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Abstract—Under the paradigm of edge computing, the enormous data generated at the network edge can be processed locally. To make
full utilization of these widely distributed data, we focus on an edge computing system that conducts distributed machine learning using
gradient-descent based approaches. To ensure the system’s performance, there are two major challenges: how to collect data from multiple
data source nodes for training jobs and how to allocate the limited resources on each edge server among these jobs. In this paper, we
jointly consider the two challenges for distributed training (without service requirement), aiming to maximize the system throughput while
ensuring the system’s quality of service (QoS). Specifically, we formulate the joint problem as a mixed-integer non-linear program, which is
NP-hard, and propose an efficient approximation algorithm. Furthermore, we take service placement into consideration for diverse training
jobs and propose an approximation algorithm. We also analyze that our proposed algorithm can achieve the constant bipartite
approximation under many practical situations. We build a test-bed to evaluate the effectiveness of our proposed algorithm in a practical
scenario. Extensive simulation results and testing results show that the proposed algorithms can improve the system throughput 56%-69%

compared with the conventional algorithms.

Index Terms—Edge computing, model training, job assignment, resource allocation, service placement

1 INTRODUCTION

ITH the advent of paradigms like the Internet of Things
W (IoT), social networking, smart city and industry 4.0,
data will be abundantly available [2]. Cisco, for example,
estimates that the Internet of Things (IoT) alone will generate
over 400ZB data annually by 2020 [3]. The majority of these
data is generated at the network edge, where the working
world of devices, sensors, actuators, and other IoT devices are
coming into online every day.

To extract useful information from the collected data of
various applications, machine learning (ML) methods are
often adopted. For example, Google Cloud Speech is powered
by the ML framework, TensorFlow [4], with the public data
from its users. Since training a machine learning model is
resource-intensive, it is naturally required to send the data to
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the remote cloud with sufficient resources for model training
[5] [6]. However, this training scheme has two main disad-
vantages. On one hand, due to the limited bandwidth of the
wide area network (WAN), it will introduce heavy burden to
the network if large amounts of data are transmitted through
WAN, resulting in undesired latency. On the other hand,
transmitting data through WAN may lead to privacy leakage,
which contradicts with the increasing concern about users’
data privacy. Therefore, it is impractical and often unnecessary
to send the raw data to the remote cloud for model training.

Edge computing [7], as a new computing paradigm, has
emerged to move data and service functions from the remote
cloud to the network edge. As a result, data can be pro-
cessed locally on edge servers, such as base stations or home
gateways. Compared to cloud computing, edge computing
has two significant advantages. First, since the raw data are
only transmitted to the nearby edge servers, ie., without
transmitting to the remote cloud, the latency, as well as the
network overhead (e.g., bandwidth consumption) is reduced.
Second, as the raw data no longer need to be transmitted over
WAN, user privacy can be abundantly preserved [8].

Thus, it is an attractive way to train the model locally
under the edge computing paradigm. Some previous works
[9] [10] mainly focus on how to train the machine learning
models only with the local data. However, the amount of
data on a single device is often too small to make a model
reach desired accuracy. Thus, data from different devices
are used to train a mutual model, and model training is
often performed in a distributed manner. In a practical edge
computing system, there are often multiple training tasks and
most data source nodes such as cameras are not equipped with
sufficient computation capacity. Even though the computation
capacity of some devices (e.g., mobile phones) is sufficient to
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perform the distributed training tasks [11], they might still
expect their data to be processed on the edge servers for
various concerns such as battery life. Therefore, it is often
required to collect data from the geographically distributed
data source nodes (e.g., surveillance cameras) to edge servers
for a training task. We consider the scenario where workers,
deployed on the edge servers, collect the data and train the
model in a distributed scheme.

We take the gait recognition application as an example.
Basically, a gait recognition application consists of two tasks:
collecting data from multiple sensors (e.g., cameras, ultrasonic
sensors) to edge servers and training the personal gait models.
In practice, different training jobs will be posted by users.
For example, the face or gait recognition applications usually
update models using fresh data from data nodes, so that they
can provide services with high accuracy to adapt to the new
environment. The face recognition model for face recognition
for newcomers’ indoor position tracking needs to be retrained
periodically using recently collected data. However, due to
limited resources (e.g., memory, CPU, bandwidth) in edge
computing, it may be impossible to serve all the training jobs
simultaneously. Otherwise, the training delay will be large or
even unacceptable.

We expect to maximize system throughput by training
more machine learning models. There are two critical chal-
lenges for job admission decisions. On the one hand, due to
the limited bandwidth resources of edge servers, it may be
difficult to collect the raw data of all training tasks effectively.
Thus, the first challenge is how to admit more training re-
quests with bandwidth constraints on edge servers. On the
other hand, when we try to admit a model training job,
we will deploy workers on some edge servers. Since some
training tasks may be performed on an edge server in parallel,
the limited resources (e.g., CPU and outbound bandwidth)
of an edge server have to be shared among several tasks.
Inappropriate resource allocation may lead to a long latency of
some jobs, decreasing the system’s QoS. For example, before
tracking the newcomers, we need to allocate resources to
retrain or fine-tune to recognize newcomers with a certain
accuracy. Otherwise, failure to complete model training on
time will result in loss position tracking.

We further consider a more practical scenario, in which
training a job requires some specific services. For example,
when fine-tuning the face recognition model for indoor posi-
tion tracking on a certain edge server, the pre-trained model
will be updated by the collected data under the training
environment. Thus, the pre-trained model and training en-
vironments need to be placed in this edge server. Otherwise,
the fine-tuning process will not be executed.

In this paper, we study how to efficiently implement the
distributed model training by joint data collection and re-
source allocation in edge computing. The main contributions
of this paper are summarized as follows:

e We jointly consider the data collection and resource
allocation problem and comprehensively formalize this
problem to maximize the system throughput while
ensuring the system’s QoS.

e We develop an efficient algorithm based on reformu-
lation and randomized rounding, and prove the ap-

2

proximation performance based on the central limit
theorem.

o We further take the service placement into our prob-
lem, and propose an efficient algorithm based on
filter and rounding method to maximize the system
throughput. Our algorithm guarantees an approxima-
tion ratio of 310% + 3 for system throughput, where
n is the number of devices in the system, a is a
value depending on system capacity and the minimum
resource requirement, with o > 1 under most practical
situations.

e We implement our proposed algorithms on a test-
bed platform. Extensive simulations are conducted to
validate high efficiency of the proposed algorithms.
The simulation results show that our proposed algo-
rithms can improve the system throughput 56%-69%
compared with the existing algorithms.

2 PRELIMINARIES
2.1 Distributed Machine Learning (DML)

Machine learning has been successfully adopted in many
applications such as image recognition [12], natural language
processing [13], and recommendation systems [14]. However,
with more and more data, the size of training data set has
grown, which may lead to unacceptable training time by
traditional solutions. Moreover, a growing number of latency-
sensitive applications require training models in a fast man-
ner. Due to the limited bandwidth, centralized model training
cannot meet the latency requirements of these applications. As
a result, training models in a distributed scheme is proposed
[15].

In edge computing, enormous data are being generated by
a large number of IoT devices and social networking appli-
cations. Obviously, it is unrealistic to store all the data on a
single edge server. Thus, we adopt data parallelism for model
training in this paper. Moreover, we do not focus on how to
train the machine learning model. For ease of description, we
take advantages of the widely adopted stochastic gradient
descent (SGD) method and Parameter Server (PS) framework
[16]. We should note that the proposed algorithms can be
easily integrated into other training methods and frameworks.

We assume that one or several parameter servers are
responsible for the global model update/maintenance and
worker coordination [16]. When there are multiple parameter
servers, the model parameters are usually divided evenly
among them. Parameter servers can be implemented either
at the edge or on the cloud. During the training, the workers
compute the local gradients and send them to the parameter
servers in each global aggregation iteration. The parameter
servers update the global parameters using the gathered lo-
cal gradients, and send the updated parameters back to the
workers.

2.2 System Model

For ease of expression, we list some important notations in
Table 1. As illustrated in Fig. 1, there are a set of data nodes
U = {ur,ua, - ,un} withn = ||, and a set of edge servers
V = {v1,v2, -, with m = |V|. Every data node u; € U
generates and uploads data at a fixed rate u¢. To provide
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Fig. 1. The System Model

a sufficient amount of data for training a local model, data
node u; € U will generate data for a duration 7; continuously.
We consider four type of resources, inbound bandwidth, out-
bound bandwidth, computation capacity, and memory space,
on an edge server. For each edge server v; € V, the amount
of its available type-y resource is 7}. For example, the amount
of inbound bandwidth, computation capacity and outbound
bandwidth of edge server v; is denoted as 7";1, r§ and r re-
spectively. There is a set of job requests ® = {¢1, ¢2, - -, ¢q}
with ¢ = |®|. Before knowledge inferences, the model should
be trained to achieve a certain accuracy. We hope that each
job request ¢y should be completed within an upper bound
Tk That is, the completion time of job ¢ should not exceed
Ty, for real-time requirement [17]. In practice, the data nodes
usually are sensors (e.g., cameras, ultra-sonic sensors). As a
result, each data node only generates one kind of data for
a specific job [18]. For example, cameras only provide video
streams. We assume that each data node can only serve one
job request, and use C}, to denote the data nodes serving job
request ¢y. Furthermore, we discuss the solution for each data
node serving multiple jobs in Section 3.5.

To facilitate these job requests, edge servers will collect the
data and train the model (via virtual machines or containers).
Due to some factors such as distance, each data node u; has its
own feasible edge servers. Specifically, we denote the feasible
edge servers of data node u; as V;. During data collection,
each data node will only forward its data to one of its feasible
edge servers for model training. We call that each data node
will be associated with an edge server. The subset of candidate
data nodes that can be associated with v; is denoted as /. We
define the degree B(u;) of data node nodes u; as the number
of its feasible edge servers |V;|. Similarly, the degree B(v;) of
edge server v; is the number of its candidate data nodes |I/;|.

We collect all job requests in the system and make a
unified decision. Some of the job requests will be admitted
by the system and allocated a certain amount of resources.
The remaining job requests will be dropped temporarily due
to the lack of resources. After all the admitted job requests
are completely executed, we will make a decision for the
remaining and the newly-arrived job requests.

2.3 Data Collection

We use binary variable gy, to represent the admission decision
of job request ¢;. That is, if y, = 1, it will be admitted and

3
TABLE 1
Important Notations
U ={ui,u2, - ,un} | the set of data nodes
V = {v1,v2,--- ,um} | the setof edge servers
® = {¢1,¢2,--- ,Pq} | the set of job requests
_ the feasible edge servers
vicV of data node u;
U cu the data nodes that can be
J associsated to edge server v;

the data nodes that serve
CpcU job request ¢y,
rd input data bandwidth of edge server v;
rs computation capacity of edge server v;
r;? communication capacity of edge server v;
ud uploading rate of data node u;
T upper bound completion time of ¢y,
fr mini-batch size of job request ¢y,

the number of float operations
gk for processing one mini-batch

of job request ¢y,

parameter size (or the gradient size)
h .

of job request ¢y,

served by the system. Otherwise it is rejected. Rejected job
requests will be resubmitted or queued. We use z] € {0,1}
to model the data node association. For data node u; € U, if
x] =1, a worker will be deployed on edge server v; to collect
its data and conduct distributed model training. Additionally,
each data node should associate with only one edge server
due to the limited storage resource on edge servers and the
feature of data nodes. Even if only partial data are forwarded
to an edge server, we still need to place the entire service on
this edge server. Redundant placement of the same service
will make limited resources more scarce. Each data node, e.g.,
tiny sensors, generates a specific type of data that usually can
be processed together. Then, the amount of collected data on
edge server v; for job request ¢y, is

S oalud T, 1)

u; €CY,

2.4 Resource Allocation

During the training process, the resources on each edge server
have to be shared among several jobs. We denote the amount
of type-y resource on edge server v; allocated for job request
@1, as r;’k For example, we allocate computation resource of
75, and the outbound bandwidth resource of rj , on edge
server v; for job ¢5. We also denote the time for training the
model of job qbk on edge server v; as t; ;, which consists of the
computing time t » and the communication time ¢7'};.

The time for tralmng the mini-batches adds up to the
computing time. The mini-batch size of job request ¢ is
denoted as fj, and the number of float operations for pro-
cessing one mini-batch of job request ¢ is denoted as gj.
In practice, machine learning models are usually non-convex,
and the required number of training epochs for convergence
can not be estimated. However, different from experimental
models, production models have been tested many times
under different situations and the hyper-parameters have
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been tuned well during the experimental phase [19]. In the
edge computing scenario, model training jobs usually are
fine-tuning or incremental learning processions which can
achieve the ideal training effect in a few epochs, denoted

by x%. The number of iterations during one epoch can be
k

derived as % for job request ¢, on edge server v;. By our

survey and experimental results, the computing time has
linear relationship with the number of float-point operations
[20] and is inversely proportional to computation resource. We
calculate the computing time of job ¢;, on edge server v; as

o — DY - gy, - Xk
’ e r]c" k
Moreover, we discuss another method to estimate the compu-
tation resource requirement in Section 3.5.
We use hy, to denote the parameters’ size (or the gradients’
size) of job request ¢. Suppose we perform global update
every Ej, iterations for job request ¢;. The numb]?r of com-

()

T . . . Dt
munication times during one epoch of job ¢y, is &7, onedge
server v;. We calculate the communication time of job request
¢ on edge server v; as

k
em D7 Xk hug
gk b
Ek:'fk'rj,k

®)

Thus, the total training time of job request ¢ on edge server
Vj is

tig = 1 + 157 @)
As a result, the completion time of job request ¢; can be
expressed as {, = maxy, ey t; k-

3 ALGORITHM DESCRIPTION

In this section, we define the Data collection and Resource
allocation Problem (DRP) for distributed machine learning
at the edge. Then, we design an efficient algorithm for this
problem and analyze the approximation performance of our
proposed algorithm.

3.1 Problem Formulation

To maximize the system throughput and ensure the system’s
QoS, we formulate the DRP problem as follows:

max Z Yk (5a)
¢red
st. Y @l =, Vop € D,u; €Cp (5b)
v; €V
> alud <rd, Yo; €V (5¢)
uy EU;
> <, Yo; €V (5d)
PLED
Z r?)k <rj, Yv; €V (5e)
P €D
t]kSTk; Vqﬁke@,vjev (5f)
Yr € {0, 1}, ng)k cd (5g)
x €{0,1}, Vu; €U,v; €V (5h)
S o e =0, Vu; €V, ¢ € © (5i)

4

Eq. (5b) ensures the dependence between the data nodes
association and job assignment. A job will be assigned if and
only if all of the corresponding data nodes are associated.
Moreover, due to the binary decisions of job assignments, the
sum terms in Eq. (5b) indicate that each data node will be
associated to only one edge server. Eq. (5¢) indicates that the
total collection rate on each edge server should not exceed
its inbound bandwidth. Eqgs. (5d) and (5e) ensure that the
allocated resources for the admitted job requests should not
exceed the resource capacity on each edge server. Eq. (5f)
states that the completion time of each job should not exceed
its upper bound. Our objective is aim to maximize the system
throughput in Eq. (5a).

Theorem 1. The DRP problem is NP-hard.

The DRP problem has been formulated as a mixed integer
non-linear program in Eq. (5). Intuitively, if the data nodes
and edge servers are regarded as items and knapsacks, the
DRP problem is similar to multiple knapsack problem (MKP).
However, there are basically two different points between
these two problems even if we ignore the resource allocation
in DRP. On one hand, each data node can be associated with
only one subset of edge servers in DRP, while each item can
be put into any knapsack in MKP. On the other hand, for
all the data nodes of a job request, their association is not
independent. That is, either all of them are associated or none
of them is associated. We consider a special case of DRP, in
which we ignore the upper bound of completion time for each
job request ¢y, by setting 75 as infinite. We assume each job
request has only one data node, which can be associated to
all the edge servers. As a result, the simplified version of DRP
becomes MKP, which is NP-hard. Since MKP is a special case
of DRP, the DRP problem is NP-hard.

Compared to the optimization problem in cloud comput-
ing, network topology and the effect of limited resources make
our problem difficult. Specifically, due to the locally connected
wireless network and limited computation resource, we need
to make a decision of data node association rather than
collecting all data to the cloud.

3.2 Relaxation and Reformulation

To circumvent the NP-hardness of the DRP problem, we relax
the integer constraints Egs. (5g) and (5h) as

Yk € [07 1]7v¢k cd (6)
x) € 10,1),Yu; €U, v; €V @)

In a practical DML system, the training time consists of
communication time and computation time. We introduce the
system-wide configurable coefficient € € (0, 1), which indi-
cates the ratio of communication time to the total completion
time of a job. To facilitate the non-linear constraints in Eq. (5f),
we transform them into two sets of linear sub-constraints with
the help of € as follows:

;%SETk7V¢k€@70jEV 8)
tjpk < (1= €)1, Yoy, € D05 €V 9)
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Combining Egs. (2) and (3), the above two equations can be
transformed into

% <er,Vor € ®,v; €V (10)
ljfj«? < (1—e)m,Vop € B0, €V (1)

They are equivalent to
Dixrhie — emiEy firl ), <0Vgp € ®,v; €V (12)
D;“gk)(k — (=) frrf) <0,Y9r € v, €V (13)

After relaxation and reformulation, we get the linear pro-

gram with respect to x, y, re, rb.

3.3 Approximation Algorithm

Given the problem instance I, we develop the rounding-based
algorithm (R-DR) in an iterative scheme for the DRP problem.
The proposed R-DR algorithm is formally described in Alg. 1.

At the beginning of each iteration, R-DR performs the
pruning operation on the instance I (Line 2) to immediately
reject those trivial job requests. We regard that job request ¢y,
is non-trivial if all the data nodes in C} meet the conditions
below. For each data node u; € C}, at least one edge server
v; € V; satisfies the bandwidth requirement, i.e., r;l > ud.
We remove a trivial job request and its data nodes from I.
The pruning operations are performed as follows (Lines 22-
31). For data node u; € U, we remove edge server v; from V;
and remove u; from U; if the edge server v; doesn’t meet its
bandwidth requirement u?, ie., r? < uf.

We define the degree of data node u; as the number of fea-
sible edge servers |Uf;|, denoted as B(u;). For job request ¢,
let Z/IJ’-§ denote the subset of data nodes that are associated with
edge server v;. For the data nodes in Z/l]k, ke{1,2,---,|9[},
we order them in the non-decreasing order of their degree.

Let u’? be the data node with the maximum degree in Z/{J"»C It
follows
> uf < (14)
wi€UE, B(ur) <B(u'k)
Xkhi > wlulT; — ereBr furl), <0 (15)

uiGM]’.‘,B(ui)SB(u’_’;)

> eludT; — (1 — &) frrS, <0 (16)
wi €U B(ui) <B(w)

9k Xk

We remove the data nodes in {u|u; € UJ, B(u;) > B(u'f)}
from U; and remove v; from their feasible edge server sets.
Next, we make a preliminary association for each data
node of non-trivial job requests (Lines 7-14). We construct
a linear program LP1l; and obtain an optimal solution
{Z,9,7°, %b}. The optimal (or fractional) solution may be in-
feasible for the integer constraints of the original problem. We
implement the association of data nodes with edge servers by
randomized rounding technique on the solution of LP1;. For
the data nodes in Cy, ¢, € ®, we regard g, as their priority
in the current iteration. In addition, we interpret the fractional
values if as probabilities that data node wu; will be associated
with edge server v;. For data node u; € U, we introduce the
independent discrete random variable ¢; € {1,2,--- ,m} and

5
Algorithm 1 R-DR: Rounding-based algorithm for DRP
Input: Initialize a DRP instance
1: while true do
2 PRUNE(]);
3 if ® = () then
4 The algorithm ends;
5: else
6: Construct LP1; as Relaxed DRP
7 Solve LP1; and get {Z, ¥, 7, Y
8 Set the priority of u; € Cj, as Jx;
9: Obtain & based on & by randomized rounding;
10: forv; € Vdo ‘
11: Set UJ/ — {ul|ul € Z/[j,(fg = ].},
12: Order U in non-increasing priority order;
13: Find v'; € U]} with minimum degree such that
Eq. (17) is satisfied;
14: Setz! « 1,u; € U ug > u'y;
15: for ¢, € ® do ‘
16: Set yp, <+ 1if Zvjev xz} =1,Vu,; € Cy;
17: if y, = 1 then
18: Update rj k,,r;?,k,vj € V proportionally to
satisfy Eq. (12) and Eq. (13);
19: Set ® «+ & — {¢r};
20: SetU < U — Cy;
21: Update I;
22: function PRUNE(/)
23: SetV, « V; — {Uj|’l}j S VZ',T'? < Uf},
24: SetlU; «+ Uy — {uilu; € Uy, rd < uf};
25: for Each job request ¢, € ® do
26: Set Ujk — {ul|ul S Uj,ui € Ok};
27: Order I/{]’-C in non-decreasing degree order;
28: Find u’f cU Jk with maximum degree such that Egs.
(14), (15) and (16) are satisfied;
29: Set UJ’-C — {u;lu; € Uf7ui > u’?};
30: Setuj<—Uj—lflf,V¢<—Vi—{vj},Vui65{7’?;
31: Set @ «+— & — {¢r}, U + U — CY if ¢y, is trivial;

Output: y, x, r¢, r°

probability distribution given by 27, i.e., Pr{e; = j} = &],j =
1,2,--- ,m;and Pr{e; =0} =1 — Zujev #]. Therefore, we
obtain the preliminary data node association based on {e;}.

At last, we adjust the association (Lines 15-20), as the
bandwidth constraint or/and the completion time constraint
may be violated. In order to derive a feasible association, we
denote the set of data nodes associated with edge server v;
as B} in the preliminary scheme and rank them in the non-
increasing order of their priorities. Let v'; be the data node
with the minimum degree in U/} such that

>

u €U, B(ui)>B(u' ;)

ud < rd (17)

Then, we only associate the data nodes in {u;ju; €
U}, B(ui) > B(u';)} with edge server v;. For a job request, if
all of its data nodes are associated, it is admitted. Furthermore,
to satisfy the completion time constraint, we update resource
allocation for those admitted jobs. Specifically, for each job, we
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allocate the minimum amount of resources which can meet the
completion time constraints. Finally, we remove the admitted
job requests with the corresponding data nodes from I and
update the available resources on each edge server.

Proposition 1. R-DR terminates in q iterations at most .

Proof. At the beginning of each iteration, the pruning op-
eration on I ensures that edge server v; € )V can cope
with the extreme situation in which all the candidate data
nodes from job request ¢, € ® are associated. Based on
the solution of LP1;, the data nodes of a job request
with the highest priority will always be associated in each
preliminary scheme. As a result, at least one job request
will be admitted in each iteration. Since there are totally ¢
job requests, the R-DR algorithm will terminate in at most
q iterations.

3.4 Theoretical Analysis

The iterative feature of Alg. 1 makes it difficult to derive the
approximation performance of system throughput directly.
We note that the job admission decision is made based on the
data node association, which enlightens us on performance
analysis through data node association. We first give the
Chernoff bound for probability analysis.

Theorem 2. (Chernoff Bound): Given n independent variables:

T1,T2,...,T,, where Va; € [0,1]. Let p = E[Y} ;" z;].
Then,

2
1)  Upper Tail: P[>z, > (1+€)u] < et ,Ve >0
2)  Lower Tail: Pr[Y0 2 < (1 —e)u] <e 7 V0 <e<

1

We denote the total data upload rate to edge server v; € V
by the preliminary scheme as the random variable

> ufpfe =4}

u; €U,

(18)

Here p{e; = j} is 1 if ¢; = j and 0 otherwise. The probability
that data node u; is associated with v; is denoted as 2. We
define y; = E(D;) and o; = Var(D;). According to the
Chernoff Bound Lower Tail, we obtain the probabilistic tail

estimation:
52

Pri{D; < (1- o)} <e = (19)

where 0 is an arbitrary value with 0 < § < 1. Eq. (19) gives an
upper bound on the probability that the data amount on edge
server v; does not exceed a certain fraction of its expectation
under the preliminary scheme.

We analyze the lower bound of system throughput. As-
sume that the number of data nodes n = || is large and the
data upload rate u¢ of u; is uniformly bounded. We suppose
that there exists a constant ¢ such that ] € [, 1—¢] is satisfied
for data nodes, which ensures the correctness of the central
limit theorem [21]. For example, if ¢ = 0, 2} € [¢,1 — £] can
be satisfied for all data nodes obviously. We conclude that
(Dj = p;)/0F ~ N(0,1).

Theorem 3. Our proposed algorithm can achieve the approxi-
mation performance of

1 n 1
(5 + om \/27‘(‘77) 20)

The proof of Theorem 3 is showed in Appendix A

According to some previous work, there is no fully polyno-
mial time approximation scheme (FPTAS) even for MKP with
two knapsacks, denoted as 2-KP, unless P = NP [22]. The
authors [23] have proposed a polynomial-time algorithm with
approximation ratio of 3 as the latest heuristics algorithm.

Our R-DR algorithm can achieve the approximation factor of
(% + % - ﬁ) , where n denotes the number of data nodes

and 7 denotes the maximum number of data nodes that any
edge server can serve.

3.5 Discussion

In this section, we give some discussion to enhance the prac-
ticability and generality of our proposed algorithm.

In our DRP problem, each data node can serve only one
job request. In fact, if data nodes are enabled to serve multiple
jobs at the same time, our algorithm can still work with little
modification. Specifically, we use ®; to denote the job set
which data node u; can serve. Before Line 20 of the R-DR
algorithm, we need to remove the admitted job ¢, from P,
and judge whether ®; is empty or not. The modified part of
algorithm is shown as follows.

1: for u; € Cy do

2: Set &, + o, — {(bk},
3: if ®; = () then

4: SetU U —{u;};

That is, until a data node is no longer required by any job
request, we remove it from the unassociated data nodes set.
In the problem definition, we estimate the computation
resource requirement based on the given number of epochs for
model training. To be more general, we introduce a relaxed so-
lution for resource consumption estimation. The recent work
[24] gives a quantitative relationship among computation bud-
get, desired loss, model size and dataset size. This relationship
is only suitable for the natural language processing model,
but not fit for the general training model. We introduce a
new solution based on [24]. Given the desired loss Lj for
job request ¢y, the computation resource requirement can be

Cr
log =, where Cj7" and o are two experience

hyper-parameters related to the dataset size and model size of
¢x. In our problem, the computation resource requirement is

Cmin
D Zt4EXE which can be replaced by m We

simplified as

expressed by

note that Dy, gx, Xk and f}, respectively denote the amount of
collected data, the number of float operations for processing
one mini-batch, the number of training epochs, and the mini-
batch size of job request ¢y.

The expression of computing time of job request ¢; on
edge server v; in Eq. (2) can be modified accordingly as

szn 1
log - Ly,

th —

o = (21)

Tk
We notice that such replacement will not affect our algorithm
design and performance analysis.

4 THE CASE WITH SERVICE PLACEMENT

In many practical applications, job’s execution requires some
services (e.g., virtual environment, training models) on edge
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servers. The lack of required services will cause that some jobs
can’t be properly executed on edge servers. To fill this gap,
we jointly consider service placement and DRP for system
throughput maximization.

4.1 Problem Formulation

We consider the data collection, service placement and re-
source allocation (DSRP) for distributed machine learning. Let
S = {s1,82, -+, sp}, with p = |S|, denote the set of required
services in the system. Specifically, each job ¢; requires a
service sy, € .S, and each service s; occupies a memory space
57. Due to the limited memory space, an edge server can not
cache all services at the same time, and has to judiciously
decide which services will be placed. Particularly, a binary
variable zé € {0,1} denotes whether service s; is placed on
edge server v; or not. r7 denotes thw memory size for service
placement on edge server v;. We give the problem formulation
as follows:

max Z Yk (22a)
oLeD
s.t. Z x{ = Yk, Vor € ®,u; € Cy, (22b)
v; €V
z; > a:g, Vs; = 8¢, Ui € Ck (22¢)
> s <, Vv €V (22d)
s ES
Z xf ufl < r}i, Yv; €V (22e)
u; €U,
>, <, Yu; €V (22f)
uiel/{j
Z T?,j < 7’?, Yo; €V (22g)
u; €U,
tik < Tk, Vor € ®,v; €V (22h)
yr € {0, 1}, Vo € @ (22i)
x) € {0,1}, Vu; € U,vj €V (22j)
z5 € {0,1}, Vs, € S,v; €V (22k)
il >0, Vv, €V, ¢r € @ (221)

We note that some constraints in Eq. (22) are same as
those in Eq. (5). The main differences are as follows. Eq. (22¢)
denotes that edge server v; should cache service sy, if a data
node of job request ¢y, is associated with edge server v;. Eq.
(22d) ensures that the required storage for service caching
should not exceed the memory size of each edge server.

Theorem 4. The DSRP problem is NP-hard.

Proof. We consider a simplified version of DSRP, in which
there is no constraint on the memory size of each edge
server. Then, the simplified DSRP problem becomes the
DRP problem, which is NP-hard by Theorem 1. As a result,
DSRP is NP-hard too.

4.2 Algorithm Description

Due to the NP-hardness of DSRP, we propose a rounding-
based algorithm R-DSR for this problem. Our algorithm first

Algorithm 2 R-DSR: Rounding-based algorithm for DSRP

1: Step 1: Solving the Relaxed DSRP Problem
2: Construct LP2; as Relaxed DSRP;
3: Obtain the optimal solution {&, ¢, #°, PP, z};
4: Step 2: Determining Job Request Admission Using Ran-
domized Rounding
5: Derive an integer solution y by randomized rounding ;
6: Step 3: Determining Data Node Association and Service
Placement Using Filtering and Rounding
7. for each job ¢, in {¢r|Pr € @, 9 =1} do
8: Construct a new solution {«’, 2’} by Eq. (26);
9: Step 3.1: Filtering the fractional solution
10: Construct filtered feasible edge server set F; for data
node u; € Cy;
11:  Construct {”, 2"} by Eq. (29);
12: Step 3.2: Rounding the filtered solution
13:  while C # 0 do

14: Find edge node u; € Cj with the minimum associ-
ation cost ©; ;

15: Find the edge server v;(;) € F; with the smallest
placement cost s7;) ;

16: Set 20, < 1, #Y e

17: Set (', + Ci — u;;

18: for uy € Cj, do

19: if F; N Fy # () then

20: Set &V « 1;

21: Set Cy + Ci — uy/;

constructs a linear program as a relaxation of the DSRP prob-
lem. By the optimal solution of the relaxed DSRP problem, our
algorithm can derive the integral solution for job admission.
We should note that since there are three dependent variables
in problem formulation, the standard rounding method can
not directly solve our problem. To this end, we adopt the
Filtering-and-Rounding method [25] to jointly decide the data
node association and service placement. The R-DSR algorithm
is described in Alg. 2.

Our R-DSR algorithm first constructs a linear program as
a relaxation of the DSRP problem. By relaxing these assump-
tions in Egs. (22i)-(22k), data collection of each data node is
permitted to be splittable. We relax the integer constraints of
the DSRP problem as follows:

Yr € [07 1],V¢k cd (23)
z) €[0,1],Yu; €U,v; €V (24)
25 €00,1],Vs, € S,v; €V (25)

After relaxation and reformulation, we construct the linear
program LP2;. We can derive the optimal solution of LP2; as
{z,9,7°, P, 2} and the optimal result is > gned Uk As LP2;
is a relaxation of DSRP, 3°, .4 Uk is the upper-bound result
for DSRP.

In the second step, we derive the integral solution ¥, from
Y, using the randomized rounding method. For example, the
fractional solution of ¥, is 0.3. We randomly choose a value
from 0 to 1. Assume that the random value is 0.6, which is
larger than 0.3, the job will be admitted. If the value is 0.2, the
job will be rejected.
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Then, we use the Filtering-and-Rounding method [25] to
decide both the data node association and service placement
(Lines 6-21). Using this method, we derive the integral solu-
tion, denoted as {Z, z}.

For each job ¢, € ®, the cost of service placement is de-
noted as P(z) = }_, ¢y B7s] 2 and the cost of data node asso-

ciation is Q(x, z) = Zuleck Zv]ev (5dud+ s+ ?ng)xj
where the factors (3¢, s ]c, and B;’ denote the cost on
edge server v; of unit memory resource, unit inbound band-
width resource, unit computation resource and unit outbound
bandwidth resource, respectively. For example, we determine
ﬁ;j as the ratio of the optimal inbound bandwidth resource
cost to the edge server’s inbound bandwidth, that is, ﬁ]‘-i =

© 5
Epper Lueo;, Wit
4 .

" )
Additionally, we interpret the fractional values & as the
probability that data node w; will be associated with edge
server v;. Similarly, 2; denotes the probability that service
s; will be placed on the edge server v;. After we have
determined the admission of each job request, we re-calculate

the probabilities #'7 and 2’ ; as follows

S 3l
o=t =1 (26)
Yk Yk

The new fractional solution is denoted as {x’, z'}.

Filtering Step: In this step, we construct a feasible solution
by filtering [26]. Based on the fractional solution {x’, 2’}, we
define the fractional association cost for data node u; as:

0; = Z (ﬁdud"— i T ?7’3]-)3@’5
’U]‘GV

27)

To filter out a set of candidate edge servers for data node u;,
we fix a parameter A > (. Based on the association cost of
different edge servers, we construct a filtered feasible edge
server set F; C V; for data node u; as follows:

= {vj|2"] >0 B + + < (1+X2)6;} (28)

]1] ]'LJ

We derive another feasible fractional solution {x”, 2"} as

. 0, Vj ¢ Fz
173 _ .
Ty = z'?
> JEF; w7 Ui €L (29)
mo _ 1+,\ /!
2" =min{l, 2';

Rounding Step: This step will round {x”, 2"} to the feasible
integer solutions. For each admitted job ¢y, i.e., ¢ € {Pr|dk €
®, g, = 1}, we find an disassociated data node u; € C}, with
the smallest association cost. To place services for this data
node u;, we find the edge server v;(;) € F; with the smallest
placement cost. We then associate data node w; with edge
server v;(; and place service sy, on vj(;). If there exists a data
node uy which satisfies F; N Fy # (), we associate u; with
edge server v;(;). After that, we repeat the rounding process
until all data nodes in C}, are checked.

4.3 Approximation Performance Analysis

We analyze the approximation performance of the proposed
R-DSR algorithm. In Alg. 1, the R-DR algorithm adopts the
randomized rounding method to obtain the solution for data

8

node association x and the request admission decision vy is
derived from z. In Alg. 2, we use the randomized rounding
method to obtain the solution y for request admission, and
then determine the domain of . Finally, we get a feasible so-
lution {«, z} for data node association and service placement.
Thus, due to the difference between the order of we derive
the feasible solution for variables, approximation performance
analysis of the R-DR algorithm is not suitable for that of the
R-DSR algorithm.

For sake of brevity, Egs. (12) and (13) can be reformulated
as

k. Xkhe
R
etk Ey fi
9k Xk < yc

_IRAE
TA=-mfr — "
Combining Egs. (1), (22f) and (22g), it follows

Dk

Xrh

b
Z Z x] u <riv;,ey
=145 Y
e \uiecy N B
Z Z x]udT § 9k Xk <rfv; €V
¢r€P \u; €Ci N G)kak

The above equations can be expressed as

Jobo— b
E riw; <rjv; €V
uieL{j

j.c c .,
E rjw; <rjv; €V
u; €U,

where w? and w¢ denote these system settings.

wh — xehiuldT;

kB fr
c_ gexeudT;
(-

Assume that the minimum inbound bandwidth of all the
edge servers is denoted by 74, . We define r% . as the
minimum outbound bandwidth and rf,;, as the minimum
computation capacity of all the edge servers. We define a
constant « as follows:

u; € Ck (30)

u; € Ck (31)

. T‘d :
min
min{ -2,
k2

u; € Bj },
b
Tmin

a =min ¢ min{ ™= u; € U}, (32)

min{ =iz y; € U}
wf i K

To meet the conditions of the Chernoff Bound, we use « to
make the ¢ term be within [0,1] while maintaining resource
constraints. In general, the resource demand of a job request
will not exceed the edge server capacity. For example, the
data upload rate (e.g., 300Mbps [27]) does not exceed the edge
server’s inbound bandwidth (e.g., 10Gbps). Thus, we regard
a > 1 under many practical scenarios.

System Throughput: A fractional solution g, can be derived
by solving the relaxed problem LP2;. The result of LP2y,
denoted as Y, is the upper-bound result of the DSRP problem.
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We define a random variable ¢; to denote the admission
decision of job request ¢y, as follow:

1, with probability
Pk =
0, with probability 1 — 4,

The expected number of admitted job requests is:

E[Y ol = > Elpsl= > k<Y (33)
drLED prED prED
Combining Eq. (33) and the definition of ¢, it follows
2 e 0,1
v €[0,1] (34

E[Zqﬁketb Lp;;?-a] <«

By applying the Chernoff Bound Upper Tail, assume that p is
an arbitrary positive value. We have:

. 24
Pr| Z L > (1+p)a] < e (35)
orLed Y
We assume that
Ok - o 0?2« H
P = > (1 <ez2tr < — 36
(Y Y2 (el s < @)

PrLED

where H is a function of system-related variables (such as the
number of edge servers n). We get the result:

) log 77 + \/10g2 7 t8alog 7
- 2a )

We set H = ;. Apparently H — 0 as n — oo. With respect
to Eq. (37), we set

n>2 37)

_ log 37 +1og 37 +4a
P= 2a

1
_ dlogn (38)

We use Yopr and Yr_psr to denote the optimal system
throughput and the result of the R-DSR algorithm. According
to the problem relaxation, we know that Yopr < Y. By Eq.
(38), there exists

N logn
Yopr <Y < Yr_psr-O( =

+1) (39)

a
Thus, the R-DSR algorithm can achieve a system through-

put at least O <1/( loi" + 1)) of the optimum.

In the following, we will analyze the approximation per-
formance of resource cost.

Theorem 5. Let ¥ (x,z) = P(z) + Q(x, z) denote the total
resource cost, including the cost of both data node as-
sociation and service placement. The fractional solution
constructed by Eq. (29) is a feasible solution and satisfies
Uz, 2") < H2u(2, ).

The proof of Theorem 5 is showed in Appendix B.
Then, we consider the service placement for job ¢, € .
Proposition 2. Given the candidate set F; of data node u; €
C'k, at most one edge server v; € F; will be chosen to place
54, according to the R-DSR algorithm.

The proof is given in Appendix C.

9

Based on Proposition 2, we analyze the approximation
ratio of the filtering-and-rounding method in Appendix D.
The result is shown as follows.

Theorem 6. The filtering-and-rounding method can achieve
the approximation ratio of max{3(1 + A), (1 + })}. We
obtain an approximation ratio of 4 by setting A = .

According to the above analysis, the R-DSR algorithm
can guarantee that the storage resource cost, the compu-
tation resource cost, the communication resource cost, and
the bandwidth cost will hardly be violated by a factor of 4.
Moreover, R-DSR can achieve the system throughput at least

0 (1/(1%% + 1)) of the optimum.

4.4 Discussion

In DSRP, each job request associates a set of data nodes and
a kind of service. When we consider the scheme of only one
job request, the data collection and service placement problem
becomes the incapacitated facility location (UFL) problem [28].
However, we need to decide the job admission for multiple
job requests and consider the limited resource in DSRP. Sviri-
denko et. al. [29] show that there is no p-approximation for
the UFL problem if p > 0.684 unless P = NP. Our R-DSR
algorithm can guarantee that the memory resource cost, the
computation resource cost and the bandwidth cost will hardly
be violated by a factor of 4. Moreover, R-DSR can achieve the

system throughput at least O (1 /(18 4 1)) of the optimum,
with a > 1 under many practical scenarios.

5 PERFORMANCE SIMULATION

In this section, we evaluate the performance of our algorithms
through extensive simulations, which are conducted on a per-
sonal computer with CPU (Intel i7-8550U) and 16GB memory.

5.1 Simulation Settings

The simulations are performed over two typical network
topologies, the hexagon cells topology [30] and the grid net-
work topology [31]. In the first topology, we simulate an area
which represents the communication with base stations. This
area is divided into 19 hexagonal cells, as depicted in Fig.
8(a). Within each hexagonal cell, there exists one edge server
(typically in a small cluster), on which we deploy workers for
processing the jobs. Moreover, we assume that a data node
can be associated with the edge servers located in the local
and adjacent edge cells. In the second topology, we simulate
an area and randomly deploy our edge servers on 19 of
the 20 center points, as depicted in Fig. 8(b). Edge servers
are regularly deployed on a grid network. Each edge server
covers a circular region and connects to all the data nodes
in this region. We use this topology to simulate ratio access
network (RAN) [32]. Mobile devices, such as mobile phones,
access the network through the base station. Data nodes are
distributed randomly. These two network topologies reflect
the main features of edge network topologies in our problem
formulation, such as local connection, limited resources, and
wireless links.

We deploy a set of identical edge servers in both topolo-
gies. For each edge server, we set its floating point operation
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Fig. 8. lllustration of two typical network topologies

capability as 150GFLOPS and set the storage capacity between
100GB to 200GB for caching services. Furthermore, we set the
available communication bandwidth from each edge server
to parameter servers as 10Gbps [16]. Moreover, we set the
communication bandwidth from data nodes to each edge
server from 8Gbps to 12Gbps [33].

We assume that each job request needs 15 data nodes to
fulfill a training job. We set the number of data nodes required
by a job request based on a practical scenario. For example, an

Number of Jobs

Fig. 6. Average bandwidth cost per job under
normal distribution in hexagon cells.
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N
o

Fig. 7. Average bandwidth cost per job under
Pareto distribution in hexagon cells.

indoor position tracking system often contains 10-20 sensors,
such as cameras or Wi-Fi sensors [34]. Meanwhile, our ex-
periments are performed over three different distributions of
data amount among data nodes, i.e., uniform distribution, nor-
mal distribution and Pareto distribution [35]. In the Uniform
distribution, the minimum value and the maximum value of
the distribution are 2GB and 8GB, respectively. In the Normal
distribution, we set the mean value of the distribution as 5GB,
and the standard deviation as 1GB. In the Pareto distribution,
the minimum value of the distribution is 2GB, and the shape
value is 2GB. Additionally, the data nodes provide a data
stream for model training and the data generation rate of
each data node ranges from 300Mbps to 360Mbps [27]. We
set the storage space requirement of services from 20GB to
40GB [36]. Furthermore, we assume that each job requires
a different service due to the difference among the trained
models of these jobs.

According to the productive models [37], we set the size
of parameters (gradients as well) from 30MB to 575MB for
different training jobs. Under the data parallelism scheme, the
mini-batch size is 6MB, depending on different training data
size. We set the number of floating point operations during
one iteration based on the respective parameter size and mini-
batch size according to the statistics from [38]. For each job,
we set 3-8 iterations between global update. Moreover, the job
completion time ranges from 1 hour to 2 hours.
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uniform distribution in grid network.

5.2 Performance Metrics and Benchmarks

For performance comparison, we adopt the following metrics:

e System throughput. The system throughput is the num-
ber of admitted jobs, and is computed as >, ¢ Y-

o Average bandwidth cost per job. To fully enlarge the sys-
tem throughput under the limited resources on edge
servers, the smaller average bandwidth cost means
better throughput. Thus, the average bandwidth cost
of each job is of great importance. We take the average
bandwidth cost per job as another metric, which can be

Total bandwidth cost
modeled as System Throughput *

We compare the proposed R-DR algorithm with three baseline
algorithms and choose one baseline algorithm for the pro-
posed R-DSR algorithm in terms of the two metrics. These
baseline algorithms initially follow the same philosophy to
decide which job request will be admitted. Intuitively, to
maximize the system throughput, these algorithms iteratively
choose the job request with the minimum data amount and al-
locate the resources based on the completion time constraints
until no job request can be accommodated. The difference lies
in how to assign the data nodes of admitted job requests. For
the R-DR algorithm, we choose three benchmarks as follows:

Randomized Algorithm: we randomly choose feasible edge
servers for data nodes of the admitted job requests.

Greedy Algorithm: We greedily associate data nodes of the
admitted job requests with edge severs [39]. Specifically, for

Number of Jobs

Fig. 13. Average bandwidth cost per job under
normal distribution in grid network.
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Fig. 14. Average bandwidth cost per job under
Pareto distribution in grid network.

a data node, the algorithm orders its feasible edge servers in
non-decreasing order of their storage usage and chooses the
first edge server that can satisfy the time constraint for the
respective job request.

Nearest Algorithm: We associate the data nodes with the
nearest feasible edge server [40]. Then, we remove the partly
admitted jobs and remove the jobs in descending order of
bandwidth requirements until the constraints are satisfied.

The baseline algorithm for the R-DSR algorithm is R-DR
with storage constraint, which chooses edge server for the
data nodes by the R-DR algorithm regardless the service
storage constraint and revokes the association which violates
the service storage constraint at end. Since the R-DR algorithm
is based on randomized rounding, we regard the solution of
LP1y in the first iteration of Alg. 1 as the optimal solution.
Similarly, we regard the solution of LP2; as the optimal
solution of the DSRP problem.

5.3 Numerical Results for R-DR

The first set of simulations compares the system throughput
and average bandwidth cost per job for R-DR with three
benchmarks under two network topologies. The simulation
results are shown in Figs. 2-14.

Figs. 2-4 present the system throughput of different al-
gorithms with different data amount distributions under the
hexagon cells topology. When the edge system can supply
the redundant resource for job requests, these algorithms

1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 17,2021 at 08:12:02 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3045436, IEEE

Transactions on Mobile Computing

IEEE TRANS. ON MOBILE COMPUTING

901 [@-oFT 901 [@-oFT 901 [@-oFT
- R-DSR - R-DSR - R-DSR

5 80 R-DR with service 5 80+ R-DR with service 5 801 R-DR with service
Q o o
5701 570 5,70
2 2 2
£ 604 £ 604 £ 604
= = =
£ 50+ € 504 £ 50
2 2 2
2 40+ 0 40 0 40
(7] (2] n

30+ 30 30

20Lf . , , . , 20Lf . , , . . 200 f , , , . .

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Number of Jobs

Fig. 15. System throughput under uniform distri-

bution in hexagon cells. bution in hexagon cells.

R-DR with service|
-l R-DSR
~@-OPT

Avg. Bandwidth Cost per Job
Avg. Bandwidth Cost per Job

g
=)
N
)

Number of Jobs

Fig. 16. System throughput under normal distri-

Number of Jobs

Fig. 17. System throughput under Pareto distri-
bution in hexagon cells.

R-DR with service
<l R-DSR
~@-oPT

R-DR with service
-l R-DSR
~@-oPT

Avg. Bandwidth Cost per Job

g
o

60 80 100
Number of Jobs

—
120 60

N
o
£
o
N
o
S
o

Fig. 18. Average bandwidth cost per job under
uniform distribution in hexagon cells.

exhibit relatively close performance of system throughput. As
the number of job requests grows, our R-DR algorithm can
accommodate more jobs than the baseline algorithms. In Fig.
2, when the data amount follows the uniform distribution, the
proposed algorithm can improve the system throughput by
33%, 51% and 69% compared with the greedy algorithm, the
nearest algorithm, and the random algorithm, respectively. In
Fig. 3, when the data amount follows the normal distribution,
the proposed algorithm can improve the system throughput
by 34%, 56% and 69% compared with the other three algo-
rithms. Similar results can be found in Fig. 4. Meanwhile, the
proposed algorithm can achieve at least 92% of the optimal
performance in terms of system throughput.

Figs. 5-7 illustrate the average bandwidth cost per job of
different algorithms. Under the same job requests and system
resources, our proposed algorithm can make better admission
choices that helps improve system throughput. With the in-
creasing number of job requests, the bandwidth cost per job
of our algorithm shows a sharp downward trend. However,
the trend of the baseline algorithms is not obvious. In Fig. 5,
the proposed algorithm can reduce the bandwidth cost per job
by 15%, 16% and 27% compared with the greedy, nearest and
random algorithms. Similar results can be founded in Figs.
6 and 7. Moreover, the proposed algorithm only increases
the bandwidth cost per job 12% compared with the optimal
solution.

Figs. 9-11 present the system throughput of different algo-
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Fig. 19. Average bandwidth cost per job under
normal distribution in hexagon cells.
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Fig. 20. Average bandwidth cost per job under
Pareto distribution in hexagon cells.

rithms with different data amount distributions under the grid
network topology. The simulation results show the same trend
as those in the hexagon cells topology, which can reflect the ex-
cellent performance of our algorithm. In Fig. 9, when the data
amount among data nodes follows the uniform distribution,
R-DR increases the system throughput by 33%, 50% and 79%
compared with the greedy algorithm, the nearest algorithm,
and the random algorithm, respectively. Under the normal
distribution, the proposed R-DR algorithm can improve the
system throughput by 35%, 57% and 77% compared with the
other three algorithms by Fig. 10. Similar results are illustrated
in Fig. 11. Meanwhile, the proposed algorithm can achieve
at least 94% of the optimal performance in terms of system
throughput.

Figs. 12-14 illustrate the algorithm performance in terms
of the average bandwidth cost per job. Similar to the hexagon
cells topology, it reflects the great differences between our
algorithm and the baseline algorithms. In Fig. 12, the proposed
algorithm can reduce the bandwidth cost per job by 14%, 17%
and 27% compared with the greedy algorithm, the nearest
algorithm, and the random algorithm, respectively. Similar
results can also be derived in Fig. 13 and Fig. 14. Moreover,
compared to the optimal solution, the proposed R-DR algo-
rithm only raises the bandwidth cost per job by 11% at most.
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Fig. 23. System throughput under Pareto distri-
bution in grid network.

Fig. 21. System throughput under uniform distri-
bution in grid network.
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5.4 Numerical Results for R-DSR

The second set of simulations compares the system through-
put and average bandwidth cost per job for R-DSR with one
benchmark under two network topologies.

Figs. 15-17 present the system throughput of different
algorithms with different data amount distributions under the
hexagon cells topology. We observe that when the system
can supply the redundant resource for job requests, these
algorithms exhibit relatively close system throughput for all
these algorithms. As the number of job requests grows, the
gap between the system throughput of our algorithm and that
of baseline algorithms is gradually widening. Specifically, in
Fig. 15, when the data amount among data nodes follows
the uniform distribution, the R-DSR algorithm can improve
the system throughput by 63% compared with the R-DR
algorithm with service storage constraint. In Fig. 16, when
the data amount follows the normal distribution, the system
throughput of the proposed algorithm is 69% more than the R-
DR algorithm. Similar results are given in Fig. 17. Meanwhile,
the proposed algorithm can achieve at least 89% of the optimal
performance in terms of system throughput.

Figs. 18-20 illustrate the average bandwidth cost per job.
Under the same job requests and system resources, our al-
gorithm can make better choices and make an association
that helps improve system throughput. With the increasing
number of job requests, the average bandwidth cost per job
drops dramatically and maintains a stable gap between our

normal distribution in grid network.

Pareto distribution in grid network.

algorithm and the baseline algorithm. In Fig. 18, the R-DSR
algorithm can reduce the bandwidth cost per job by 9%
compared with the baseline algorithm. Similar results can also
be derived in Fig. 19 and Fig. 20. Moreover, compared with
the optimal solution, the proposed algorithm only raise 4%
bandwidth cost per job.

Figs. 21-23 present the system throughput of different algo-
rithms with different data amount distributions under the grid
network topology. It shows that our algorithm still performs
well in this network topology. In Fig. 21, when the data
amount among data nodes follows the uniform distribution,
the system throughput of the proposed algorithm increase by
67% compared with that of the R-DR algorithm with service
storage constraint. In Fig. 22, the proposed algorithm can
improve the system throughput 69% compared with the base-
line algorithm under the normal distribution. Similar results
are given in Fig. 23. Meanwhile, the proposed algorithm can
achieve at least 88% of the optimal performance in terms of
system throughput.

Figs. 24-26 illustrate the algorithm performance in terms
of the average bandwidth cost per job. As shown in Fig.
24, the R-DSR algorithm can reduce the bandwidth cost per
job by 10% compared with the baseline algorithm. Similar
results can also be derived in Figs. 25 and 26. Moreover, the
proposed algorithm only increases the bandwidth cost per job
6% compared with the optimal solution.

From these simulation results in Figs. 2-26, we can make
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some conclusions. First, by Figs. 2-14, our R-DR algorithm
can improve the system throughput about 59% compared
with the baseline algorithms, and achieve 92% of the optimal
system throughput on both two topologies. Moreover, the R-
DR algorithm can reduce average bandwidth cost per job by
about 17%. Second, by Figs. 15-26, our R-DSR algorithm can
improve the system throughput about 67% compared with the
baseline algorithms, and achieve 88% of the optimal system
throughput on both two topologies. Moreover, the R-DSR
algorithm can reduce average bandwidth cost per job by about
11%. Third, our R-DR and R-DSR algorithms can achieve a
stable performance on different topologies. Topology changes
have little effect on the performance of our algorithms.

6 TEST-BED EVALUATION

In this section, we set up a test platform based on embedded
Al computing device NVIDIA Jetson Tx2 and perform the
experiments. Moreover, we evaluate the performance of our
proposed algorithm in the test platform.

6.1 Test-bed Setup

The prototype system, illustrated in Fig. 27, consists of 1
server, 4 edge servers and 4 data nodes, which are intercon-
nected via two wireless routers. We model the system as a
three-layer structure.

Job Requests @

I
I
I
} Data Nodes
I
I

e o e 7

Fig. 27. The network topology of the test-bed

On the bottom layer, all these 4 data nodes store local
datasets for model training. With the benefit of data container
technique, jobs can be supplied with data individually. The
data nodes are responsible to generate and pre-process the
data. When a job request is submitted, its data nodes send the
status to the edge servers.

On the middle layer, training workers are deployed on
edge servers, which provide computing resource and memory
resource by a NVIDIA Jetson Tx2. Moreover, the inbound
and outbound bandwidths of these edge servers are both
1000Mbps according to the wireless NIC capacity. According
to the actual measurement, the wireless network environment
of the test-bed is shown in the Table 2. Specifically, the latency
refers to the time of transmitting one training batch of data
(e.g., IMB).

14
TABLE 2
WLAN Environment
Device Edge O | Edgel | Edge2 | Edge3
RSSI(dBm) —35 —36 —47 —65
Latency(sec) 0.560 0.564 0.653 0.722

* RSSI stands for Received Signal Strength Indicator

Local model training takes place on the edge servers. Based
on the scheduling results from the scheduler, edge servers
begin to collect the data for job requests and start the model
training. After collecting the data and allocating the currently
available resources for job requests, each edge server starts
the training processes and synchronizes models between pa-
rameter servers. Our demo experiments show that the service
placement problem has little effect on the performance (e.g.,
completion time of job requests) when there are not enough
number of edge servers. Thus, we use the R-DR algorithm in
this test-bed.

On the top layer, the parameter servers and scheduler are
located on the desktop. When we establish the test-bed plat-
form, a scheduler instance and parameter server instances are
initially implemented. The scheduler uses the R-DR algorithm
to make an association based on the edge server information
and job requests. According to the association, one parameter
server is deployed for each admitted job, and is responsible
for setting up models and updating models for the jobs.

Job Requests: Our job request set is based on four pro-
totype jobs, i.e. training of Convolutional Neural Network
(CNN) and SVM models on two different datasets. To simulate
the data generated by the devices, we choose the MNIST
(52MB) and CIFAR-10 (177MB) datasets with the same data
amount [41] [42]. Each dataset is divided into 5 parts, with one
part on a data node for each training job. In our evaluation,
we set the mini-batch size to 64 samples and the number of
epochs to 20 for all job requests. In this way, we generate
five sets of job requests based on these four prototype jobs,
including 14, 16, 18, 20, and 22 jobs, respectively.

Due to certain gap of computing power and the number of
edge servers between practical environment and laboratory
environment. The settings of simulation and test-bed are
different.

Performance Metrics and Benchmarks: For performance
comparison, we refine the system throughput metric as two
metrics. As the number of job requests increases, we consider
two situations. On one hand, edge servers are able to com-
plete all job requests with the abundant system resources.
We compare the completion time of all job requests. On the
other hand, only partial jobs can be completed due to the
resource constraints. We compare the completion ratio during
the evaluation. Additionally, we compare the time cost to
make a decision. We adopt the following metrics:

o Computation time of algorithms. We compare the compu-
tation time of algorithms.

o Completion time of all job requests. We compare the
completion time of all job requests on edge servers.

o Completion ratio at same timestamp. We observe the ratio
of completed jobs to all jobs at the same timestamp.
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The higher ratio represents higher efficiency of our
algorithm.

Due to the different system setups of simulations and test-bed,
computing resource and memory resource become the perfor-
mance bottleneck, rather than bandwidth resource. We will
analyze the resource performance at the end of this section.
In practical scenarios, users’ model training requests usually
offload to the nearest edge server. To verify the performance of
our algorithm in edge computing scenarios, we approximate
the practical scenario as a random process and compare it with
our algorithm.

6.2 Experimental Results

We run three algorithms on five sets of job requests to demon-
strate the efficiency of our proposed algorithm. Specifically,

tion (22 jobs)

the nearest algorithm make a decision based on the RSSI
information.

Computation Time Results: The first evaluation investi-
gates the computation time of algorithms by changing the
number of job requests. Compared to the completion time
of model training jobs, the computation time of our algo-
rithms only takes a small part. Additionally, our algorithm
can help the system achieve better performance in terms of job
completion time at a little more decision time cost. We have
added experiments to record time for the decision process and
training process. The results are shown in Fig. 28. The decision
process only takes less than 5 seconds, which can be negligible
relative to the about 1-hour total time (Fig. 29). Although more
time is spent on making decisions, the total time consumption
is reduced compared to the benchmark algorithms.

Completion Time Results: In the second set of evalua-
tions, we investigate the completion time of all jobs by chang-
ing the number of job requests. The results are shown in Fig.
29. As the number of job requests increases, all algorithms take
more time to complete jobs. However, for each job request, our
R-DR algorithm reduces the completion time 26% compared
with the random algorithm and 20% compared with the
nearest algorithm.

Completion Ratio Results: The third set of evaluation in-
vestigates the job completion ratio during the system running.
Specifically, we take 22 job requests as an example. On the
early stage of training (before about 1800s in Fig. 30), the
random association and the nearest association have a better
performance than ours. Since the data nodes are randomly
associated, some jobs’ data nodes are associated with the idle
edge servers and these jobs will be completed faster. With
system running (after about 1800 s in Fig. 29), our algorithm
can complete all jobs faster. We note that, due to multi-type
resource constraints, the data nodes associated with the same
edge may exceed its capacity and not all jobs can be completed
before the deadline by the random algorithm. Thus, our
proposed algorithm can complete more jobs in the same time
period with resource constraints.

To further explore the reasons for the above experimental
results, we record the GPU utilization and the memory utiliza-
tion during the evaluations. Fig. 33 presents the standard de-
viation of the GPU utilization among edge nodes. Obviously,
the standard deviation of two benchmarks is much larger than
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that of our algorithm, which implicates better computing load
balancing of our algorithm is better. To further reveal the sys-
tem performance, we record the GPU and memory utilization
of edge servers during model training. We observe the GPU
utilization as an example, as shown in Figs. 31-32. The GPU
utilization of four edge servers by our algorithm is greater
than 95%. As for the random method and nearest method,
the GPU utilization of some edges is only 30% even 11%.
Fig. 34 shows the same feature on memory consumption. This
also explains why our algorithm takes less time to complete
the same number of jobs and completes more tasks with the
limited resources.

7 RELATED WORKS

7.1 Data Offloading

Since few works focus on data collection for distributed deep
learning in edge computing, we alternatively investigate the
problem of job offloading which has a resemblance in as-
signment relationship. There are various works that study
job offloading from different points of view. To reduce the
task duration, the authors in [43] designed a hierarchical edge
computing architecture, and proposed an optimal offloading
scheme. In order to keep the delay minimum and save the
battery life of user’s equipment, works [44] transformed the
job offloading problem into two sub-problems and proposed
the respective solutions. In [45], the authors considered the
job offloading problem from the perspective of energy sav-
ing, a novel user-centric energy-aware mobility management
scheme was developed. Several works [46], [47] considered
the job offloading from the collaboration view in which each
job has only one end device.

Resource allocation is another important research point
in edge computing. In [48], through implementing via suc-
cessive convex approximation, the authors proposed a novel
specialized resource allocation approach for such applications
as augmented reality. A joint scheduling algorithm that al-
locates both radio and compute resources coordinately was
developed in [49] to avoid wasting resources. These proposed
resource allocation schemes mainly focus on generic tasks,
however, further performance gain can be obtained if we take
the feature of distributed training tasks into account.

7.2 Service Placement

Service placement will also impact the performance of task
offloading. Various solutions have been developed to place
content popularity [50] [51] or request history [52]. Only a
few works have considered multiple types of resources (e.g.,
storage, computation, communication). In [53], mixed integer
linear programs (MILPs) were formulated for placing contents
or service functions, and activating storage, computation,
and communication resources in a distributed cloud network.
Various works have studied the joint optimization of service
placement and task offloading in MEC [36] [54]. However, the
existing works only consider the situation in which each job
only needs to place one or fixed number of services, placement
for uncertain number of services is rarely considered.

7.3 Learning at the edge

There have been a bunch of prior works about conducting ma-
chine learning tasks at the edge. A concept termed federated
learning is proposed in [55], in which mobile phones and IoT
devices can be used to learn a shared model in a decentralized
approach. In [56], the authors proposed a distributed deep
neural network over hierarchies consisting of the cloud, the
edge and end devices, thus significantly reducing the com-
munication cost. The authors in [57] introduced deep learning
for IoTs into the edge computing environment and designed
a novel offloading strategy to optimize the performance. The
authors [58] proposed a control algorithm dynamically adapts
the frequency of global aggregation in real time to minimize
the learning loss under a fixed resource budget. The authors
in [59] provided an algorithm to strike the best error-runtime
trade-off in decentralized SGD by carefully tuning the fre-
quency of inter-node communication. While these works focus
on conducting training tasks at the edge, they ignore the
joint optimization of data collection and resource allocation
for these training tasks, which is of vital importance for the
resource constrained edge computing environment.

8 CONCLUSION

In this paper, we have studied the joint data collection and
resource allocation for distributed machine learning in edge
computing system. The joint problem is first formulated as
a mixed integer non-linear program. We propose an efficient
algorithm with a provable performance guarantee. Further-
more, we jointly consider the service placement, and design
an efficient algorithm with constant bipartite approximation
in many practical situations. We set up a test-bed to evaluate
the effectiveness of our proposed algorithm. Compared with
the existing algorithms, our proposed algorithms can improve
the system throughput 56% — 69% by the simulation results.
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