions, i.e., [ID and non-IID, among the
workers also emerge different effects on the performance of model
training. For example, in the case of IID, each worker has all
categories of data samples (e.g., 10 classes), but in the case of
non-IID, each worker may have only part of categories (e.g., 5
classes). We adopt four different cases to verify the effect of data
distributions on model training, including IID data and the three
different levels of non-1ID data. I): Each data sample is randomly
assigned to a worker, thus each worker has uniform (but not full)
information, i.e., [ID data; II): Each worker has 5 categories of
data samples; III): Each worker has 2 categories of data samples;
IV): Each worker only has 1 category of data samples.

4.4.2 Testing Results

In the first set of experiments, we test the balanced and uniform
data with CNN training over FMNIST and CIFARI10, respectively.
We run two groups of experiments with 2,000 training epochs. In
Figs. 17-18, the training performance (i.e., loss and accuracy) of
AAFL is very close to that of ADP-FL and much better than that
of AFO. For example, given 2,000 epochs in CNN training over
the FMNIST dataset, the loss value of AAFL is 0.3919, while
that of ADP-FL and AFO is 0.3376 and 0.6375, respectively.
Accordingly, the training accuracy of AAFL is about 86.4%, and
that of ADP-FL and AFO is about 87.9% and 75.2%, respectively.
Thus, our proposed mechanism can improve the training accuracy
by about 11% compared with AFO. Besides, we also observe the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

%
o
.
%

7))

-
N

PSS
w

Fig. 22: Training Accuracy under Fig. 23: Training Time under Cas- Fig. 24: Network Bandwidth un-

Cases 1-3 in Test-bed. es 1-3 in Test-bed.

w
o
IS
TrrrTIIT—|

5

35

- P
S

"y

3 Feaaaannnr]

¥ isazrrecemnan

¢
&
3
x
Y
e
SBano

Hebie'f

1A
1.0
0.5 7N

40

I} 11l v

10 20 30
Epochs (x100) Cases

Fig. 26: Loss vs. Epochs of Three

Solutions under Case II. Cases I-1V in Test-bed.

performance of DRL training on the test-bed, including training
loss and reward. After less than about 30 episodes, the training
loss becomes stabilized, which is shown in the left plot of Fig. 5.
It means that the DRL agent learns to adapt to the FL environment.
By the right plot of Fig. 5, we observe the change of reward with
the increasing of epochs in one DRL training episode. Specifically,
the reward value also increases with the epochs and gradually
tends to be stable. The two figures show that a better policy can be
learned to achieve a better reward by DRL training in the test-bed.

In the second set of experiments, we observe the performance
of model training (CNN over FMNIST) under three different
distributions of data amount (cases 1-3). In each case, we run
the ADP-FL algorithm with 1,000 training epochs as baseline.
Fig. 20 shows that more training epochs (about 2,195) are needed
by AAFL to reach the loss value of the baseline under case 3.
Moreover, AFO needs 9,199 training epochs to reach the same
performance of training loss. That’s because the server only
aggregates the updated local model from the arbitrary one worker
at a time in AFO. In other words, AFO needs 9 training epochs
compared with ADP-FL, while AAFL only needs 2Xx epochs
compare with the baseline. The training loss of AAFL under the
three different cases is shown in Fig. 21. Because AAFL can
efficiently alleviate the problem of synchrnoization barrier caused
by imbalanced data. The results show that the performance of
training loss under cases 2 and 3 (imbalanced data) is very close
to that of case 1 (balanced data).

We also observe the other performance metrics of training,
such as accuracy, time and bandwidth, under the cases 1-3. Fig.
22 shows the training accuracy after 1,000 training epochs under
different cases. In AAFL, more updated models (o« > 0.1) from
workers are involved in the model aggregation than that of AFO
(v = 0.1) in each epoch. In each case, AAFL always achieves

Fig. 27: Training Accuracy under Fig. 28: Training Time under Cas-

14

Loss

Case Ill

0.5{ |~ Case I

[=-= Casel

Y

27\

10 20 30 40 50
Epochs (x100)

-
N
w

Fig. 25: Loss vs. Epochs under

der Cases 1-3 in Test-bed. Case I-IV with Balanced Data.

%

222
B NN\
V2227222

DP-F]
AFL

> >

\
\
7
|
§
\

r
7
>
L3
U
N

7\ . N | 7N [7A T 7R
I m v

Cases

Fig. 29: Network Bandwidth un-
der Cases I-IV in Test-bed.

<

es I-IV in Test-bed.

better accuracy compared with AFO, and similar performance
of ADP-FL. As shown in Fig. 23, our proposed mechanism
achieves the minimum training time while reaching the same
training performance (loss and accuracy) of the baseline among
the three solutions. For example, for case 1, the training time of
AAFL is about 11,244s, while that of ADP-FL and AFO is about
22,324s and 36,483s, respectively. In other words, AAFL can
reduce the training time about 49.6% and 69.2% compared with
ADP-FL and AFO, respectively. We test the network bandwidth
comsumption of three solutions. The server only aggregates one
arbitrary local updated model from the workers. Fig. 24 shows
that the bandwidth consumption of AFO is the least among the
three schemes. However, the bandwidth consumption of AAFL is
very close to that of AFO. For example, in case 2, the bandwidth
consumption of AAFL is about 1.73Gb, while that of AFO and
ADP-FL is about 2.51Gb and 3.79Gb, respectively. In other words,
AAFL can improve the performance of bandwidth consumption by
about 54.3% compared with ADP-FL.

The last set of experiments tests the performance of model
training (CNN over FMNIST) under four different categories of
data distributions (cases I-IV). We first test the training perfor-
mance of AAFL under four different cases of data categories
distribution (cases I-IV). Fig. 25 shows that the distribution of data
categories will emerge the effects on the speed of model training.
For example, the training loss of the experiment under case IV
by running 5,000 epochs is about 0.4138, while that of case I is
about 0.8272. In other words, the training performance with non-
IID data is worse than that of IID data. Then, we test the training
performance under case II. As shown in Fig. 26, the training loss of
AAFL is very close to that of ADP-FL. For example, given 4,000
epochs, the loss value of AAFL and ADP-FL is about 0.6372
and 0.6268, respectively. However, the loss value of AFO has no

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

obvious downward trend and tends to be stable. Thus, the solution
AFO cannot well handle non-IID training data, but our proposed
AAFL can well handle it.

Besides, the training performance (accuracy, time and band-
width) of three solutions under cases I-IV is shown in Figs. 27-29.
Given 1,000 training epochs, we test the training accuracy under
cases [-IV. As shown in Fig. 27, the training accuracy achieved by
AAFL is always better than AFO in various cases. For example,
the accuracy of AAFL is about 68.9% under case III, while
the accuracy of ADP-FL and AFO is about 72.6% and 23.5%,
respectively. In other words, our proposed mechanism can improve
the training accuracy by about 45% compared with AFO. We then
evaluate the training time of ADP-FL, AAFL and AFO under cases
I-IV. Our proposed solution can efficiently avoid the straggler
problem caused by ADP-FL. Fig. 28 shows that the training time
required by AAFL is always less than that of ADP-FL in each
case. For example, the required training time by AAFL is about
14,913s under case II, while that of ADP-FL and AFO is 29,684s
and 40,394s, respectively. Thus, RE-AFL can reduce the training
time by about 49.8% and 63.1% compared with ADP-FL under
Case II. Finally, we test the bandwidth consumption of the three
solutions under cases I-IV. As shown in Fig. 29, the bandwidth
consumption of AAFL is much less than that of ADP-FL, although
it is slightly larger than that of AFO. For example, the bandwidth
consumption of AAFL is about 2.07Gb under case I, while that of
ADP-FL and AFO is about 2.85Gb and 1.78Gb, respectively. That
means AAFL can improve the network bandwidth by about 27.3%
compared with ADP-FL. In conclusion, our proposed mechanism
achieves better performance (e.g., loss, time and bandwidth) of
model training compared with the benchmarks under different
cases of data distribution.

5 RELATED WORKS

Recently, federated learning (FL) [42] has been widely mentioned
and studied in both academia and industry fields.

One research area related to FL is distributed machine learn-
ing (DML) through worker machines and parameter servers [8].
Bao et al. [43] propose an online algorithm for scheduling the
arriving jobs and deciding the numbers of concurrent workers
and parameter servers for each job over its course, so as to
maximize the overall utility of all jobs. Ho et al. [44] design a
parameter server system which maximizes the time computational
workers spend doing useful work on algorithms for DML, and
the system followed a Stale Synchronous Parallel (SSP) model of
computation. The authors [45] propose a parameter server based
distributed computing framework for training large-scale deep
neural networks. Besides, the authors introduce a new learning
rate modulation strategy to counter the effect of stale gradients and
propose a new synchronization protocol that effectively bound the
staleness in gradients, improve runtime performance and achieve
good model accuracy.

The above works mainly study efficient solutions of DML in
datacenters. Under this scenario, shared storage is usually adopted.
But in edge computing, no storage will be shared among edge
nodes. The worker machines will not keep persistent data storage,

15

but fetch the data from the shared storage at the beginning of the
learning process. As a result, the data samples on different workers
are usually IID in datacenters.

In federated learning, the data are collected at the edge directly
and stored persistently at edge nodes, thus the data distribution at
different edge nodes is usually non-IID and imbalanced, which is
different from DML in datacenters [46]. Smith ef al. [12] show
that multi-task learning is naturally suited to handle the statistical
challenges of this setting, and propose a novel systems-aware
optimization method that is robust to practical systems issues.
Our method and theory consider issues of high communication
cost, stragglers, and fault tolerance for distributed multi-task learn-
ing. The authors [34] propose an asynchronous and distributed
machine learning framework based on the emerging serverless
architecture, with which stateless functions can be executed in
the cloud without the complexity of building and maintaining
virtual machine infrastructures. Shi et al. [47] merge some short
communication tasks into a single one to reduce the overall
communication time and formulate an optimization problem to
minimize the training iteration time. The authors [48] introduce a
new and increasingly relevant setting for distributed optimization
in machine learning, where the data for the optimization of training
are distributed over an extremely large number of nodes. However,
most of these solutions ignore the impact of limited resource
constraints on training performance, leading to massive resource
consumption on edge computing systems. Konevcny et al. [27]
proposed two ways to reduce the uplink communication costs. The
first one is structured updates, where they directly learn an update
from a restricted space parametrized using a smaller number of
variables, e.g., either low-rank or a random mask. The second is
sketched updates, where they learn a full model update and then
compress it using a combination of quantization, random rotations,
and subsampling before sending it to the server. Xie [20] proposes
a new asynchronous federated optimization algorithm. We prove
that the proposed approach has near-linear convergence to a global
optimum, for both strongly and non-strongly convex problems, as
well as a restricted family of non-convex problems.

Last but not least, some works [7], [18] similar to our research
will be introduced. The authors [7] perform FL efficiently while
actively managing workers based on their resource conditions.
Specifically, the proposed solution solves a worker selection prob-
lem with resource constraints, which allows the server to aggregate
as many local updates as possible and to accelerate performance
improvement in ML models. Wang [18] propose an experience-
driven control framework that intelligently chooses the workers to
participate in each round of federated learning to counterbalance
the bias introduced by non-IID data and to speed up convergence
of model training. However, after selecting the subset of workers
to participate in the model training, the parameter server only
perform model aggregation while receiving all local updates from
these workers. In other words, the synchronous scheme is adopted
by these works for global updating on the server. Compared with
our proposed asynchronous scheme, these researches cannot solve
synchronization barrier problem which will lead to longer training
time and worse training performance under given resource budget.

To our best knowledge, we are the first to address the problem

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

of determining the number of received local updates from the
workers to optimize the training performance of learning tasks,
with a given resource budget for federated learning in edge
computing systems.

6 CONCLUSION

In this paper, we present the adaptive asynchronous federated
learning (AAFL) mechanism for edge computing, and analyze the
convergence bound. The adaptive asynchronous federated learning
with resource constraints (AAFL-RC) problem is formulated for
minimizing the completion time of model training. We further
design experience-driven algorithms based on deep reinforcement
learning (DRL) to adaptively determine the optimal values of
parameters in AAFL for single learning task and multiple learning
tasks, respectively. The simulation and experimental results show
that AAFL can achieve significantly higher accuracy and less
completion time of model training under resource constraints,
compared with the existing solutions. In the future work, we will
study the multiple dependent learning tasks in the edge computing
system.

ACKNOWLEDGMENT

This article is supported in part by the National Science Foun-
dation of China (NSFC) under Grants 61822210, 61936015, and
U1709217; by Anhui Initiative in Quantum Information Technolo-
gies under No. AHY150300. (Corresponding authors: Hongli Xu;
Yang Xu.)

REFERENCES

[11 A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-
based systems for health monitoring and prognosis,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 1, pp. 1-12, 2009.

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.” in
Esann, 2013.

[3] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Towards an
intelligent edge: Wireless communication meets machine learning,” arXiv
preprint arXiv:1809.00343, 2018.

[4] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

[S] H.B.McMahan and D. Ramage., “http://www.googblogs.com/federated-
learning-collaborative-machine-learning-without-centralized-training-
data/,” Google, 2017.

[6] X. Wei, Q. Li, Y. Liu, H. Yu, T. Chen, and Q. Yang, “Multi-agent
visualization for explaining federated learning,” in Proceedings of the
28th International Joint Conference on Artificial Intelligence. AAAI
Press, 2019, pp. 6572-6574.

[71 T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in IEEE International
Conference on Communications (ICC). 1EEE, 2019, pp. 1-7.

[8] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in /1th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), 2014, pp.
583-598.

[9] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

16

S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated learning
for ultra-reliable low-latency v2v communications,” in [EEE Global
Communications Conference (GLOBECOM). 1EEE, 2018, pp. 1-7.

W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen,
“Internet of vehicles in big data era,” IEEE/CAA Journal of Automatica
Sinica, vol. 5, no. 1, pp. 19-35, 2017.

V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4424-4434.

N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “Enorm:
A framework for edge node resource management,” [EEE transactions
on services computing, 2017.

M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” in Advances in
Neural Information Processing Systems, 2014, pp. 19-27.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205-1221, 2019.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273-1282.

H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in /[EEE Conference on
Computer Communications. 1EEE, 2020, pp. 1698-1707.

Y. Chen, Y. Ning, and H. Rangwala, “Asynchronous online federated
learning for edge devices,” arXiv preprint arXiv:1911.02134, 2019.

C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
private asynchronous federated learning for mobile edge computing in
urban informatics,” IEEE Transactions on Industrial Informatics, 2019.
W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. A. Jarvis, “Safa: a semi-
asynchronous protocol for fast federated learning with low overhead,”
IEEE Transactions on Computers, 2020.

H. Lim, D. G. Andersen, and M. Kaminsky, “3lc: Lightweight and
effective traffic compression for distributed machine learning,” arXiv
preprint arXiv:1802.07389, 2018.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” arXiv preprint
arXiv:1812.06127, 2018.

L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade. Springer, 2012, pp. 421-436.

S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu,
“Asynchronous stochastic gradient descent with delay compensation,” in
International Conference on Machine Learning, 2017, pp. 4120-4129.
J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception. Elsevier, 1992, pp. 65-93.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep re-
inforcement learning,” in International conference on machine learning,
2016, pp. 1928-1937.

L. Jacob, J.-p. Vert, and F. R. Bach, “Clustered multi-task learning:
A convex formulation,” in Advances in neural information processing
systems, 2009, pp. 745-752.

Y. Zhang and D.-Y. Yeung, “A convex formulation for learning task
relationships in multi-task learning,” arXiv preprint arXiv:1203.3536,
2012.

A. R. Gongalves, F. J. Von Zuben, and A. Banerjee, “Multi-task sparse
structure learning with gaussian copula models,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 1205-1234, 2016.

M. A. Birck, U. B. Correa, P. Ballester, V. O. Andersson, and R. M. Arau-
jo, “Multi-task reinforcement learning: an hybrid a3c domain approach,”
2017.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

H. Wang, D. Niu, and B. Li, “Distributed machine learning with a server-
less architecture,” in IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1288-1296.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and
J. Passerat-Palmbach, “A generic framework for privacy preserving deep
learning,” arXiv preprint arXiv:1811.04017, 2018.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in JEEE Conference on Com-
puter Communications. 1EEE, 2018, pp. 63-71.

R. Zhang, F. R. Yu, J. Liu, T. Huang, and Y. Liu, “Deep reinforcement
learning (drl)-based device-to-device (d2d) caching with blockchain and
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 19, no. 10, pp. 6469-6485, 2020.

Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning
based offloading game in edge computing,” IEEE Transactions on Com-
puters, vol. 69, no. 6, pp. 883-893, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., ‘“Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026-8037.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in IEEE Conference on Computer Communi-
cations. 1EEE, 2018, pp. 495-503.

Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml via
a stale synchronous parallel parameter server,” in Advances in neural
information processing systems, 2013, pp. 1223-1231.

S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study,” in IEEE 16th
International Conference on Data Mining (ICDM). 1EEE, 2016, pp.
171-180.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

S. Shi, X. Chu, and B. Li, “Mg-wfbp: Efficient data communication
for distributed synchronous sgd algorithms,” in IEEE Conference on
Computer Communications. 1EEE, 2019, pp. 172-180.

J. Koneény, B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” arXiv preprint arX-
iv:1511.03575, 2015.

Jianchun Liu received B.S. degree in 2017 from
the North China Electric Power University. He is
currently a Ph.D. candidate in the School of Data
Science, University of Science and Technology
of China (USTC). His main research interests
are software defined networks, network func-
tion virtualization, edge computing and federated

17

Hongli Xu (Member, IEEE) received the B.S.
degree in computer science from the University
of Science and Technology of China, China, in
2002, and the Ph. D degree in computer soft-
ware and theory from the University of Science
and Technology of China, China, in 2007. He
is a professor with the School of Computer Sci-
ence and Technology, University of Science and
Technology of China (USTC), China. He was
awarded the Outstanding Youth Science Foun-
dation of NSFC, in 2018. He has won the best
paper award or the best paper candidate in several famous conferences.
He has published more than 100 papers in famous journals and con-
ferences, including the IEEE/ACM Transactions on Networking, |IEEE
Transactions on Mobile Computing, IEEE Transactions on Parallel and
Distributed Systems, Infocom and ICNP, etc. He has also held more than
30 patents. His main research interest is software defined networks,
edge computing and Internet of Thing.

Lun Wang received the B.S. degree in 2019
from the University of Electronic Science and
Technology of China. He is currently pursuing his
M.S. degree in the School of Computer Science
and Technology, University of Science and Tech-
nology of China. His research interests include
mobile edge computing and federated learning.

Yang Xu is currently an associate researcher in
the School of Computer Science and Technology
at University of Science and Technology of Chi-
na. He got his Ph.D. degree in computer science
and technology from University of Science and
Technology of China in 2019. He got his B.S.
degree in Wuhan University of Technology in
2014. His research interests include Ubiquitous
Computing, Deep Learning and Mobile Edge
Computing.

Chen Qian received the B.S. degree from Nan-
jing University in 2006, the M.Phil. degree from
The Hong Kong University of Science and Tech-
nology in 2008, and the Ph.D. degree from The
University of Texas at Austin in 2013, all in
computer science. He is currently an Assistan-
t Professor with the Department of Computer
Engineering, University of California at Santa
Cruz. His research interests include comput-
er networking, network security, and Internet of
Things. He has authored over 60 research pa-
pers in highly competitive conferences and journals. He is a member of
the ACM.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL., NO., DEC. 2020

Jingyang Huang received the B.Eng. degree
from Anhui University, China in 2017, and he is
currently pursuing the Ph.D. degree at School of
Cyberspace Security from University of Science
and Technology of China. His research inter-
ests lie Human-computer interaction, Wireless
sensing, Wireless communication, and Machine
learning.

He Huang is currently a professor in the School
of Computer Science and Technology at Soo-
chow University, P. R. China. He received his
Ph.D. degree in School of Computer Science
and Technology from University of Science and
Technology of China (USTC), in 2011. His cur-
rent research interests include traffic measure-
ment, computer networks, and algorithmic game
theory. He is a Member of both IEEE and ACM.

18

