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Abstract—To approach the challenges of non-IID data and
limited communication resource raised by the emerging federated
learning (FL) in mobile edge computing (MEC), we propose
an efficient framework, called FedMigr, which integrates a deep
reinforcement learning (DRL) based model migration strategy
into the pioneer FL algorithm FedAvg. According to the data
distribution and resource constraints, our FedMigr will intelligently
guide one client to forward its local model to another client
after local updating, rather than directly sending the local models
to the server for global aggregation as in FedAvg. Intuitively,
migrating a local model from one client to another is equivalent to
training it over more data from different clients, contributing to
alleviating the influence of non-IID issue. We prove that FedMigr
can help to reduce the parameter divergences between different
local models and the global model from a theoretical perspective,
even under the non-IID setting. Extensive experiments on three
popular benchmark datasets demonstrate that FedMigr can achieve
an average accuracy improvement of around 13%, and reduce
bandwidth consumption for global communication by 42% on
average, compared with the baselines.

Index Terms—Non-IID data, Federated Learning, Model Migra-
tion, Deep Reinforcement Learning.

I. INTRODUCTION

Driven by the development of mobile cloud computing (M-
CC) and Internet of Things (IoT), a new computing paradigm,
termed mobile edge computing (MEC) [1], has emerged. In
the canonical MCC, end users need to deliver their requests
and data to the remote clouds through several networks like
radio core network and Internet, leading to high delivery latency
and worse user experience. On the contrary, MEC is proposed
to push the computation, storage and network functions from
clouds to the network edges, which range from specialized base
stations, home gateways to ubiquitous mobile devices (such as
mobile phones, laptops and wearables) [2].

Recently, mobile Internet has been boosting the growth explo-
sion of user data. More and more data-driven machine learning
applications (e.g., machine translation [3] or sentiment analysis
[4]) are becoming appealing for consumers and researchers. It
is predictable that machine learning tasks will be a dominant
workload in MEC systems [5]. However, it usually consumes a
large amount of bandwidth when directly sending the total user
data to MEC servers for model training, which also raises the
risk of exposing users’ privacy [6]. As computing resources on
clients are becoming increasingly powerful with the emergence
of AI chipsets, distributed model training can be implemented
on clients by the technique termed federated learning (FL) [6],
which enables the so-called on-device intelligence [7]. Specif-
ically, in MEC, each client holds its local data and a central
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Fig. 1: Illustrative depictions of MEC network and FedAvg.

coordinator (e.g., an edge server) maintains a globally shared
model. As shown in Fig. 1, the traditional FederatedAveraging
(or FedAvg) [6] algorithm lets the server iteratively aggregate
all the local models to update the global model, and distributes
the fresh global model back to the clients for further training.
During the runtime, only the global model and the local models
are exchanged while the local data residing on each client are
never uploaded to the server, which significantly relieves the
risk of privacy leakage.

Compared with typical distributed machine learning in high-
performance datacenters, FL will face two major challenges in
MEC [6]. 1) Non-IID Local Data. The local data are usually
collected based on the usage and/or locations of clients. For
example, two surveillance cameras, separately deployed in a
station hall and on a street-side, may capture quite different
views. Therefore, different clients probably have very different
data distributions from others. Data samples of different clients
are usually not independent and identically distributed (non-
IID), and any of them cannot be representative of the population
distribution (i.e., the distribution of the total data from all the
clients), which hurts the accuracy or the convergence rate of
the global model training [8]. 2) Limited Communication
Resource. In MEC, the clients are located in different local
area networks (LANs), and communicate with the edge server
over the wide area networks (WANs) [9]. Generally, the com-
munication bandwidth between clients and the edge server is
relatively more scarce than that within a datacenter or among
the clients over LANs [10]. Thus, communication is likely
to be the bottleneck of the MEC network and the distributed
model training, since the client-to-server (C2S) communication
is probably more time-consuming than a single training iteration
on each client [5].

To address the non-IID challenge, Zhao et al. [8] and Huang
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et al. [11] propose to improve the performance of model training
by distributing a globally shared proxy data to all clients,
which requires extra efforts to maintain such auxiliary data
for dynamic scenarios carefully [12]. Li et al. [13] propose
a framework called FedProx to tackle systems heterogeneity
and statistical heterogeneity, i.e., non-IID data, in federated
networks. FedProx can be viewed as a generalization and re-
parametrization of FedAvg, which makes only minor modifica-
tions to it. The vanilla data augmentation technique is adopted
by [14] to increase the diversity of training data by random
transformation or knowledge transfer, which can also be used
to mitigate non-IID issues in FL. However, each client needs
to send its local model and label distribution information like
the number of data samples for each class to the server, leading
to a enormous amout of traffic at parameter server (PS) [15].
With the advanced reinforcement learning (RL) techniques [16],
[17], Wang et al. [18] develope an experience-driven control
framework to counterbalance the bias induced by non-IID data.
But the proposed framework cannot reduce the communication
overhead for model delivery.

As for the communication concern, especially in MEC, some
researchers study the communication-efficient FL schemes. For
example, based on the pioneer FedAvg algorithm [6], Wang et
al. [5], [19] design a control algorithm to dynamically adjust
the frequency of global aggregation to reduce the bandwidth
consumption during model training. However, the control algo-
rithm is specialized for better utilizing the bandwidth resource
rather than handling non-IID issue, leading to worse training
performance under the non-IID setting. Xie et al. [20] design
an asynchronous federated optimization algorithm with low
bandwidth consumption, in which the parameter server will
perform the global update with only one local updated model
from an arbitrary client. But the asynchronous method, which
does not aggregate local models from all clients with different
data distributions, cannot well deal with the non-IID issue [8]. In
a nutshell, none of the aforementioned works can fully address
the two critical challenges for FL. Thus, it is of significant
importance to design a communication-efficient FL scheme,
especially for non-IID data.

The most related work with our paper is FedSwap [21]. In
addition to the traditional operation of FedAvg, model swapping
between any two of all clients at the PS is also adopted
by FedSwap for performance improvement. However, model
swapping at the server still brings an enormous amount of
C2S communication traffic to the PS as in FedAvg, which
will become the bottleneck of FL. Besides, without considering
the data distributions on the clients, random model swapping
between two clients cannot well deal with the non-IID issue,
which has been validated through extensive simulations in
Section IV.

Motivated by this, given clients with non-IID local datasets
and limited communication budget, we propose the FedMigr
framework, which integrates the model migration strategy into
the FedAvg algorithm to simultaneously cope with the two
challenges. Rather than directly sending the local models to
the server for global aggregation, FedMigr guides one client
to forward its local model to another client, which is termed
as model migration and helps to alleviate the C2S commu-

nication, since the client-to-client (C2C) communication can
occur over LANs. Besides, migrating a local model from one
client to another is equivalent to training it over more data from
different clients, which can alleviate the influence of non-IID
issue. Powered by the advanced deep reinforcement learning
(DRL), FedMigr will intelligently and dynamically determine
the migration policy which indicates the migration destinations
for the local models in terms of the state information (e.g.,
difference of data distribution and resource usage) from the
real-time FL environment. Thus, our FedMigr will significantly
speed up the process of federated training with less resource
cost, and enhance the trained model even under the non-IID
setting. The main contributions of this paper are summarized
below.

• To approach the challenges of non-IID data and limited
communication resource raised by FL in MEC, we propose
an efficient FL framework, termed FedMigr, in which
model migration is integrated in FedAvg.

• We analyze the effectiveness of FedMigr from a theoretical
perspective, and explain that the model migration can help
to reduce the parameter divergences between different local
models and the global model, enhancing the federated
training given non-IID local data.

• We propose experience-driven algorithms based on DRL
to adaptively determine the optimal migration policy in
FedMigr, so as to achieve less training time and bandwidth
resource usage.

• We build simulated and real FL environments to evaluate
the performance of the proposed algorithm via extensive
experiments with three popular benchmark datasets. The
results demonstrate that FedMigr can achieve an accuracy
improvement of around 13%, and reduce communication
resource consumption for global communication by 42%
on average, compared with baselines.

The rest of this paper is organized as follows. Section II first
introduces some preliminaries, including distributed machine
learning and federated learning. We then propose the FedMigr
framework, give the convergence analysis, and formalize the
problem in Section II. The efficient algorithms for the problem
are proposed in Section III. We report our simulation and
experimental results in Section IV. We conclude the paper in
Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Distributed Machine Learning vs. Federated Learning

Distributed Machine Learning: Traditional machine learn-
ing (ML) aims to learn the probability distribution of the
training data located on centralized machine(s). Given a training
dataset D = {(xi, yi)|i ∈ [1, N ]}, the item xi ∈ Rd is an input
vector, and the corresponding scalar yi ∈ R is the expected
output. N denotes the size of the dataset D, and d indicates
the number of dimensions. For each data pair (xi, yi), the loss
function fi(w) = ℓ(w, xi, yi) is defined to measure the error
of the predicted output made with model parameter w. The
learning objective is formulated as finding the optimal parameter
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w∗ so that the empirical loss F (w) w.r.t. the total training data
is minimized.

w∗ = argmin
w
F (w) ≡ 1

N

N∑
i=1

fi(w). (1)

Generally, Eq. (1) can be solved by gradient descent (GD)
or stochastic gradient descent (SGD) algorithms [22], which
iteratively compute the first-order gradient of F (w) w.r.t. total
(in GD) or partial (in SGD or mini-batch SGD) training data.
The parameter w is updated as follows

wt = wt−1 − η∇F (wt−1), (2)
where t indicates the iteration index, η > 0 is the update step
size (or learning rate), and ∇F (w) denotes gradient of F (w).

It has been shown that the performances of machine learning
models can get well improved by increasing the scale of training
data and model parameters [23], [24]. In order to efficiently
cover much more data and speed up model training, distributed
machine learning (DML) has been proposed [24], [25]. Con-
sidering the distributed architecture based on parameter server
(PS) [15], given K clients (or edge nodes), each client is
allocated with a dataset Dk (k ∈ {1, 2, ...,K}). According to
[5], we mainly consider the synchronous implementation due
to its popularity and satisfied performance in practice [6], [15],
leaving the asynchronous setting as our future direction. For
ease of description, we assume the intersection between any
two allocated datasets is empty, which means N =

∑K
k=1 nk,

and nk is size of Dk [26]. Therefore, Eq. (1) can be solved in
a distributed manner, i.e.,

min
w
F (w) ≡

K∑
k=1

nk
N
Fk(w), (3)

where Fk(w) = 1
nk

∑nk

i=1 fi(w) represents the empirical loss
w.r.t. the data of client k. Let wk and wg separately denote the
parameters of the local model and the global model. All local
models are initialized with the same parameter of the global
model when t = 0, i.e., wk(0) = wg(0), ∀k ∈ {1, ...,K}.
Subsequently, there are three main processes in each training
epoch t ∈ {1, ..., T}, where T is the total number of training
epochs. (1) Data & Model Distribution: The server first random-
ly distributes nk IID data samples along with the latest global
model parameter wt−1

g to the kth client. (2) Local Updating:
Each client computes the gradient of the local empirical loss
based on its dataset Dk and updates the local model parameter
wtk, i.e.,

wt−1
k = wt−1

g , (4)

∇Fk(wt−1
k ) =

1

nk

nk∑
i=1

∇fi(wt−1
k ), (5)

wtk = wt−1
k − η∇Fk(wt−1

k ). (6)
(3) Global Aggregation. At the end of epoch t, the server
aggregates the local models from all clients and computes the
global model by weighted averaging. Thus, the latest parameter
of the global model can be expressed as

wtg =

K∑
k=1

nk
N
wtk. (7)

Federated Learning: With the development of MEC and AI
chipsets, model training can be implemented from clouds to
edges. McMahan et al. [6] proposed an emerging alternative of
DML, termed federated learning (FL). In MEC, all the clients
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Fig. 2: The workflow of FedMigr.

are interconnected with the edge server via the mobile networks
(e.g., cell networks), and each client has the ability to store
its local data and performs ML tasks. FL can learn a globally
shared model in a collaborative fashion, where distributed
clients compute local statistic updates based on their own local
datasets and communicate with a central coordinator to derive
a high-quality global model with the FedAvg algorithm. During
the runtime, the local data of each client is always kept locally
and never sent outwards. The data residing on different clients
are usually non-IID, and the communication bandwidth between
clients and the server is much more scarce in FL than that in
DML.

Typically, FedAvg consists of three core processes, i.e., Model
Distribution, Local Updating and Global Aggregation. Two
extra parameters are introduced to reduce computation and
communication costs, namely α, the fraction of clients that
perform Local Updating in each global iteration; and τ , the
number of local training epochs each client runs over its local
dataset. Therefore, in each global iteration, for a selected client
k (αK out of K clients are selected) with nk samples, given
the local mini-batch size b, the local parameter wk will be
updated over τ nk

b mini-batches before global aggregation. The
theoretical convergence bound of FedAvg can be found in [5].

B. FL with Intelligent Model Migration

In this section, we propose the FedMigr framework, which in-
tegrates intelligent model migration into the traditional FedAvg
algorithm. Different from FedAvg, our FedMigr mainly consists
of four processes, i.e., Model Distribution, Local Updating,
Model Migration and Global Aggregation, in a single global
iteration g ∈ {1, ..., G}, where G is the total number of global
iterations. Fig. 2 shows the general workflow of FedMigr.
Similar to FedAvg, in the process of Model Distribution, the
server distributes the latest global model to all K clients. Then,
each client k performs the single-machine model training and
updates its model parameter for τ local iterations over a local
dataset of size nk (note that we regard one local iteration as
one training epoch).

The major difference between FedAvg and our proposed
framework comes at the end of Local Updating. Concretely,

• Each client sends a completion signal rather than its local
update to the server at an interval period Ts (one or several
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epochs), which can be adjusted according to the network
conditions. For example, Ts can be a small value (e.g.,
one epoch) to react to the network dynamics if the number
of clients or data distributions change quickly. When the
server receives the completion signals of all clients (herein,
assume all clients participate in model training), it com-
putes the migration policy P = [pti,j ], ∀i, j ∈ {1, ...,K}.
Specifically, pti,j = 1 if the local model on client i will
be migrated to client j at epoch t. The migration policy is
computed on the server by an efficient algorithm based on
DRL technique, which will be introduced in Section III.

• In terms of migration policy, we perform the Model
Migration process. Specifically, the server first sends the
migration policy to all clients, and then each client i
delivers its local model parameter to client j if pti,j = 1.
If client i and client j are within a LAN, the model
migration is termed as local migration. Otherwise, the
model migration needs to be performed by gateways or
the edge server, which is regarded as global migration.
Since the completion signals and migration policy can be
represented by some bool values or/and IP addresses, their
communication cost can be ignored in comparison with
that for model delivery [6].

• After that, client j again performs local updating on the
basis of the model of client i after epoch t if pti,j = 1. We
use M to denote the total number of model migrations in
a global iteration. Finally, when τ(M + 1) times of local
updating and M times of model migration are finished,
Global Aggregation is performed by the server to aggregate
the local updates from the clients and derive an up-to-date
global model. Thus, the total number of local iterations is
T = G(M + 1)τ .

In this work, we mainly focus on saving the resource
consumption and improving the test accuracy of federated
training through model migration, even under Non-IID settings.
According to the analysis, the proper migration policy will be
determined by our proposed method. Meanwhile, the number
of model migrations for each client also will be counted by
the client or server. Then, the optimal or suboptimal number of
model migrations can be achieved.

C. Convergence Analysis

In this section, we mainly analyze how FedMigr reduces
the distance between the distribution of local data and the
population distribution, and helps to improve model accuracy.
Considering a classification problem defined over the dataset
D with nl (l ∈ {1, ..., L}) samples for type l, where L is
the number of label types, and

∑L
l=1 n

l = N . The learning
objective in Eq. (1) and Eq. (2) can be rewritten as

min
wc

F (wc) ≡
L∑
l=1

q(y = l)
1

nl

nl∑
i=1

fi(wc), (8)

wt
c = wt−1

c − η

L∑
l=1

q(y = l)
1

nl

nl∑
i=1

∇fi(wt−1
c ), (9)

where q(y = l) = nl

N indicates the distribution probability
of samples labeled with l in the dataset, and wc denotes the

parameter of the centralized model. While in FedAvg, the local
updating of client k at iteration t can be rewritten as

wt
k = wt−1

k −
L∑

l=1

qk(y = l)
1

nl
k

nl
k∑

i=1

∇fi(wt−1
k ), (10)

where qk(y = l) =
nl
k

nk
, and nlk is the number of samples labeled

with l in the local dataset Dk. In [8], given the same model
initialization for all clients, it demonstrates that the parameter
divergence ∥wtg − wtc∥ between the global model wtg and the
centralized model wtc is dominated by the earth mover’s distance
(EMD) between the label distributions on each client and the
population distribution, i.e.,

∑L
l=1∥qk(y = l)− q(y = l)∥, and

∥qk(y = l)− q(y = l)∥ = ∥
nl
k

nk
−
nl

N
∥ = ∥

Nnl
k − nkn

l

Nnk
∥. (11)

If all the clients have the same data distribution as the population
distribution, then ∥qk(y = l) − q(y = l)∥ = 0, ∥wtg − wtc∥ be-
comes small or negligible, and the global model has the similar
performance as the centralized model. However, under the non-
IID data, the distribution distance ∥qk(y = l)− q(y = l)∥ gets
larger, which results in large divergence between wtg and wtc as
well as accuracy degradation of the global model.

As for our learning strategy, the process of model migration
among the clients is equivalent to training a model of one client
with more local data. From this point of view, we regard Local
Updating and Model Migration as an integrated process of local
model updating. Therefore, the convergence can be guaranteed
in terms of the demonstrations in [5], [19]. In the rest of this
section, we mainly demonstrate that model migration can help
to decrease the distribution distance ∥qk(y = l) − q(y = l)∥.
For the sake of analysis, we consider the random model mi-
gration strategy (we will illustrate that experience-driven model
migration is much more effective than the random strategy in
Section III). At the beginning of model migration, the model of
each client will be sent to another client or keep intact with the
uniform probability of 1

K . In other words, each model has the
probability of 1

K to be trained on the dataset of another client
after model migration. Thus, the final local model on client k
after τ(M + 1) times of local updating and M times of model
migration is equivalent to being trained on a larger but virtual
dataset, whose data distribution can be expressed as

q′k(y = l) =
nlk +M

∑K
k′=1

1
Kn

l
k′

nk +M
∑K
k′=1

1
Knk′

. (12)

Since M and 1
K are constant,

∑K
k′=1 n

l
k′ = nl, and∑K

k′=1 nk′ = N , Eq. (12) can be rewritten as

q′k(y = l) =
nlk +

M
K n

l

nk +
M
KN

=
Knlk +Mnl

Knk +MN
. (13)

Then, we have

∥q′k(y = l)− q(y = l)∥ =

∥∥∥∥Knlk +Mnl

Knk +MN
− nl

N

∥∥∥∥
=

∥∥∥∥K(Nnlk − nkn
l)

N(Knk +MN)

∥∥∥∥ =

∥∥∥∥∥Nnlk − nkn
l

Nnk +
MN2

K

∥∥∥∥∥ . (14)

Usually N > K > 0. We have MN2

K > MN > 0 if M ≥ 1.
Then, we can observe that∥∥∥∥∥Nnlk − nkn

l

Nnk +
MN2

K

∥∥∥∥∥ <
∥∥∥∥Nnlk − nkn

l

Nnk

∥∥∥∥ , (15)

i.e., ∥q′k(y = l) − q(y = l)∥ < ∥qk(y = l) − q(y = l)∥. In



5

terms of Eqs. (14) and (15), we find that FedMigr can help to
shorten the probability distance between the data distribution
on each client and the population distribution. In other words,
FedMigr has the potential to reduce the parameter divergence of
the derived global model and the centralized model, and obtain
better performance in comparison with FedAvg.

D. Problem Formulation

In this section, we give the definition of federated learn-
ing with model migration (FLMM) problem. Without loss of
generality, two major kinds of resources, computation and
communication, are taken into considerations in this work.
Specifically, for Local Updating, the communication cost is
neglected while the computation cost on client k at each epoch,
denoted as ck, is proportional to the volume of local training
data. For the other three processes, the communication cost
is dominated. In Model Distribution and Global Aggregation,
the costs for client k receiving the latest model and send-
ing local update are denoted as b0,k and bk,0, and usually
b0,k = bk,0 > 0 (for ease description, written as bk). To be
noted that, considering the sufficient computing power on the
server, the computation cost for aggregating local updates and
computing the latest global model is also neglected [1]. Besides,
the communication cost for delivering the model from client i
to client j in the m-th (∀m ∈ {1, 2, ...,M}) round of Model
Migration is denoted as bmi,j . If i = j, bmi,j = 0. Assume that
the total budgets of computation and communication resources
are denoted as Bc and Bb in the network, respectively. Ac-
cordingly, the FLMM problem can be formulated as follows:

min
T∈{1,2,3,...}

F (wT )

s.t.



K∑
k=1

T · ck ≤ Bc,

G

(
2
K∑
k=1

bk +
M−1∑
m=0

K∑
i=1

K∑
j=1

pmi,jb
m
i,j

)
≤ Bb,

T = G · (M + 1) · τ,
pmi,j ∈ {0, 1} ∀i, j, ∀m

(16)
where pmi,j denotes whether the model on client i will be
migrated to client j at epoch m. The first set of inequalities
expresses the computation resource constraints during totally
T training epochs. The second set of inequalities ensures the
bandwidth constraints in the network. The objective of the
FLMM problem is to minimize the loss function of federated
learning.

In fact, it is difficult to directly solve the FLMM problem
in Eq. (16). Since the model migration decision variable is a
bool one, this is a typical integer programming problem. In
general, finding the optimal solution for an integer programming
problem is NP-hard [27], thus solving the integer programming
problem at every epoch will be time-consuming. Meanwhile,
the time-varying network conditions also aggravate the difficulty
for this problem. On the contrary, with the abundant network
and model training information, we believe that an experience-
driven method will be helpful to make an efficient decision
for model migration while satisfying the resource constraints at
each epoch. Hence, we propose to design a deep reinforcement
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Fig. 3: Test accuracy of model training with FedMigr given
different model migration strategies.

learning based method to learn an effective solution for the
FLMM problem.

III. ALGORITHM DESIGN

In this section, we first give an example to motivate our
algorithm design (Section III-A). We briefly introduce the basic
mechanism of deep reinforcement learning (DRL) in Section
III-B. Then, we describe the model design of the DRL agent
in detail (Section III-C). The training methodology of the
experience-driven algorithm for migration policy generation
(EMPG) is presented in Section III-D. Finally, we discuss some
practical issues to enhance the proposed solution (Section III-E).

A. Motivation for Algorithm Design

FL always relies on SGD which has been widely used in
training deep networks with good empirical performance [28].
The IID sampling of the training data is essential to ensure
that the stochastic gradient is an unbiased estimate of the full
gradient. However, it is unrealistic to assume that the local data
on each client is always IID in practice. Generally, the data
collected by the clients within a LAN often have similar features
and labels, while the data collected by the clients in different
LANs greatly vary [10], [29]. The algorithm in our proposed
framework may prefer to perform migration among the clients
with different data distributions (e.g., cross LANs) to accelerate
the convergence of model training, improving the performance
(e.g., test accuracy) of FL in heterogeneous edge computing
[8]. To this end, we perform two groups of tests to illustrate the
motivation for algorithm design.

We first observe the performance of model training with
FedMigr under three different model migration strategies, i.e.,
migration cross LANs, random migration and migration within
LANs. Let AlexNet1 train on CIFAR102 with 600 epochs. The
data distributions of the clients within a LAN are the same.
As shown in Fig. 3, the model accuracy of migration cross
LANs is better than that of random migration and migration
within LANs. For instance, given 500 epochs, the accuracy
of model migration cross LANs is about 63.6%, while that
of model migration within LANs and random migration are
about 56.2% and 60.7%, respectively. Thus, performing model
migration between the clients with different data distributions
will significantly improve the training performance.

1AlexNet consists of 8 weight layers including 5 convolutional layers and
3 fully-connected layers, and three max-pooling layers are used following the
first, second and fifth convolutional layers.

2http://www.cs.toronto.edu/ kriz/cifar.html
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TABLE I: Completion time and traffic consumption under
different schemes given a target accuracy.

Schemes Target Accuracy=80%
Completion Time (s) Traffic Consumption (MB)

FedAvg 13,927 328
FedMigr 6,584 175

In order to better illustrate the effectiveness of FedMigr,
we then test the training performance of FedAvg and FedMigr
given a target accuracy requirement (e.g., 80%). Table I shows
the completion time and traffic consumption of model training
under two schemes. Our FedMigr will significantly reduce the
resource cost compared with FedAvg. For example, the comple-
tion time and traffic consumption of FedMigr are about 6,584s
and 175MB, while those of FedAvg are about 13,927s and
328MB, respectively. In other words, FedMigr can reduce the
time and bandwidth cost by about 53% and 47% compared with
FedAvg, respectively. In a nutshell, migrating models among the
clients with different data distributions will efficiently speed up
the process of federated training with less resource cost.

B. Deep Reinforcement Learning (DRL)

Our FedMigr adopts a deep reinforcement learning (DRL)
based algorithm to generate migration policy, according to
the data distributions and network resource. We adopt not the
other RL algorithms (e.g., MAB [30]), but the DRL approach
mainly due to system dynamics. Specifically, edge nodes (e.g.,
mobile devices), located at diverse geographical positions, will
dynamically join/leave the system, and the wireless connections
between these devices may be time-varying due to the back-
ground noise in edge computing scenarios. Hence, the network
conditions may frequently change during training. In fact, MAB
usually determines the proper action over the relatively steady
system states, but can not perceive the detailed and real-time
state information (e.g., the resource consumption and process of
training) of network environment [17], [31]. Thus, it is difficult
for MAB to provide fine-grained control of model training or
migration in dynamic edge computing. On the contrary, the
experience-driven models are very effective for discovering the
complicated underlying relation [17]. The deep neural network
in DRL can better perceive the underlying relation among the
model training, network states and migration policy, and is more
robust to the environment dynamics. Besides, the training of
DRL agent can be performed offline in the simulation environ-
ment which has sufficient resources before being deployed in
practice.

DRL is the learning process of an agent that acts in corre-
sponds to the environment to maximize its rewards. The agent
mainly involves three components: state, policy network, and
action probability. At each training epoch t, the policy network
in the agent receives a state st−1 (e.g., data distribution, loss
function and resource usage) and outputs the probabilities of
some actions, called policy π, which is a mapping from state
st−1 to actions A. Then, an action at will be picked from
A according to the policy π. In return, the agent receives
the next state st and a scalar reward rt. The return reward
Rt =

∑T−t
d=0 γ

drt+d is the total accumulated return from epoch
t with a discount factor γ ∈ (0, 1]. The goal of the agent is to

maximize the expected return from each state st. The detailed
description about the state, action and reward is given in the
next section.

C. Model Design for DRL

To set up the DRL system, we elaborate the state space, action
space, and reward function as follows.

State Space: We use a vector st = (t, wt, Ft, Dt,Rt,Gt)
to denote the state at epoch t. Here t is the training epoch
index. wt and Ft denote the model parameter and loss function
after epoch t, respectively. Dt = [dti,j ],∀i, j ∈ {1, ...,K} is a
K×K symmetric matrix which reflects the differences of data
distributions among the clients after t epochs. Besides, compu-
tation and communication cost at each epoch t is represented as
Rt = {ct, bt}. We use Gt = {Bc,Bb} to denote the remaining
resource budgets at the end of epoch t. With the progress of
the federated training, more and more resources are consumed,
and the remaining resource budgets decrease.

Action Space: At epoch t, a migration policy P will be
determined by the system agent, called an action at. Note
that the model migration decision at epoch t is denoted as
[pti,j ], ∀i, j ∈ {1, ...,K}, resulting in a large action space of
K ×K, which complicates DRL training. Similar to [18], we
try to reduce the action space size while still leveraging the
intelligent control provided by the DRL agent. Specifically, at
epoch t, the agent will find the client j for model migration
with the maximum expected return reward for only one client
i per round, i.e., pti,j = 1. Thus, the action space is reduced
to {1, 2, ...,K} for client i, where action a = j means that
the model will be migrated from client i to client j. Given
the current state, the DRL agent chooses an action based on a
policy network, expressed by a probability distribution π(st|θ)
over the whole action space. We use deep neural network [32]
to represent the policy π in the DRL agent, where the adjustable
parameters of the neural network are referred to as the policy
parameter θ. The policy can be represented as π(st|θ) → [0, 1],
which is the probability of taking the action at at the state st.

Reward Function: At training epoch t, the agent will get a
reward r(st; at) under a certain state st after taking action at.
In practice, the reward function should be positively correlated
with the system objective. As in Eq. (16), the objective function
is to minimize the loss function under resource constraints. The
better training performance (e.g., loss value) may be achieved
when the model migration occurs between the two clients with
larger difference of data distributions. We define the reward rt
as the combination of the difference of loss value and resource
usage at epoch t, i.e.,

rt = −Υ
△Ft
Ft−1 − ct

Bc
− bt

Bb
, t < T (17)

where Υ is a positive constant so as to ensure that rt decreases
exponentially with the loss value Ft. Here △Ft = Ft − Ft−1

denotes the difference between the current and the previous
loss values, which reflects the performance of federated training
at epoch t. The better training performance it achieves, i.e.,
the smaller value of △Ft

Ft−1
, the more reward the agent will

obtain. In contrast, the more resources (e.g., computation and
communication) the task consumes, the less reward the agent
will obtain. The weights in the function are determined by
the specific requirements to balance objectives. For example,
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when communication cost dominates the resource consumption
of model training, we will set a larger weight for traffic
consumption in the function. At epoch T , the learning task will
stop as either the model converges or the resource budget is
used up (i.e., minGT ≤ 0). Then, the reward in the final epoch
T is defined as

rT =

{
LT + C if minGT ≥ 0,
LT − C otherwise.

(18)

where LT = −Υ
△FT
FT−1 − cT

Bc
− bT

Bb
and C is a positive real number.

If the learning task stops with success, i.e., the convergence
of model training is reached without overrunning the resource
budget, the reward will be added by C. Otherwise, if the learning
task fails, i.e., no convergence guarantee under the resource
budget, a negative value C (or reward penalty) will be added to
the reward function. The reward will be sent to the agent for the
following decision. If the reward of the current action is larger
than that of other actions, the probability of this action being
selected in the next epoch will be increased. Otherwise, it will
be decreased.

Note that the edge computing system (e.g., the number of
clients or the amount of local data on the clients) varies
significantly with time and space. In fact, we consider the search
space as large as possible (i.e., all clients in the network, not just
those activated clients participating in model training) when the
pre-training of the DRL agent is performed. Thus, the agent can
well adapt to the changes of clients. The effectiveness of model
migration will be well perceived by the DRL agent through
status and reward from the network environment. Moreover,
the DRL agent has the ability to adjust the decision of model
migration according to the reward, depending on the training
data, even if the local data of a client is updated. Thus, there is
no need to retrain the DRL system when the edge computing
system varies with time and space.

D. Algorithm Description

In this section, we describe the experience-driven migration
policy generation (EMPG) algorithm in detail. We train the
DRL agent using the cost-effective and time-efficient Deep
Deterministic Policy Gradient (DDPG) method [33]. The basic
idea inside the EMPG algorithm is to maintain a parameterized
critic function and a parameterized actor function, respectively.
The critic function Q(st, at|ψ) can be implemented using Deep
Q-Network (DQN) [34], where ψ is the weight vector of the
DQN. The critic function returns Q for a given state-action pair
at epoch t as follow:

Q(st, at) = E[Rt|st, at], (19)
The actor function π(st|θ) can be implemented using a Deep
Neural Networks (DNN), and be updated by applying the chain
rule to the expected cumulative reward R:

R = E[∇θQ(s, a|ψ)|s=st,a=π(st) · ∇θπ(s|θ)|s=st ], (20)
where θ is the weight vector of the DNN and π(st) =
argmaxQ(st, at). Let ht be the target value as:

ht = r(st, at) + γQ(st+1, π(st+1|θ)|ψ), (21)
where γ is the discount factor for the future reward. The DQN
of the critic function can be learned by minimizing the loss
function:

L(ψ) = E[ht −Q(st, at|ψ)], (22)

To effectively train the DRL agent for migration policy gener-
ation, two critical problems should be taken into considerations:

1) Action Exploration: To obtain a suitable policy through
DRL, we need to ensure that the action space is adequately
explored. To this end, the actions with high reward will be
sufficiently produced. For effective exploration, we apply the
modified ϱ-greedy method [35] to meet our demands, where
ϱ ∈ [0, 1] denotes an adjustable parameter. It means that with
ϱ probability, the agent derives actions by solving the FLMM
problem in Eq. (16); and with (1 − ϱ) probability, the agent
directly derives actions from the policy network Q(st, at).
However, the exploration is based on the solution of Eq. (16),
which is NP-Hard due to the integer variables [27]. To solve
the FLMM problem, we first deal with the integer variable by
relaxing it to be any fractional value in [0, 1] [36]. Then, the
original problem is transformed into a quadratic programming
(QP) problem with linear constraints, which can be easily solved
by the convex problem solver (e.g., CVX [37]). . By adjusting
parameter ϱ, we can achieve a tradeoff between exploration and
exploitation.

2) Experience Replay: In order to replay the experience,
we adopt the prioritized experience replay strategy [38], which
specifies samples with careful considerations for both the actor
and critic networks. Specifically, a priority will be assigned
for each transition sample. Based on this priority, the replay
buffer will be sampled at each epoch. For each transition sample
z = (st, at, rt, st+1), we define a function called Temporal-
Difference (TD) error, which corresponds to training of the critic
deep network:

ϕz = hz −Q(sz, az), (23)

where hz is the target value for training the critic network in
Eq. (21). The value of TD error acts as the correction for the
estimation and may implicitly reflect to what extent an agent can
learn from the experience. The bigger the magnitude of absolute
TD error is, the more aggressive the correction for the expected
action-value is. In this condition, experiences with high TD-
errors are more likely to be of high value and associated with
very successful attempts. Besides, more frequently replaying
these experiences will help the agent gradually realize the true
consequence of the wrong behavior under the corresponding
states, as well as avoid making the wrong behavior in these
conditions again, which can improve the overall performance.
Then, we put the TD error with the Q gradient:

∇aQ(sz , az) = ∇θQ(s, a|ψ)|a=π(sz)
s=sz · ∇θπ(s|θ)s=sz . (24)

The priority of the transition data z is given by:
ρz = ε · (|ϕz|) + (1− ε) · |∇aQ(sz, az)|, (25)

where ε is the control parameter between TD error and gradient.
|∇aQ(sz, az)| is the absolute value of the gradient. At last, we
define the probability P(z) of sampling transition z as follows:

P(z) =
ρξz∑|B|
j=0 ρ

ξ
j

, (26)

where the parameter ξ controls to what extent the prioritization
is used. If ξ = 0, then it becomes uniform sampling. B is the
buffer of samples with size of |B| and ρz can be computed
by Eq. (25). The definition of the sampling probability can
be seen as a method of adding stochastic factors in selecting
experiences since even those with low TD errors can still have
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Algorithm 1 Experience-Driven Migration Policy Generation

1: Initialization
2: Initialize the migration policy matrix P = [p0i,j ], ∀i, j
3: Initialize critic networks Q(·) and actor networks π(·) with

weights ψ and θ, respectively;
4: Initialize target networks Q′(·) and actor networks π′(·)

with weights ψ′ = ψ and θ′ = θ, respectively;
5: Initialize replay buffer B and ρ1 = 1;
6: Migration policy generation for federated training
7: for t = 1 to T do
8: The agent interacts with the environment
9: Actor-Critic network learning

10: for k = 1 to |B| do
11: Sample a transition z = (st, at, rt, st+1) from B;
12: Update important-sample weight by Eq. (29);
13: Compute TD error of sample z by Eq. (23);
14: Compute target value for critic network by Eq. (21)
15: Compute Q gradient by Eq. (24);
16: Update the transition priority by Eq. (25);
17: Accumulate weight-change for critic network by Eq.

(27) and actor network by Eq. (28);
18: Actor-Critic network update
19: Update the actor network and critic network;
20: Update the target network;
21: Select the optimal action, i.e., the optimal policy
22: Update the migration matrix P

a probability to be replayed, which guarantees the diversity of
sampled experiences. Such diversity can help prevent the neural
network from being over-fitting. Then the accumulate weight-
change for critic and actor networks are:

Ξψ := Ξψ + µz · ϕz · ∇ψQ (sz, az) (27)
Ξθ := Ξθ + µz · ∇aQ(sz, az) (28)

where µz is the important-sample weight:

µz =
(|B| · P(z))−ξ

maxj∈B wj
(29)

The accumulated weight-change will be used for updating the
critic network and actor network. The EMPG algorithm is
described in Alg. 1.

The EMPG algorithm includes three steps: initialization,
Actor-Critic network learning and network updating. First, the
algorithm initializes the policy matrix for model migration (Line
2). Besides, all the weights θ of the actor network, and ψ of
the critic network are also initialized (Line 3). To apply an
off-policy training method, we employ target network Q′(·)
and π′(·) to improve the training speed. The target network
is a clone of the origin network (Line 4) and will be slowly
following updated. In each training epoch of FL, the agent will
interact with the environment to receive a state and push it into
the buffer (Line 8). Then, we sample a transition data from the
replay buffer to train the actor-critic network (Lines 11-17). For
each transition data z in the sample buffer B, we first compute
its important-sample weight µz by Eq. (29), which is used to
correct the bias introduced by prioritized replay (Line 12). Then,
the TD error is computed by Eq. (23) based on the target value
yz by Eq. (21). Moreover, the policy gradient should be updated
by the chain rule (Line 13) and the transition priority is updated

by Eq. (25) (Line 16). The weight-changes are accumulated
for updating the actor-critic network (Line 17). Based on the
weight-changes, the critic network, actor network, and target
network are updated (Lines 19-20). Finally, the optimal action
(or migration policy) will be selected for the next training epoch
by the output of actor network (Lines 21-22).

E. Discussion
In this section, we discuss some practical issues to enhance

the proposed method.
1) Note that some C2C communications (e.g., C2C communi-

cation across LANs) may be slower than C2S communications.
How to determine the model migration strategy depends on
some important factors (e.g., communication budgets and link
speed). For making decisions of model migration, the DRL
agent has the ability to analyze the impact of link speed of
both C2C and C2S communication on the completion time
of federated training. Based on the analysis results, the algo-
rithm takes the speed of C2C/C2S communication links and
communication budgets as the input, and selects efficient links
for model migration. In the extreme case of very low C2C
communication links, there is no model migration between
clients. As a result, the worst-case cost of FedMigr will not
exceed that of FedAvg, where clients only forward the local
models to parameter servers. The experimental results in Section
IV also show the effectiveness of C2C communications in our
proposed method.

2) FL enables local training on workers without exchanging
personal data between the server and clients, thereby protecting
clients’ data from being eavesdropped by hidden adversaries.
Our proposed method migrates not data, but models between
clients. Nevertheless, private information may still be divulged
to some extent from adversaries analyzing on the differences
of related model parameters, e.g., parameters trained in neural
networks. It naturally can prevent information leakage by adding
artificial noises, known as differential privacy (DP) techniques,
including local DP (LDP) [39] and centralized DP [40]. The
previous works also give the theoretical analyses for federated
data privacy [39]. In fact, these privacy preserving techniques
(e.g., LDP) can be introduced to enhance the privacy preserving
of transmitted models or gradients in our proposed method.

Here, we define a (ϵ, δ)-LDP requirement for FedMigr, where
ϵ is the privacy budget. δ ∈ (0, 1) accounts for the probability
that plain ϵ-DP is broken. In FedMigr, the local model wi of
client i will be clipped after model updating on the local dataset
at epoch t:

wti = wti/max(1,
∥wti∥
C

) (30)

where C is a clipping threshold for bounding wi. Then, the noise
ζti will be added to the parameters according to the Gaussian
Machanism (GM) [41] before model migration between clients
or model aggregation at the server:

w̃ti = wti + ζti (31)
where ζti ∼ N (0, χ2) and χ is a preset parameter of gaussian
mechanism. Generally, the parameter χ increases with the
decerasing privacy budget, and the performance of privacy
preserving can be significantly improved [39].

In order to evaluate the privacy implications of our proposed
method, we perform CNN over CIFAR10 dataset with different
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Fig. 4: The training performance of our proposed method with
different privacy budgets.

privacy budgets ϵ. The model training will be performed without
privacy budget if ϵ = ∞. Fig.4 shows that the training accuracy
is slightly degraded with the decreasing privacy budgets. For
example, given 200 training epochs, the accuracy of FedMi-
gr(ϵ = ∞) is about 72.4% while those of FedMigr(ϵ = 150)
and FedMigr(ϵ = 100) are about 69.2% and 67.6%, respectively.
However, the protection capability for model migration in
FedMigr can be significantly improved. Thus, the (ϵ, δ)-LDP
techniques can be well combined to enhance privacy preserving
of transmitted models or gradients in our proposed method.

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Baselines

In this paper, we adopt the following metrics to evaluate
the efficiency of our proposed framework. (1) Training loss is
the quantification difference of probability distributions between
model output and observation results. The loss value reflects
the quality and convergence of model learning. (2) As one
of the most common performance metrics for classification,
accuracy is measured by the proportion between the amount
of the correct data through model inference and that of all data.
(3) The total amount of traffic, i.e., bandwidth consumption, is
measured between the server and clients for model training. (4)
We adopt the completion time, which consists of computation
time and communication time, to estimate the training speed of
an FL task.

We adopt three typical FL schemes, i.e., FedAvg, FedSwap
[21] and FedProx [13], as baselines for performance compari-
son. The key idea of FedSwap is to perform model swapping
between any two of all clients at the PS, instead of running
FedAvg every iteration. This operation of swapping the models
between the clients gives each model a bigger picture on the
entire dataset, so as to reduce weight divergence. However,
model swapping at the server may still bring an enormous
amount of traffic workload to the PS. In FedProx, a proximal
term is added to the objective that helps to improve the stability
of federated training. This term provides a principled way for
the server to account for heterogeneity associated with partial
information. Besides, we perform the random model migrations
among the clients (termed RandMigr), instead of experience-
driven model migrations, to verify the efficiency of our proposed
model migration algorithm.

B. Datasets and Models

Datasets: In the experiments, three popular benchmark
datasets, i.e., CIFAR10 and CIFAR100 [42], ImageNet
ILSVRC-2012 dataset [43] constructed for image classification

tasks, are employed to test the performances of FedMigr,
FedSwap, RandMigr and FedAvg. Concretely, 1) CIFAR10
(referred to as C10) consists of 60,000 32×32 colour images
(50,000 training images and 10,000 test images) in 10 classes,
with 6,000 images per class. 2) CIFAR100 (referred as C100)
is similar to C10, but has 100 classes, each of which has
600 images. 3) ImageNet ILSVRC-2012 dataset features RGB-
images of 224x224 pixels belonging to 1,000 different classes.
In all, there are roughly 1.2 million training images, 50,000
validation images, and 150,000 testing images. Usually, edge
nodes may be resource-limited devices, e.g., mobile phones,
gateways or servers. Based on this, for some experiments a
subset of this dataset, the ImageNet-100 dataset is adopted. It
features only 100 randomly drawn classes from the complete
ImageNet dataset.

Models: Three deep learning models with different structures
and parameters are implemented based on the datasets: 1) A
Convolutional Neural Network (CNN) has the same structure as
that in [6], i.e., two 5×5 convolution layers (32, 64 channels,
each followed with 2×2 max pooling), a full connected layer
with 512 units, and a softmax output layer with 10 units. This
model, which is specialized for the C10 dataset, is called C10-
CNN. 2) The second model is a CNN for the C100 dataset
(C100-CNN). Different from C10-CNN, it involves two fully
connected layers (with 512 units each) following the convolu-
tion layers, and an output layer with 100 units. 3) The third
model is ResNet-152 [44] which will be adopted to perform
the image classification tasks based on ImageNet-100 dataset
(denoted by Res-ImageNet).

C. Simulation Evaluation

1) Evaluation Settings: All the experiments are conducted
on an AMAX deep learning workstation3 (CPU: Intel(R) E5-
2620v4, GPU: NVIDIA GeForce RTX 2080Ti), where we
build an FL simulation environment and implement all models
with PySyft [45], a Python library for privacy-preserving deep
learning including FL, under the PyTorch framework4.

Clients and Servers: As suggested in [18], in order to effi-
ciently simulate the training processing in FL of our proposed
solution and baselines, totally 100 clients are generated in the
simulation, and 10 (or 20) of them are randomly activated to
participate in the model training. The solution can be easily
extended to the case of more edge nodes. For training C10-
CNN, we adopt one edge server and 10 clients with induces
[1, · · · , 10], which are split into 3 different LANs with the
groups ([1, 2, 3, 4], [5, 6, 7], [8, 9, 10]) in the simulation envi-
ronment. While for C100-CNN, one edge server as well as 20
clients are adopted, and these clients are evenly arranged in 5
LANs with 4 clients per LAN. The communication cost within a
LAN is supposed to be cheaper than the communication across
the LANs or with the server.

Data Partition: In order to study the impact of non-IID
data on the performance of model training, for C10-CNN, we
partition the training datasets on the clients in two ways. 1)
IID: each client is evenly and randomly allocated with the same
amount of images (5,000 images per client for C10-CNN); 2)

3https://www.amax.com/products/gpu-platforms/
4https://pytorch.org/



10

non-IID: the images are grouped by their labels, and the images
of one class are only distributed to a certain client as its local
data. For each client, it only holds the images of one class,
which represents non-uniform data on clients [5]. For C100-
CNN, each client is allocated with 1) (IID) 2,500 randomly
sampled training images, or 2) (non-IID) the images labeled
with 5 distinct classes. Similar to the above non-IID setting,
the images with 100 classes (e.g., Res-ImageNet) are partitioned
into 20 shards in terms of their labels, each of which contains
the images labeled with 5 classes and is distributed to a specific
client. In addition, the test datasets are allocated to the server
for evaluating and testing the global models.

Model Training: The aforementioned three models are sepa-
rately trained using FedAvg, FedSwap, RandMigr, FedProx and
FedMigr. To better analyze the effectiveness of the stochastic
model migration strategy, we unify some of the hyperparam-
eters in the common three processes of these schemes, i.e.,
Model Distribution, Global Aggregation and Local Updating.
Concretely, the fraction α of the selected clients is set as
1, i.e., all clients are selected for model training in a global
iteration. Besides, local iteration τ is also set as 1, which
indicates that each local model is trained once over the local
data in a single Local Updating process. The frequency of
model migration within a global iteration is empirically set as
49, thus the local models are aggregated every 50 epochs (as
mentioned in Section II, herein, one local updating iteration
is regarded as one epoch). For the sake of comparison, we
are going to evaluate the performances (e.g., test accuracy) of
FedAvg, FedSwap, RandMigr, FedProx and FedMigr within the
same number of training epochs. The three models and datasets
(C10-CNN, C100-CNN and Res-ImageNet) are trained for 2000
epochs. Mini-batch SGD with a batch size of 64 is applied to
optimize the local models.

2) Simulation Results: We perform five groups of simula-
tions to verify the efficiency of our proposed framework, and
the simulation results are as follows:

TABLE II: Test accuracy (%) of different models trained with
five schemes under different data settings.

C10-CNN C100-CNN Res-ImageNet
IID non-IID IID non-IID IID non-IID

FedAvg 62.5 28.3 42.2 36.8 55.3 45.4
FedSwap 62.8 34.9 42.6 37.5 56.2 48.6
RandMigr 63.2 41.5 42.8 38.9 57.4 49.2
FedProx 62.8 31.7 42.5 37.7 55.8 47.8
FedMigr 63.7 44.7 43.2 40.7 57.9 52.4

IID vs. Non-IID: Given a fixed number (e.g., 1,000) of
training epochs, the test accuracy of the three models trained
with five schemes on both IID and non-IID data are shown in
Table II. Since we mainly concentrate on comparing five dif-
ferent schemes, training models with state-of-art performances
are beyond the scope of this work. In terms of the results, we
can find that: 1) When the local data of clients follow the IID
setting, the models trained with five schemes may have the
similar training performances, which is in accordance with the
theoretical analysis in Section II-C. 2) Compared with the IID
setting, the test accuracies of all the models trained on non-
IID data show diverse degrees of decline. However, with the

TABLE III: Resource consumption, i.e., Traffic (GB) and Time
(h), of five different solutions under non-IID setting.

C10-CNN C100-CNN Res-ImageNet
Traffic Time Traffic Time Traffic Time

FedAvg 2.87 9.38 2.91 9.72 4.62 17.34
FedSwap 2.44 7.88 2.64 8.19 3.84 16.85
RandMigr 1.57 5.64 1.71 5.93 3.37 15.23
FedProx 2.65 8.62 2.77 9.15 4.35 17.16
FedMigr 1.73 4.59 1.89 4.87 2.44 13.42

intelligent model migration strategy, FedMigr outperforms the
other four baselines on all the three models. Concretely, FedAvg,
FedSwap, RandMigr, FedProx and FedMigr separately achieve
the accuracy of 28.3%, 34.9%, 41.5%, 31.7% and 44.7%
on C10-CNN. Therefore, FedMigr improves the performance
(test accuracy) over the other four baselines by as much as
16.4%, 9.8%, 3.2% and 13% on these baselines. The testing
results demonstrate the significant effectiveness of our FedMigr
framework.

Resource Consumption: We test the resource consumption
(e.g., bandwidth and time) of five different schemes with a
fixed accuracy requirement (e.g., 80%). Given the simulated
network topologies specified above, during the period of model
training, some model migrations happen within a LAN with
RandMigr and FedMigr frameworks under non-IID settings.
However, for FedSwap and FedAvg, local updates always need
to be transmitted to the server every epoch, which brings
much more global communications and bandwidth consumption
for federated training, leading to a slower convergence rate.
In our experimental setting, FedMigr can help to save C2S
bandwidth resource for model delivery and take full advantage
of the local communication in comparison with FedSwap and
FedAvg. Table III shows that FedMigr can significantly reduce
the resource consumption, including network bandwidth and
completion time, of federated training compared with the other
four baselines. For CIFAR100 trained over CNN, the bandwidth
consumption of FedMigr is 1.89GB, while that of RandMigr,
FedSwap, FedProx and FedAvg is 1.71GB, 2.64GB, 2.77GB
and 2.91GB, respectively. Therefore, FedMigr can reduce the
bandwidth consumption by about 39.6%, 46.6% and 53.9%
compared with FedSwap, FedProx and FedAvg, respectively.
Moreover, our proposed framework can also reduce the comple-
tion time by about 21.8%, 40.5%, 46.8% and 49.9% compared
with the four baselines, respectively.

Effect of Model Migration: To further evaluate the effect
of the Model Migration process, we train multiple experiments
with different configurations. We modify the frequency of model
migration with diverse values when training different models,
and perform Global Aggregation every 2 times (‘agg2’), 5
times (‘agg5’), 10 times (‘agg10’), 20 times (‘agg20’), 50 times
(‘agg50’) and 100 times (‘agg100’). The simulation results in
Fig. 5 indicates that the model accuracy can get well improved
with more rounds of Model Migration in a global iteration
(from ‘agg2’ to ‘agg100’, the accuracy increases from 63% to
73%). With the increasing frequency of Model Migration, it is
equivalent to increasing the probability of training each local
model with much more data on many different clients, which
can contribute to further shortening the distribution divergence
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Fig. 7: Training performance of loss and accuracy with CNN
trained over CIFAR10 in test-bed.

as well as the parameter divergence, improving the test accuracy.
Scalability Simulation: In order to evaluate the scalability of

our proposed algorithm, we test the time required for decision
making with different simulation scales, i.e., different number
of clients in the network. In the previous works, there is a core
step in the design of approximate algorithms, that is, solving
a convex optimization problem (S-COP) through programming
[46], which is the most time-consuming part of an approximate
algorithm. We have conducted a set of experiments to compare
the consumed time for making decisio of different algorithms.
With the increasing number of clients from 10 to 100, we
compare the time costs of S-COP and the model inference. The
experimental results in Fig. 6, indicate that the inference time of
the deep model increases much more slowly with the increasing
scale of clients, compared with that of S-COP.

Impact of Link Speed: Generally, the link speed of C2C
communication within LANs is faster than that of C2S commu-
nication across LANs in edge computing. However, there may
be some slow C2C communication links (e.g., across LANs)
in practice. In order to evaluate the performance of FedMigr in
presence of slow C2C communication, we perform classification
task with CNN over CIFAR10 dataset. Given 500 training
epochs, we record the communication frequency of each C2C
link. As shown in Fig. 8, the faster links are often selected
for model migration with higher probabilities, i.e., the larger
communication frequency. That is because the DRL agent in
FedMigr has the ability to analyze the impact of C2C link
speed on the completion time of federated training while making
decisions for model migration. Thus, FedMigr can still achieve
great performance of federated training even if there are some
slow C2C communication links in the network.

D. Test-bed Evaluation

1) Implementation on the Platform: We implement five
different schemes on a real test-bed environment, which is
composed of two main parts: a deep learning workstation
with four NVIDIA GeForce RTX Titan GPUs and 30 devices,
including 15 NVIDIA Jetson TX2 and 15 Xavier NX5. Each
TX2 has one GPU and one CPU cluster, which consists of
a 2-core Denver2 and a 4-core ARM CortexA57 with 8GB
RAM. Each NX is equipped with a 6-core NVIDIA Carmel
ARMv8.2 CPU and a 384-core NVIDIA Volta GPU with 8GB
RAM. Specifically, the workstation acts as the PS which is
responsible for the model aggregation and verifying the training
performance of global model. We adopt a TX2 or NX as a

5https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
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Fig. 8: The communication frequencies for 15 sampled C2C
links. All sampled links are divided into three parts according
to their link speeds: fast(green), moderate(yellow), slow(red).

worker to locally train the model and send the updates to the
parameter server for aggregation. To represent the real-world
edge computing environment where the PS is always located at
remote cloud and communicates with the edge servers (devices)
at network edge via WAN, we place them at different locations
at least 2,000 meters apart and let them communicate through
the link with a bandwidth of about 50Mbps.

Data Distribution on Clients: The different categories of
data distributions, i.e., IID and non-IID, among the clients have
a great impact on the performance of model training. In the
experiments, we mainly consider the following five different
cases to verify the effect of data distributions on model training,
including IID data and the four different levels of non-IID data.
For CIFAR10, each worker has p% (p = 10, 20, 40, 60 and 80)
of a unique class in 10 classes and the remaining samples of
each class are partitioned to other clients uniformly. Note that
p = 10 is a special case, where the distribution of training
dataset is IID. We denote the five different cases of data
distributions as 0.1, 0.2, 0.4, 0.6 and 0.8 over CIFAR10. For
CIFAR100, each worker lacks p (p = 0, 10, 20, 30 and 40)
classes of data samples, and the samples of one class are
distributed on only (10− p/10) clients uniformly. Particularly,
p = 0 also represents uniform data distribution. We denote
the cases of data distributions as 0, 0.1, 0.2, 0.3 and 0.4 over
CIFAR100.

2) Testing Results: We perform three groups of experiments
to evaluate the efficiency of our proposed framework.

Convergence Performance: In the first set of experiments,
we observe the training performance of five different schemes
with a fixed accuracy requirement (e.g., 80%). The model
migration in FedMigr and RandMigr, which is equivalent to
training the local model over more data on different clients,
can well reduce the influence of non-IID issue through model
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migration, accelerating the process of model training. Fig. 7
shows that the required number of training epochs of FedMigr
is less than the other four baselines. For FedMigr, given the
accuracy requirement of 80%, the required number of epochs
is about 385, while that of RandMigr, FedSwap, FedProx and
FedAvg is about 468, 679, 884 and 972, respectively. In other
words, FedMigr can reduce the required number of epochs
by about 17.7%, 43.3%, 56.4% and 60.4% compared with
RandMigr, FedSwap, FedProx and FedAvg, respectively.

Effect of Resource Constraints: The second set of experi-
ments observes the performance (CNN trained over CIFAR10)
of federated training with resource constraints (e.g., network
bandwidth and completion time). Local model migration be-
tween the clients in FedMigr and RandMigr will accelerate the
training process with less number of epochs compared with
FedAvg, FedProx and FedSwap, which can reduce the bandwidth
consumption and completion time of federated training. The
left plot of Fig. 9 shows that the test accuracy increases for
all solutions with the increasing bandwidth budget. However,
the training performance of FedMigr is better than the other
four schemes. For instance, given the bandwidth budget of
1GB, the test accuracy of FedMigr is about 65.7%, while that
of RandMigr, FedSwap, FedProx and FedAvg is about 63.3%,
60.5%, 58.8% and 57.4%, respectively. Therefore, FedMigr can
improve the test accuracy by about 2.4%, 5.2%, 6.9% and 8.3%
compared with RandMigr, FedSwap, FedProx and FedAvg.

As shown in the right plot of Fig. 9, more time budgets
will significantly improve the test accuracy of all solutions.
However, our FedMigr will achieve higher test accuracy than
the four baselines with the same completion time (e.g., 3,000s).
For example, the accuracy of FedMigr is about 75.8%, while
that of RandMigr, FedSwap, FedProx and FedAvg is about
70.7%, 68.3%, 65.8% and 63.5%, respectively. Thus, FedMigr
can improve the accuracy by about 5.1%, 7.5%, 10% and 12.3%
compared with the four baselines.

Different Non-IID Levels: The last set of experiments tests

the training performance (CNN trained over CIFAR10 and
CIFAR100) of five schemes under different non-IID levels. As
shown in Fig. 10, the training performance (e.g., test accuracy)
will be degraded with the increasing of non-IID levels. The
local model migration will significantly improve the weight di-
vergence caused by non-IID data. Thus, FedMigr and RandMigr
can achieve better performance of federated training than the
other three baselines, especially under a large non-IID level.
For example, given C100-CNN with 1,000 epochs and non-
IID level of 0.4, the test accuracy of FedMigr is about 61.7%,
while that of RandMigr, FedSwap, FedProx and FedAvg is about
58.2%, 55.3%, 53.5% and 51.6%. In other words, FedMigr will
improve the test accuracy by about 3.5%, 6.4%, 8.2% and 10.1%
compared with the four baselines, respectively.

Besides, we observe the bandwidth consumption and com-
pletion time of federated training (CNN trained over CIFAR10)
with different non-IID levels. Fig. 11 shows that both band-
width consumption and completion time of model training
increase with the level of non-IID. However, the increasing
ratio of FedMigr is much slower than the other four baselines.
In comparison, FedMigr requires less bandwidth consumption
and completion time than RandMigr, FedSwap, FedProx and
FedAvg. For instance, given 2000 epochs, the completion time
of FedMigr is about 19,372s if the level of non-IID is 0.6,
while that of RandMigr, FedSwap and FedAvg is about 34,384s,
40,929s, 43,914s and 48,942s, respectively. Therefore, FedMigr
can reduce the completion time of model training by about
43.7%, 52.7%, 55.8% and 60.4%, respectively.

V. CONCLUSION

In this work, we propose the FedMigr framework, which in-
tegrates an intelligent model migration strategy into the FedAvg
algorithm to address the challenges of non-IID data and limited
bandwidth resource raised by emerging FL in heterogeneous
edge computing. We have built a simulated and a real test-bed
FL environment to evaluate the performance of FedMigr via ex-
tensive experiments with three popular benchmark datasets. The
results demonstrate the effectiveness of FedMigr for improving
the model accuracy and reducing resource consumption (e.g.,
bandwidth and time) in heterogeneous edge computing.
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