
1

Enhancing Federated Learning with In-Cloud
Unlabeled Data

Lun Wang1,3, Yang Xu1,3, Hongli Xu1,3, Jianchun Liu2,3, Zhiyuan Wang1,3, Liusheng Huang1,3
1School of Computer Science and Technology, University of Science and Technology of China

2School of Data Science, University of Science and Technology of China
3Suzhou Institute for Advanced Research, University of Science and Technology of China

{wanglun0, jsen617, cswangzy}@mail.ustc.edu.cn, {xuyangcs, xuhongli, lshuang}@ustc.edu.cn

Abstract—Federated learning (FL) has been widely applied
to collaboratively train deep learning (DL) models on massive
end devices (i.e., clients). Due to the limited storage capacity
and high labeling cost, there are always insufficient data stored
and annotated on each client. Conversely, in cloud datacenters,
there exist large-scale unlabeled data, which are easy to collect
from public access (e.g., social media). Herein, upon the federated
semi-supervised learning (FSSL) technology, we propose the Ada-
FedSemi system, which leverages both on-device labeled data
and in-cloud unlabeled data to boost the performance of DL
models. Given the limited communication and massive quantity
of the clients, in each training round, we decide to select partial
clients to participate in FL, and their local models are aggregated
by the parameter server (PS) to produce pseudo-labels for
the unlabeled data, which are utilized to enhance the global
model. Considering that the number of participating clients
and the quality of pseudo-labels will have a significant impact
on the training performance (e.g., efficiency and accuracy), we
introduce a multi-armed bandit (MAB) based online algorithm
to adaptively determine the participating fraction and confidence
threshold during federated model training. Extensive experiments
on benchmark models and datasets show that, given the same
resource budget, the model trained by Ada-FedSemi achieves 3%-
14.8% higher test accuracy than that of the baseline methods.
Besides, when achieving the same test accuracy, Ada-FedSemi
saves up to 48% training cost, compared with the baselines.

Index Terms—Edge Computing, Federated Learning, Semi-
supervised Learning, Pseudo-labeling.

I. INTRODUCTION

With the considerable development of deep learning (DL)
in recent years, more and more AI applications are penetrating
our daily life, such as smart transportation [1], virtual reality
[2] and intelligent assistants [3]. In order to utilize data
generated at the network edge without possible leakage of
personal privacy, federated learning (FL) [4] is proposed to
collaboratively train DL models on massive end devices with
the aid of parameter servers (PS). In FL, end devices (i.e.,
clients) keep their data locally during training and only upload
local models to the PS periodically for global aggregation [5].
Then, the PS broadcasts the global model back to clients, and
the interaction procedure will last until the model converges.

The most existing works of FL concentrate on training effi-
ciency and assume sufficient labeled data on clients. However,
due to the high labeling cost or lack of expert knowledge for
annotation, the scale of labeled data on each client may be
small [6]. Although some simple labels on mobile phones

can be obtained automatically (e.g., location of landscape
photos) [7], other valuable labels need to be annotated by
users or domain experts manually (e.g., age and gender labels
of face images or morphologic features of pathology images)
[8]. Since the strong performance of DL models is largely
attributed to the availability of abundant data (especially the
labeled data), the insufficient labeled data on clients may
introduce overfitting to the DL models [9]. On the contrary,
there are various other data sources (e.g., social networks
[10]) continuously generating different types of unlabeled data,
including text, images, videos and so on [11], which are
collected and stored in cloud datacenters. For example, the
large-scale WebVision Database [12] consists of 2.4 million
web images crawled from the Internet, and the image labels
are always missing or contain errors [13].

To fully utilize both labeled and unlabeled data in FL, a
new technology of federated semi-supervised learning (FSSL)
has been proposed [14]. Long et al. [15] and Jeong et al.
[14] assume the (labeled and unlabeled) data are already on
clients, while some works [16], [17] distribute unlabeled data
from the cloud to clients and then implement FSSL using
the mixed data on clients. However, limited by the storage
capacity of clients, the data size on clients is much smaller
than that in cloud, which restricts the performance boost
of DL models. Besides, delivering additional data from the
cloud to clients will incur a large amount of communication
cost and also increase computation overhead for the resource-
constrained clients. Instead, in works [18], [19], the PS first
collects local models from all clients as teacher models, and
then produces pseudo-labels for the in-cloud unlabeled data in
terms of the teachers’ predictions. Subsequently, the pseudo-
labeled data are exploited to improve the trained model. How-
ever, since they adopt all pseudo-labeled data in the training
without considering the quality of pseudo-labels, there may be
many incorrect labels, which will lead to noisy training [20].
Moreover, given the massive quantity of the clients, collecting
local models from all the clients will result in extremely high
communication cost, which is infeasible for FL systems.

In this paper, we consider a practical FL scenario where
there are limited labeled data on clients and large-scale
unlabeled data in cloud, and the clients are equipped with
limited computation, communication and storage resource.
We fuse FL and semi-supervised learning, and leverage both
the on-device labeled data and in-cloud unlabeled data to

2

better boost the performance of DL models, even when the
labeled data are not independent and identically distributed
(non-IID) across clients. During FL training, the quality of
pseudo-labels (depicted as confidence) is low at the early stage
and increases gradually as the training progresses [20]. If a
large number of low-confidence pseudo-labels are adopted, the
training performance will be significantly degraded, resulting
in poor generalization and resource waste. Besides, the number
of participating clients (referred as participating fraction) has
an impact on training cost, including time and communication.
With the increasing participating fraction, the communication
cost will increase and the time will be shorten when achieving
the same accuracy [21]. Note that different FL tasks usually
have various preferences towards communication cost and time
cost, and their preferences may change over time during the
training process. For example, time-critical tasks (e.g., search-
and-rescue tasks) always require fast convergence while other
less urgent tasks in cellular network may expect small traffic
consumption. Therefore, the approaches [21], [22] with fixed
strategies can barely achieve satisfactory training performance.

To improve training efficiency as well as model accuracy, we
propose an adaptive FSSL system termed Ada-FedSemi, which
employs a multi-armed bandit (MAB) based online learning
algorithm to adaptively determine the participating fraction
(i.e., P) and confidence threshold (i.e., C) in terms of the
resource budgets and cost preferences. Most prior researches
of semi-supervised learning concentrate on achieving the state-
of-the-art model accuracy but ignore training efficiency [23].
Instead, our paper concentrates on the trade-off between model
performance and training cost, which is an important issue
in practical distributed systems such as an FL system [24],
[25]. The main contributions of this paper are summarized as
follows:

• Considering the constrained computation and communi-
cation resource of clients at the network edge, we propose
to exploit limited on-device labeled data and large-scale
in-cloud unlabeled data to boost the training performance
of FL in a semi-supervised way.

• To adapt to different cost preferences of FL tasks, we
present a multi-armed bandit based online algorithm to
adaptively determine the participation fraction of clients
and pseudo-labeling confidence threshold for federated
model training (i.e., Ada-FedSemi) to improve training
efficiency and model accuracy.

• We develop an FL hardware prototype system and con-
duct extensive experiments on benchmark models and
datasets. The experimental results demonstrate that, (i)
given the same resource budget, Ada-FedSemi can im-
prove test accuracy by 3%-14.8%, (ii) when achieving
the same test accuracy, Ada-FedSemi saves up to 48%
training cost, compared with the baseline methods.

The rest of the paper is organized as follows. Section
II introduces the adaptive FSSL system and formulates the
optimization problem. Section III describes the MAB based
online algorithm. The experimental evaluation is presented in
Section IV. Section V reviews some related works and Section
VI gives the conclusions.

TABLE I: Summary of some important notations.

Notation Meaning (at round k)
V set of clients V = {v1, v2, . . . , vM}
Vk set of clients participating at round k
DL labeled dataset across clients
DU in-cloud unlabeled dataset
Dk,U selected unlabeled data for training
ŷj one-hot pseudo-label for the j-th unlabeled data
aj confidence of the pseudo-label ŷj
Pk participating fraction of clients
Ck confidence threshold for pseudo-labels
tk,m time cost of client vm
tk,p time cost of the PS
tk total time cost
W communication cost of delivering a local model
bk total communication cost
α bias factor for cost preference

Φk weighted cost

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

In this section, we first introduce the FSSL system and the
main training procedure of Ada-FedSemi. Then, we conduct
several experiments to show the motivation of utilization of
unlabeled data and further present the impact of participating
fraction as well as confidence threshold. Finally, we formally
describe the problem to be solved in this paper. For ease of
expression, we list some important notations in Table I.

A. System Description for FSSL

An FSSL system usually includes a parameter server (PS)
and a set of M distributed clients (e.g., IoT devices and edge
nodes) V = {v1, v2, . . . , vM}, which collaboratively train DL
models over the networks. Each client vm ∈ V trains a local
model on its own private dataset Dm with Nm labeled data,
and only needs to synchronize model parameters with the
PS rather than sharing the original data, which prevents the
exposure of personal privacy.

Let D = DL ∪ DU denote the whole training dataset,
where DL = D1,L ∪D2,L ∪ · · · ∪ DM,L is the labeled dataset
distributed across clients and DU is the unlabeled dataset
collected in the cloud. For the sake of description, we assume
that there is no intersection between local datasets. Thus, there
are NL =

∑M
m=1Nm data samples in DL = {(xi, yi)}NL

i=1,
where xi is the features of the i-th data sample and yi =
[yi,1, . . . , yi,Q] ∈ {0, 1}Q is a one-hot label, and Q is the
total number of classes. yi,q = 1, q ∈ [1, Q] means that the
data sample xi belongs to class q. For the unlabeled dataset,
there are NU data samples in DU = {xj}NU

j=1, which lack the
ground-truth labels. Let F (w, x, y) denote the loss function
over the data (x, y) and w ∈ Rd is the model parameter with
d dimensions. When considering FL on labeled local data, for
each client vm, its local loss function is defined as:

fm(w) = min
w∈Rd

E(x,y)∼Dm
F (w, x, y). (1)

In order to utilize unlabeled data during the model training,
pseudo-labeling is a general and efficient method [20], [26],

3

Parameter server

Unlabeled data

Massive clients

with labeled data

Select and broadcast

Intermediate model

Upload and aggregate

...

Selected clients

Local

updating

Global model

Teacher model

Unlabeled data Pseudo-labeled

data

 D1

... ...wk,1

Local models

Generate

pseudo-labels

High-confidence

data
Global Model

Select

Train
Moving average

Round k Round k+1

Network Edge

Cloud

...

Select and broadcast

wk,3

wk

 D3

wk
...

Selected clients

 D2

...
wk+1

 D4

wk+1

... ...

Teacher model

Unlabeled data

Fig. 1: System workflow of Ada-FedSemi.

in which there are two alternating steps, including training
and labeling. In the training step, models are trained on both
labeled and pseudo-labeled data, which is similar to traditional
supervised learning but has different loss functions. In the
labeling step, a trained model, also called teacher model,
is used to produce predictions for unlabeled data. For a
certain data sample xj , the prediction by the teacher model
is pj = [pj,1, . . . , pj,Q] ∈ [0, 1]Q and

∑Q
q=1 pj,q = 1. The

pseudo-label ŷj of sample xj is defined as:
ŷj = argmax

q
pj,q. (2)

When the model is trained on unlabeled data, the pseudo-
labels are treated as their training targets. Therefore, the FSSL
system aims to optimize the following objective function on
both labeled and unlabeled datasets:

f∗ := min
w∈Rd

E(x,y)∼DL
F (w, x, y)

+ E(x,ŷ)∼DU
F (w, x, ŷ). (3)

B. System Workflow of Ada-FedSemi

In Ada-FedSemi, the model will be trained on both on-
device labeled data and in-cloud unlabeled data iteratively.
Fig. 1 illustrates the workflow of the proposed Ada-FedSemi
system. We consider the more effective synchronous FL
training scheme, since the secure aggregation and differential
privacy techniques applied in FL usually require synchronous
operations [27] and the convergence of asynchronous training
algorithms may not be guaranteed [28]. The process involves
many training rounds, and at each round k, it mainly consists
of the following four steps:

(1) Model Broadcast and Local Updating. In this step, the
PS selects a fraction of clients (let Pk denote the participating
fraction and Vk denote the set of selected clients at round k),
and broadcasts the global model wk to them. Most researches
[4], [29]–[31] select specific clients based on a predefined
Pk. In general, larger fractions lead to faster convergence but
result in more traffic consumption, and vice versa [21]. Thus,
considering the properties of FL tasks and the limited resource
in the distributed data system, our algorithm concentrates on

determining Pk. With a determined Pk, randomly selecting
clients is an intuitive and efficient way to ensure that the
global model can learn from different knowledge since data
are always non-IID across clients in FL [4], [21], [29]. Nev-
ertheless, some other advanced client selection strategies [30],
[31] can be applied regarding the value of Pk derived from
our algorithm, which may further improve the performance of
FL but with a higher cost for selecting specific clients.

For each selected client vm, it first initializes wk,m(0) =
wk and then performs local updating on its local dataset by
stochastic gradient descent (SGD) [32]:

wk,m(τ ′ + 1) = wk,m(τ ′)− ηk∇fm(wk,m(τ ′)), (4)
where ηk is the learning rate, ∇fm(wk,m(τ ′)) is the stochastic
gradient, τ ′ ∈ [0, τ) and τ is the number of local updating.
Finally, client vm gets its updated model wk,m.

(2) Model Uploading and Global Aggregation. After
finishing local updating, clients in Vk upload their local models
to the PS, and the PS aggregates these models based on the
number of data samples in their local datasets as follows:

wk+ 1
2

=

∑
vm∈Vk Nmwk,m∑

vm∈Vk Nm
, (5)

where wk+ 1
2

is referred as the intermediate model. Then, the
teacher model is updated by the intermediate model, which
will be elaborated in Section III.

(3) Pseudo-labels Generation and Selection. At the PS,
in terms of the teacher model, we make predictions for the
unlabeled data and then generate pseudo-labels. Since ŷj
may not be the ground-truth label, we need to estimate the
confidence of the pseudo-labels, which indicates how likely a
pseudo-label is true. Specifically, we regard the probability of
label ŷj in the prediction as its confidence [23]:

aj = max
q
pj,q. (6)

Generally, high-confidence pseudo-labels are more likely to be
the ground-truth labels and vise versa.

To mitigate data noise introduced by pseudo-labeling, at
round k, we only train the model on the high-confidence
pseudo-labeled data samples, whose confidence aj is over a
threshold Ck [33].

(4) Semi-supervised Model Training. The intermediate

4

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8
A
cc
ur
ac
y

Rounds

 NL=1e4, NU=4e4

 NL=2e4

 NL=1e4

Fig. 2: Test Accuracy vs.
Rounds.

0 100 200 300 400 500 600
0.0

0.5

1.0

1.5

2.0

Lo
ss

Rounds

 NL=1e4, NU=4e4

 NL=2e4

 NL=1e4

Fig. 3: Training Loss vs.
Rounds.

 Time Cost
 Comm. Cost

0.1 0.2 0.5 1.0
80
90

100
110
120
130
140
150

T
im

e
C

os
t (

m
in

)

Participating Fraction
10

20

30

40

50

60

70

C
om

m
.

C
os

t (
G

B
)

Fig. 4: Time and communication
cost to achieve 60% accuracy.

0.6 0.7 0.8 0.9 0.95 0.98 1.0
0.5

0.6

0.7

0.8

A
cc
ur
ac
y

Confidence Threshold

 P=1.0
 P=0.2
 P=0.1

Fig. 5: Accuracy with
different P and C.

model derived from the aggregation of local models may
suffer from poor generalization, since the local models can
easily overfit to the insufficient on-device labeled data [9].
Thus, we expect to improve the model’s generalization ability
by learning additional knowledge from the massive in-cloud
unlabeled data. Specifically, the intermediate model in step
(2) is further trained on pseudo-labeled data at the PS in a
semi-supervised way:

wk+1 = wk+ 1
2
− ηk∇fs(wk+ 1

2
), (7)

where fs(w) = E(x,ŷ)∼Dk,U
F (w, x, ŷ) and Dk,U =

{(xj , ŷj)|xj ∈ DUand aj > Ck} is the high-confidence
pseudo-labeled dataset. As a result, the global model wk+1

trained on both labeled and unlabeled data is obtained. These
four steps are executed repeatedly until the model converges.

C. Motivation for the Design of Ada-FedSemi

In this section, we conduct several sets of experiments to
present the motivation of federated model training with the
mixture of labeled and unlabeled data (Figs. 2-3), and analyze
the impacts of participating fraction (i.e., P) and confidence
threshold (i.e., C) (Figs. 4-5) on training performance. For
the sake of simplicity, P and C without subscript are used to
indicate that their values keep fixed during the training. We
train VGG9 models for 600 rounds on the benchmark dataset
CIFAR10 with 20 clients, and the details of experiments are
introduced in Section IV.

We begin with experiments on labeled datasets with dif-
ferent scale and an unlabeled dataset. The first experiment
involves 10,000 labeled data samples and 40,000 unlabeled
data samples, while the second and the third experiments
separately involve 20,000 and 10,000 labeled data samples
without unlabeled data. The confidence threshold for pseudo-
labeling is set as 0.8. We present their test accuracy and
training loss in Figs. 2 and 3, respectively. In Fig. 2, with
the increasing number of labeled data from 10,000 to 20,000,
the performance of the trained model is improved significantly.
Since obtaining the ground truth labels of data is always costly,
we find that utilizing the unlabeled data can also achieve higher
test accuracy, compared with training only on labeled data.
This motivates us to exploit massive in-cloud unlabeled data
when the scale of labeled data is limited.

However, in Fig. 3, we observe that the trend of training
loss is not consistent with that of test accuracy. For example,
given the same scale of labeled data, the model trained with

additional unlabeled data achieves worse training loss but
higher test accuracy. Since the ultimate goal of model training
is to make predictions for unseen data, training loss is not a
good metric to measure the performance of a trained model.
Instead, we should adopt a validation dataset to evaluate the
training model and guide the decisions of P and C.

Moreover, we conduct another set of experiments on 10,000
labeled data to analyze the impacts of P and C on training
performance. In Fig. 4, we present the time cost and commu-
nication cost to achieve 60% accuracy given different values
of P . When achieving the same test accuracy, larger P always
leads to faster convergence but results in more communication
cost. Thus, we should determine P carefully to balance the
trade-off between training cost and model accuracy regarding
the desired cost preference.

Furthermore, we conduct experiments with different values
of P and C to analyze their combined influence. Note that
C = 1.0 means the model is only trained on labeled data
since the confidence of pseudo-labels cannot exceed 1.0. The
results are shown in Fig. 5, where the missing test accuracy
indicates the model fails to converge given the corresponding
values of P and C. We observe that, with small P (e.g., 0.1),
the test accuracy is more sensitive to the changes of C than that
with large P (e.g., 0.2 and 1.0). For example, when training
with P = 0.1 and C ≤ 0.98, the test accuracy degrades
from 69.4% (C = 0.98) to 51.8% (C = 0.9), and the model
fails to converge when C ≤ 0.9. Conversely, when all clients
participate in the training (i.e., P = 1.0), the test accuracy is
more robust to the change of C. This set of experiments shows
that the values of P and C should be optimized simultaneously
so as to achieve satisfactory model accuracy.

D. Problem Definition

The above experiments show the effectiveness of utilization
of unlabeled data as well as impacts of two critical parameters,
i.e., P and C. The value of P determines how many clients
will be included in the federated model training and also
controls the scale of labeled dataset. Meanwhile, the value
of C determines how many pseudo-labeled data are adopted
to train the model, i.e., the scale of unlabeled dataset. The
optimization of these two parameters will have a significant
impact on model performance and training cost. We formally
describe the problem in the following.

In FL systems, the clients are usually equipped with limited
and heterogeneous capabilities of computation and commu-

5

nication. Let tk,m denote the time cost of client vm at
round k, which includes the time for model broadcasting,
updating and uploading. Since the operations of computation
and communication at clients can be executed in parallel, the
time cost of clients depends on the slowest participating client
(i.e., the straggler). Thus, the time cost at round k can be
calculated as:

tk = max
vm∈Vk

{tk,m}+ tk,p, (8)

where tk,p = tp|Dk,U | is the time cost for model training
on the in-cloud pseudo-labeled data, and tp is the time for
processing a single data sample at the PS. We ignore the time
cost for generating pseudo-labels, which will be elaborated in
Section III.

Since the clients are usually connected with the PS via
cellular network, with the increasing number of participating
clients, the network may get congested and the communication
cost will increase. Given the size, i.e., W , of the local model
(it is reasonable to assume that the sizes of local models across
different clients are the same), the total communication cost
can be expressed as:

bk = dPkMeW, (9)
where dPkMe is the number of participating clients at round
k. As shown in Fig. 4 and also demonstrated in the work
[21], more communication cost usually leads to faster model
convergence, i.e., less time cost, and vice versa. Considering
that different FL tasks have diverse cost preferences (e.g.,
fast convergence or low communication cost), we consider the
weighted cost of the both as in [21]:

Φk = αtk + (1− α)bk, (10)
where α ∈ [0, 1] is the bias factor to adjust the preference
towards time cost and communication cost. α = 0 means that
only the communication cost is taken into consideration while
α = 1 indicates that the model is expected to converge as
fast as possible without considering communication cost. Note
that the setting of cost preference is based on the properties
of FL tasks [21]. For example, in a cellular network, traffic
consumption is probably the main concern for the clients
participating in FL. In contrast, in a search-and-rescue task
which aims to collaboratively learn a search scheme as quickly
as possible, achieving timely result would be the first priority.
Thus, the cost preferences are mainly determined by the
requirements of FL tasks and our algorithm can adapt to
different cost preferences online, which is demonstrated in
Section IV.

In the most prior works [32], [34], the optimization objective
of model training aims to minimize the loss function over
training data, i.e., the objective defined in Eq. (3). However,
as demonstrated in Section II-C, training loss fails to exactly
evaluate the prediction ability of the model on unseen data
(i.e., generalization ability), especially when the scale of
training dataset is varying. Instead, the validation dataset can
be used to provide an unbiased evaluation of the model during
the training [35]. The main difference between test dataset
and validation dataset is that the test dataset can be dropped
without affecting the model training while the validation
dataset is used to guide the training process, e.g., the decision
of Pk and Ck in this paper. At round k, we denote the accuracy

of the global model on the validation dataset as uk.
As stated in Section II-C, Pk and Ck have a significant

impact on the performance of model training and need to be
judiciously determined. As a result, the optimization problem
is formulated as follows:

min
Pk,Ck,K

K∑
k=1

αtk + (1− α)bk (11)

s.t.

uK ≥ ε,∑K
k=1 tk ≤ T,∑K
k=1 bk ≤ B,

Pk, Ck ∈ [0, 1],∀k,

where ε is the target accuracy on validation dataset. T and B
are the time and communication budgets for federated model
training, respectively.

III. ALGORITHM DESCRIPTION

Since Pk and Ck play an important role in the model
training, we propose an adaptive federated semi-supervised
learning system (termed as Ada-FedSemi) to utilize both on-
device labeled data and in-cloud unlabeled data efficiently.
Specifically, given the desired cost preference and limited
resource budgets, Ada-FedSemi employs a multi-arm bandit
(MAB) based online algorithm to adaptively determine the
participating fraction (i.e., Pk) of clients and the confidence
threshold (i.e., Ck) of pseudo-labels at each round.

A. Overall Training Process of Ada-FedSemi

The overall training process of Ada-FedSemi is described in
Alg. 1. Our goal is to achieve the target model accuracy while
minimizing training cost. At round k, based on the value of Pk,
the PS first randomly selects a subset of clients to participate
in FL, and then aggregates the local models to derive the
intermediate model wk+ 1

2
at the end of local updating (Line 4-

7). On the basis of the intermediate model, the teacher model
w̃k is updated (Line 8).

As suggested in [36], averaging the models across different
rounds can generate a more accurate and reliable model than
directly using the latest model. This is because models tend
to forget past learned knowledge and fit the recent training
data [37]. For example, at a certain round, if only one client
is chosen to participate in the federated model training and
the data on that client is highly skewed, e.g., all data belong
to only one class, the trained model will prefer to classify
the input data as that class. Thus, we adopt the exponential
moving average of the intermediate models across rounds as
the teacher model, which is updated as follows and can achieve
reliable performance improvement:

w̃k = γwk+ 1
2

+ (1− γ)w̃k−1, (12)
where γ ∈ (0, 1]. Unlike some existing methods, where
the teacher is a well-trained model, our teacher model will
be gradually improved during the training process without
incurring additional training cost [36].

Subsequently, the teacher model w̃k is used to generate
pseudo-labels for unlabeled data (Line 9-10). As generating
predictions for massive unlabeled data is time-consuming,

6

we propose two strategies to reduce the cost for pseudo-
labeling. (1) Pseudo-labeling can be executed periodically
(e.g., every R rounds) since the prediction ability of the teacher
model will not improve significantly in several successive
rounds. Furthermore, (2) pseudo-labeling can be performed in
parallel with other steps like model training, broadcasting and
uploading. As a result, the time cost of pseudo-labeling can
be ignored. In terms of the threshold Ck, we select the high-
confidence pseudo-labeled data, upon which the intermediate
model is further trained to produce the global model wk+1 for
next round (Line 11-12).

Since it is inevitable to generate incorrect pseudo-labels for
unlabeled data, the model trained on these data will accu-
mulate errors (also known as confirmation bias) [38]. In other
words, the model keeps learning from incorrect pseudo-labels,
and thereby the confidence of wrong predictions by the model
continuously increases. In order to prevent error accumulation,
we propose to adjust the learning rate periodically (Line 13).
Specifically, we use the cosine anneal learning rate [39] to
schedule the training process, which can help models jump out
of local optimum and explore other regions [40]. Concretely,
the learning rate is scheduled as follows:

ηk = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

k mod K̃
K̃

π)), (13)

where ηmin and ηmax are the minimum and the maximum
learning rates, respectively. K̃ is the restart interval and k
is the current training round. In each interval, the learning
rate is initialized as ηmax at the beginning and then gradually
decreased to ηmin. As a result, models trained with the trick
of learning rate restart always achieve better accuracy as
demonstrated in Section IV.

B. MAB based Decision Making

To adapt to system dynamics and different cost preferences,
we need to adaptively determine the values of Pk+1 and
Ck+1 (Line 14-17 of Alg. 1). As shown in Section II-C,
more participating clients (i.e., larger P) always contribute
to higher model accuracy but also result in more training
cost. Besides, with the increasing value of C, the number
of selected data decreases and the quality of pseudo-labels
increases, since the high-confidence pseudo-labels are more
likely to be the ground-truth labels in comparison to the
low-confidence pseudo-labels. Moreover, the values of P and
C are demonstrated to have an impact on each other. With
more clients participating in FL (i.e., larger P), the quality of
predictions by the teacher model will increase and thus the
number of errors in pseudo-labels will be reduced, which will
affect the decision of C. Therefore, P and C are expected to
get optimized simultaneously.

However, due to the complex influence factors of federated
model training (e.g., model architecture, datasets, optimizer
and number of clients), it is infeasible to obtain the optimal
values of P and C in advance of the training. Therefore, we
propose a multi-armed bandit (MAB) based online learning
algorithm to determine P and C without any prior knowledge
of the FL system. In each round, the MAB algorithm chooses
an action, i.e., arm, from an action set and collects a reward.

Algorithm 1 Training Process of Ada-FedSemi

Input: Client sets V with their on-device data and in-cloud
unlabeled data

Output: The well-trained model w

1: Initialize MAB agents with action sets SP and SC , global
model wk, participating fraction Pk, confidence threshold
Ck, update interval R, target accuracy ε, current accuracy
uk = 0, k = 1

2: while uk < ε do
3: Processing at the Parameter Server
4: Select dPkMe clients into the set Vk randomly
5: Broadcast wk to vm ∈ Vk
6: Collect local models wk,m,∀vm ∈ Vk
7: Obtain the intermediate model wk+ 1

2
as Eq. (5)

8: Update the teacher model w̃k as Eq. (12)
9: if k mod R = 0 then

10: Update pseudo-labels of unlabeled data
11: Select pseudo-labeled data into Dk,U based on Ck
12: Train wk+ 1

2
on Dk,U as Eq. (7), and obtain wk+1

13: Adjust learning rate ηk as Eq. (13)
14: Validate wk+ 1

2
and record the accuracy as uk,P

15: Validate wk+1 and record the accuracy as uk,C
16: Calculate the change of accuracy ∆uk,P and ∆uk,C
17: Update MAB agents, and determine Pk+1 and Ck+1

18: uk = uk,C , k = k + 1
19: Processing on Each Client vm
20: if Receive wk from the PS then
21: Update the local model as Eq. (4)
22: Upload the trained model wk,m

Then, based on the action decisions and the corresponding
rewards across different rounds, the strategies for choosing
actions are updated.

We take the optimization problem in Eq. (11) as a classic
MAB problem, where the values of P and C can be regarded
as actions. The MAB algorithm is originally developed for
discrete decision spaces. However, the values of P and C are
continuous, which are within [0, 1]. Thus, we need to partition
the continuous decision space into discrete action sets SP and
SC , respectively. In fact, the decision space can be further
zoomed in to focus on a much smaller range. For example,
in Fig. 5, we find that the test accuracy of the trained model
always decreases when the value of C is below 0.8. Therefore,
we only consider the decision space of C in the range of 0.8
to 1.0. The decision making process of our MAB algorithm is
summarized in Alg. 2. In each round, the MAB agent at the
PS first makes the decision about which action is performed
and then obtains a reward in response to the action (Line 3-4).
According to the rewards, the MAB agent updates probabilities
for the corresponding actions (Line 5-6).

We adopt a validation dataset to evaluate the accuracy of
the trained models and calculate the rewards (i.e., accuracy
improvement) of different actions. At round k, we denote the
accuracy of the models wk+ 1

2
and wk+1 as uk,P and uk,C ,

respectively. The accuracy improvement of the two models is

7

∆uk,P and ∆uk,C :
∆uk,P = uk,P − uk−1,C , (14)
∆uk,C = uk,C − uk,P . (15)

Since the intermediate model wk+ 1
2

is aggregated from local
models, we recognize the improvement of this model, i.e.,
∆uk,P , as the outcome of the decision of Pk. Meanwhile,
the model wk+1 is trained on the pseudo-labeled data selected
by Ck, and thus we recognize ∆uk,C as the outcome of the
decision of Ck. Since the algorithm for determining Pk and
Ck is the same, we use ∆uk and S for simplicity to introduce
our algorithm in the following. We define the reward of the
decision at round k as follows:

rk =

{
∆uk

Φk
, if ∆uk ≥ 0,

∆uk · Φk, otherwise.
(16)

As the reward design is the key to the success of MAB
algorithms [41], herein, we explain the rationality of the
reward function. The intuition of our reward design has two
folds and the goals of the two-fold reward functions are consis-
tent, i.e., improving the model performance in a cost-efficient
way. (1) When achieving the same accuracy improvement
(i.e., ∆uk ≥ 0), the decisions which consume less training
cost should be given higher rewards. In another word, we
expect high accuracy improvement and small training cost. (2)
While some inappropriate actions may degrade accuracy, i.e.,
∆uk < 0, and we still use ∆uk/Φk as the reward, a smaller
training cost Φk will lead to a higher penalty (penalty means
negative reward). This is not consistent with our design goal,
i.e., efficient training. Thus, in case of ∆uk < 0, we denote
∆uk · Φk as the reward.

Traditional MAB algorithms estimate the actual reward of
an action by averaging its received rewards across rounds.
However, in this paper, the reward distribution of actions is
not identical across different rounds. Firstly, the improvement
speed of model accuracy is not the same during the training
process. In general, the increase of model accuracy is fast at
the beginning of the training and becomes slow as training
progresses. Besides, the optimal decision may change over
time since the quality of pseudo-labels will improve and the
cost preference may vary during the training. Therefore, this
is a non-stationary MAB problem [42], and it is not rational
to simply average rewards of each action across rounds as
traditional MAB algorithms do. Instead, we concentrate more
on the recent rewards which are assigned with larger weights,
and gradually decay the weights for the past rewards [43]. At
round k, for each action a in the action set S, its estimated
reward r̂k,a is calculated as follows:

r̂k,a =

{
r̂k−1,a + β(rk − r̂k−1,a) , if ak = a,

r̂k−1,a, otherwise,
(17)

where β ∈ (0, 1] is the decay factor and ak is the action chosen
for round k.

Thus, the goal of our MAB algorithm is to maximize
the total received rewards via a judicious trade-off between
exploration and exploitation. Exploitation means pulling the
best action known so far while exploration aims to explore
different actions to find better solutions. Specifically, we adopt
the Boltzmann exploration strategy [44], which is wildly used

Algorithm 2 MAB Agent

1: Action set S and r̂k,a, pk,a for each action
2: for round k ∈ {1, . . . ,K} do
3: Select an action based on the probability pk,a,∀a ∈ S
4: Receive the reward rk based on Eq. (16)
5: Update estimated rewards r̂k,a as Eq. (17)
6: Calculate the probability pk,a of action as Eq. (18)

for balancing exploration and exploitation. The probability of
choosing action a ∈ S at round k is calculated as follows:

pk,a =
eψr̂k,a∑

a′∈S e
ψr̂k,a′

. (18)

Particularly, with ψ = 0, the actions are uniformly chosen
all the time, while ψ → ∞ means that the MAB agent will
always output the action with the highest reward without any
exploration.

IV. EXPERIMENTAL EVALUATION

A. System Platform

We evaluate the performance of Ada-FedSemi through
extensive experiments on an FL hardware prototype system.
Specifically, an AMAX deep learning workstation, which
is equipped with an Intel(R) Core(TM) i9-10900X CPU, 4
NVIDIA GeForce RTX 2080Ti GPUs and 128 GB RAM,
is applied to serve as the PS. Besides, 20 NVIDIA Jetson
TX2 developer kits are specified as the clients. The PS and
clients are connected via a Wi-Fi router. The implementation
for model training is based on the PyTorch deep learning
framework [45], and we use the socket library of Python to
build up the communication between clients and the PS.

B. Setup of Experiments

Datasets and Models: We use two benchmark datasets, i.e.,
CIFAR10 [46] and SVHN [47], which are commonly adopted
in semi-supervised learning [18]–[20], [52], to evaluate the
performance of Ada-FedSemi and baselines:
• CIFAR10: It contains 60,000 color images labeled in 10

classes with 6,000 samples per class. By default, we split
the whole dataset into four datasets: i) labeled training
dataset with 10,000 samples, ii) unlabeled training dataset
with 40,000 samples whose labels are discarded, iii)
validation dataset with 2,000 samples, and iv) test dataset
with 8,000 samples.

• SVHN: There are 73,257 digits for training, 26,032 digits
for testing, and 531,131 additional data, which are labeled
in 10 classes. By default, 5% of training data, i.e., 3,660
digits, are distributed to clients as labeled data. 20,000
and 6,032 digits in testing dataset are used for testing
and validation, respectively. The rest digits in the training
dataset and additional dataset are all placed at the PS as
unlabeled data. As a result, there are 600,728 unlabeled
samples at the PS.

Since data are not always distributed uniformly across
clients at the network edge, we will analyze training perfor-
mance under both IID and non-IID settings. (1) In the IID

8

TABLE II: Performance metrics of FedSemi-P -C and FedAvg-P (i.e., FedSemi-P -1.0) on CIFAR10.

(a) Test accuracy (%)

C
P

0.1 0.2 0.5 1.0

0.6 - - 74.7 75.9
0.7 - 80.3 77.4 82.9
0.8 - 81.4 82.7 83.4
0.9 69.7 82.0 83.3 83.1

0.95 74.4 81.5 81.9 81.5
0.98 77.6 79.2 81.4 80.6
1.0 75.0 75.2 75.5 75.6

(b) Time cost (min) for accuracy of 75%

C
P

0.1 0.2 0.5 1.0

0.6 - - - 419
0.7 - 382 312 251
0.8 - 311 240 196
0.9 - 296 199 186
0.95 - 247 211 190
0.98 356 296 221 194
1.0 395 346 326 314

(c) Comm. cost (GB) for accuracy of 75%

C
P

0.1 0.2 0.5 1.0

0.6 - - - 355
0.7 - 68 139 226
0.8 - 58 113 186
0.9 - 57 98 183

0.95 - 49 103 187
0.98 36 59 108 194
1.0 41 72 169 324

TABLE III: Performance metrics of FedSemi-P -C and FedAvg-P (i.e., FedSemi-P -1.0) on SVHN.

(a) Test accuracy (%)

C
P

0.1 0.2 0.5 1.0

0.7 62.8 80.3 80.7 81.7
0.75 64.3 81.1 81.3 82.1
0.8 67.5 81.7 81.9 83.3

0.85 68.8 82.4 83.3 84.5
0.9 69.4 82.7 82.1 82.7

0.95 72.8 80.5 81.4 81.2
1.0 70.3 80.6 81.0 81.5

(b) Time cost (min) for accuracy of 75%

C
P

0.1 0.2 0.5 1.0

0.7 - 63 52 31
0.75 - 59 46 27
0.8 - 54 43 25
0.85 - 52 37 23
0.9 - 51 41 27
0.95 - 59 45 28
1.0 - 58 43 28

(c) Comm. cost (GB) for accuracy of 75%

C
P

0.1 0.2 0.5 1.0

0.7 - 0.77 1.21 2.07
0.75 - 0.71 1.12 1.94
0.8 - 0.69 1.09 1.76

0.85 - 0.64 1.02 1.69
0.9 - 0.59 1.08 1.81

0.95 - 0.76 1.13 2.20
1.0 - 0.76 1.15 2.04

TABLE IV: Optimal combination of P and C with different cost
preferences (α) on CIFAR10.

Range of α (×0.1) [0, 1.07) [1.07, 5.06) [5.06, 8.68) [8.68, 10]
Optimal P and C (0.1, 0.98) (0.2, 0.95) (0.5, 0.9) (1.0, 0.9)

TABLE V: Optimal combination of P and C with
different cost preferences (α) on SVHN.

Range of α (×0.01) [0, 2.98) [2.98, 4.57) [4.57, 100]
Optimal P and C (0.2, 0.9) (0.5, 0.85) (1.0, 0.85)

setting, all labeled data are uniformly distributed to clients.
(2) In the non-IID setting, as in [30], a fraction (ζ) of data
samples assigned to a client belong to a certain class and
the remaining data samples belong to other classes, which is
denoted as non-IID-ζ. By default, the data distributions of
CIFAR10 and SVHN are both non-IID-0.5.

For CIFAR10, we train a VGG9 model [48] with 3.49M
parameters while a lightweight CNN model with 0.54M pa-
rameters is trained on SVHN. Besides, the SGD-momentum
optimizer is adopted in our experiments to optimize models,
and the momentum is set as 0.9. The restart interval for
learning rate is set as 100. The maximum and minimum
learning rates are set as 0.05 and 0.0001, respectively.

Baselines: We compare our proposed system with the
following baselines.
• FedSemi [18], [19]: In FedSemi, the in-cloud unlabeled

data and on-device labeled data are used to train models
in a semi-supervised way. However, the two critical
parameters, i.e., P and C, are fixed during the training.
Given different combinations of P and C, we denote the
baselines as FedSemi-P -C, e.g., FedSemi-0.5-0.9.

• FedAvg [4]: In FedAvg, only labeled data on clients are
utilized to train models, and thus there is only one critical
parameter, i.e., P . We denote the FedAvg with different
P as FedAvg-P , e.g., FedAvg-0.2. Note that if the value

of C in FedSemi-P -C is set as 1.0 (i.e., FedSemi-P -
1.0), FedSemi-P -1.0 is equivalent to FedAvg-P , since
the confidence of pseudo-labels cannot exceed 1.0 and
none of the unlabeled data is selected. For ease of
presentation, we will use FedSemi-P -1.0 and FedAvg-P
interchangeably in the later experiments.

Performance Metrics: In the experiments, we employ the
following metrics to evaluate the performance of different FL
systems: (1) Test accuracy. In each round, we will evaluate the
global model on test dataset and record the accuracy. (2) Time
cost. We will record the time to achieve the target test accu-
racy on different FL systems. (3) Communication cost. The
communication cost for broadcasting and uploading models
is also recorded when achieving the target test accuracy. (4)
Weighted Cost. Based on the cost preference and Eq. (10),
we combine time cost and communication cost to derive the
weighted cost.

C. The Impacts of P and C

We first conduct experiments on the baselines with fixed P
and C to analyze the impacts of the two parameters. The time
budget of the training is set as 480min and 80min for CIFAR10
and SVHN, respectively, and the target test accuracy is set
as 75%. By default, in each round of SVHN, we randomly

9

0.7 0.75 0.8
0

100

200

300

400

500
Ti

m
e (

m
in

)

Test accuracy

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9
 FedAvg-0.2
 FedAvg-0.5

(a) Time cost

0.7 0.75 0.8
0

50

100

150

200

Co
m

m
. C

os
t

(G
B)

Test accuracy

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9
 FedAvg-0.2
 FedAvg-0.5

(b) Communication cost

0.7 0.75 0.8
0

50
100
150
200
250
300

W
ei

gh
te

d
Co

st

Test accuracy

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9
 FedAvg-0.2
 FedAvg-0.5

(c) Weighted cost with α = 0.5

Fig. 6: Training cost on CIFAR10.

 Ada-FedSemi
 FedSemi-0.5-0.85
 FedSemi-1.0-0.85
 FedAvg-0.5
 FedAvg-1.0

0.7 0.75 0.8
0

10
20
30
40
50
60

Ti
m

e (
m

in
)

Test accuracy
(a) Time cost

0.7 0.75 0.8
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Co
m

m
. C

os
t (

G
B)

Test accuracy

 Ada-FedSemi
 FedSemi-0.5-0.85
 FedSemi-1.0-0.85
 FedAvg-0.5
 FedAvg-1.0

(b) Communication cost

 Ada-FedSemi
 FedSemi-0.5-0.85
 FedSemi-1.0-0.85
 FedAvg-0.5
 FedAvg-1.0

0.7 0.75 0.8
0

1

2

3

4

5

W
eig

ht
ed

 C
os

t

Test accuracy
(c) Weighted cost with α = 0.05

Fig. 7: Training cost on SVHN.

select 100,000 out of 600,728 unlabeled data to generate
pseudo-labels for training efficiency and we will analyze the
impact of the scale of unlabeled dataset in Section IV-F. The
experimental results on CIFAR10 and SVHN are presented in
Tables II and III, respectively.

From the perspective of test accuracy, the models trained on
both labeled and unlabeled data (i.e., FedSemi) can achieve
up to 7.8% accuracy improvement on CIFAR10 and 3.0%
accuracy improvement on SVHN, compared with the models
only trained on labeled dataset (i.e., FedAvg). However, we
observe that FedSemi with small C and/or small P suffers
from accuracy degradation (e.g., P = 0.1 and C ≤ 0.8 on
SVHN) and even fails to converge (e.g., FedSemi-0.1-0.8 on
CIFAR10). Given a small P , the models will only learns
knowledge from a small number of clients and labeled data,
and a small C will bring in many low-confidence pseudo-
labels during the training, which degrades the performance
of models. Besides, the values of P have influence on the
optimal values of C. For example, on CIFAR10, when all
clients participate in the FL training (i.e., P = 1.0), C = 0.8
achieves the highest test accuracy. However, when selecting
only 10% of clients (i.e., P = 0.1), C needs to be set as 0.98
to achieve the best accuracy. The reason lies in that the models
can learn more knowledge from the labeled data with the
increasing of P and thus generate pseudo-labels with higher
confidence. Thus, when using the same C, we can select more
samples with less errors from the pseudo-labeled data.

In terms of training cost, the time cost and communication
cost are usually contradictory. With the increasing number of
participating clients, the time to achieve the target accuracy

gets shorter and meanwhile the communication cost gets
higher. For example, when training models on SVHN using
FedAvg, with the value of P varying from 0.2 to 1.0, the time
cost to achieve 75% test accuracy decreases from 58min to
28min while the communication cost increases from 0.76GB
to 2.04GB. It is noteworthy that training on both labeled
and unlabeled data may not always achieve better training
efficiency, compared with training only on labeled dataset.
For example, on CIFAR10, FedSemi-1.0-0.6 spends 33% more
time cost and 10% more communication cost to achieve
the same target test accuracy in comparison to FedAvg-1.0.
This is because a large number of low-confidence pseudo-
labels mislead the optimization of model training and result
in resource waste.

In Tables II and III, we observe that a little extra time cost
can helps reduce the communication cost to a great extent in
some cases. For example, on CIFAR10, when C is set as 0.9,
the system with P = 0.5 spends 7% more time but saves
47% communication cost, compared with P = 1.0. Different
FL tasks always have different cost preferences. Some tasks
expect to converge fast without considering communication
cost while others may prefer to perform model training in
a communication-efficient way. As a result, these preferences
will lead to different optimal decision of P and C. We present
the optimal combination of P and C under different prefer-
ences in Tables IV and V. For example, on CIFAR10, when
the task prefers saving communication cost, i.e., α < 0.107,
the minimum weighted cost can be achieved with P = 0.1.
When the task is expected to converge fast (i.e., α ≥ 0.868),
all clients (i.e., P = 1.0) should participate in the training.

10

0~60% 60%~80%
0

100

200

300

400
T

im
e

C
os

t (
m

in
)

Training Phase

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9

(a) Time cost

0~60% 60%~80%
0

30

60

90

C
om

m
. C

os
t (

G
B

)

Training Phase

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9

(b) Communication cost

Fig. 8: Training cost on CIFAR10 with varying preference.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ili

ty

Participation Fraction
(a) Phase 1: 0∼60% (α = 0.9)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ili

ty

Participation Fraction
(b) Phase 2: 60%∼80% (α = 0.1)

Fig. 9: Distribution of P in two training phases.

0 60 120 180 240 300 360 420 480
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
cc
ur
ac
y

Time (min)

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9
 FedAvg-1.0

(a) IID

0 60 120 180 240 300 360 420 480
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
cc
ur
ac
y

Time (min)

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9
 FedAvg-1.0

(b) Non-IID-0.5

0 60 120 180 240 300 360 420 480
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
cc
ur
ac
y

Time (min)

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9
 FedAvg-1.0

(c) Non-IID-0.6

0 60 120 180 240 300 360 420 480
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
cc
ur
ac
y

Time (min)

 Ada-FedSemi
 FedSemi-0.2-0.95
 FedSemi-0.5-0.9
 FedAvg-1.0

(d) Non-IID-0.75

Fig. 10: Training process of Ada-FedSemi and the baselines on different data distributions.

D. Performance Comparison

In this section, we compare the performance of Ada-
FedSemi and baselines. In Ada-FedSemi, the decision spaces
of P and C are set as [0.0, 1.0] and [0.8, 1.0], respectively,
and we evenly partition each of the two decision spaces
into 10 discrete values. By default, we set the preference
parameter α as 0.5 and 0.05 for the training on CIFAR10 and
SVHN, respectively. As indicated in Table IV, on CIFAR10,
P = 0.2 and 0.5 can achieve small weighted cost when
α = 0.5. Therefore, we choose FedAvg-0.2, FedAvg-0.5,
FedSemi-0.2-0.95 and FedSemi-0.5-0.9 as baselines. Similarly,
on SVHN, we take FedAvg-0.5, FedAvg-1.0, FedSemi-0.5-
0.85 and FedSemi-1.0-0.85 for comparison. When a system
cannot achieve the target test accuracy, its cost is set as the
maximum (i.e., the budgets are exhausted). For models trained
on CIFAR10 and SVHN, the time budget is set as 500min and
80min, respectively.

The time cost, communication cost and weighted cost of
Ada-FedSemi and the baselines for achieving the different test
accuracy are presented in Figs. 6-7. Although baselines with
fixed P and C may achieve the least time cost (i.e., P = 1.0 on
SVHN) or communication cost (i.e., P = 0.2 on CIFAR10)
in some cases, they cannot achieve the least weighted cost.
On the contrary, Ada-FedSemi can always achieve the least
weighted cost, indicating that Ada-FedSemi is able to balance
time cost and communication cost given the specific cost
preference. On CIFAR10, compared with FedAvg-P , Ada-
FedSemi can save 35% (P = 0.2) and 48% (P = 0.5)
weighted cost when achieving 75% test accuracy. Given the
80% test accuracy, Ada-FedSemi saves the weighted cost over
FedSemi-0.2-0.95 and FedSemi-0.5-0.9 by 22% and 14%.
However, FedAvg-P fails to achieve higher test accuracy (i.e.,
80%) without utilization of the in-cloud unlabeled data. On

SVHN, our algorithm saves 6%-25% weighted cost, compared
with different baselines.

Moreover, we conduct another set of experiments on CI-
FAR10 in the scenario where the FL tasks would like to
achieve an acceptable test accuracy with low time cost and
then further improve model performance in a communication-
efficient way. Specifically, we initially set α as 0.9 to ensure
fast convergence and when the test accuracy reaches 60%, α
is set as 0.1 to put more emphasis on communication cost.
The training process is terminated when the test accuracy
reaches 80%. The communication cost and time cost of the
two training phases are presented in Fig. 8.

In the first training phase, Ada-FedSemi achieves the least
time cost, resulting in the most communication cost since our
goal in this phase is fast convergence. In the second training
phase, our system results in similar communication cost with
FedSemi-0.2-0.95 and saves about 50% communication cost
in comparison to FedSemi-0.5-0.9. We further present the
distribution of the values of P in the two training phases.
As shown in Fig. 9, Ada-FedSemi always chooses the optimal
P (i.e., 0.6 in the first phase and 0.2 in the second phase) with
the high probability, which indicates that our system is able
to adaptively determine the optimal combination of P and C
even when the cost preference is varying over time.

E. Adaptability to Data Distribution

In this section, we conduct experiments to evaluate the
impact of data distributions. The models are trained on CI-
FAR10 with four different data distributions, i.e., IID, non-
IID-0.5, non-IID-0.6 and non-IID-0.75. We take FedSemi-0.2-
0.95, FedSemi-0.5-0.9 and FedAvg-1.0 for comparison. The
time budget is set as 480min, and the experimental results are
presented in Fig. 10.

11

IID Non-IID-0.5 Non-IID-0.6 Non-IID-0.75
0

100

200

300

400

500
Co

m
m

. C
os

t (
G

B)
 Ada-FedSemi FedSemi-0.5-0.9
 FedSemi-0.2-0.95 FedAvg-1.0

Fig. 11: Communication cost of different systems.

0 25 50 75 100
0.75

0.80

0.85

0.90

A
cc
ur
ac
y

Proportion of involved unlabeled data (%)

 SVHN
 CIFAR10

(a) Test accuracy

5 10 15 20 25 30 35 40
0

5
10

15

20

25
30

N
um

be
r

(´
10

00
) Number

 Accuracy

Data size of unlabeled data (´1000)
0.75

0.80

0.85

0.90

A
cc

ur
ac

y

(b) Number of selected data and accu-
racy of pseudo-labels on CIFAR10

Fig. 12: Performance of models trained with different scale of
unlabeled data.

0 60 120 180 240 300 360 420 480
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
cc
ur
ac
y

Time (min)

 no-restart
 restart

(a) FedSemi-0.2-0.7

0 60 120 180 240 300 360 420 480
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
cc
ur
ac
y

Time (min)

 no-restart
 restart

(b) FedSemi-0.2-0.9

Fig. 13: Impact of learning rate restart.

Generally, the test accuracy of the models trained on all
systems decreases with the increasing skewness of data dis-
tribution. The final test accuracy of Ada-FedSemi on IID,
non-IID-0.5, non-IID-0.6 and non-IID-0.75 is 85.0%, 83.3%,
80.4%, and 73.5%, respectively. For the same data distribution,
Ada-FedSemi can always achieve the highest test accuracy and
outperform the three baselines by 1.5% to 14.8%. We find that
FedAvg-1.0 always achieves the best test accuracy at the be-
ginning of the training. This is because, in FedAvg, models are
optimized without perturbation of errors from low-confidence
pseudo-labels and thus can converge fast. For FedSemi, as
the training progresses, the prediction ability of models is
improved, and thus the teacher model generates more and
more high-confidence pseudo-labels for the unlabeled data. As
a result, the models trained on these high-confidence pseudo-
labeled data can achieve higher test accuracy, compared with
FedAvg. Nevertheless, in Fig. 10(d), the test accuracy of
FedSemi-0.2-0.95 and FedAvg-1.0 is separately 59.0% and
66.7%, indicating that with highly skewed data, a small
number of clients may fail to generate high-confidence pseudo-
labels, and thus the incorrect pseudo-labels may mislead the
model optimization.

In Fig. 11, we also present the communication cost of
different systems on the four data distributions. Except Ada-
FedSemi, the communication cost of other three baselines is
almost the same across different data distributions since they
always use fixed P and C. As the skewness of training data
increases, our system can adaptively increase communication
cost to ensure the best model performance. For example, on
non-IID-0.75 dataset, although Ada-FedSemi consumes 20%
more communication cost than FedSemi-0.5-0.9, it improves

the final test accuracy from 66.7% to 73.5%. The results of
the experiments demonstrate that Ada-FedSemi has the ability
of adapting to different data distributions.

F. The Impact of the Scale of Unlabeled Dataset

As mentioned in Section IV-B, the number of unlabeled data
in CIFAR10 and SVHN is 40,000 and 600,728, respectively.
To explore the impact of the scale of unlabeled dataset, we
fix the size of labeled dataset and conduct experiments by
changing the proportion of in-cloud unlabeled data involved in
the training, and the results are shown in Fig. 12(a). When the
proportion of involved unlabeled data varies from 0% to 100%,
the accuracy of models on CIFAR10 increases from 75.5% to
83.1% and that on SVHN increases from 81.5% to 91.1%.
Furthermore, we use the trained model with C = 0.9 to select
pseudo-labeled data of CIFAR10 and the results are presented
in Fig. 12(b). With the increasing of scale of unlabeled data,
the number of selected data increases from 4,868 to 34,008,
and the accuracy of pseudo-labels increases from 78.5% to
89.1%. This set of experiments demonstrates that in Ada-
FedSemi, the final test accuracy of trained models is positively
correlated to the scale of unlabeled data. Therefore, when the
scale of labeled data on clients is small, it is an effective way
to collect and exploit large-scale in-cloud unlabeled data to
boost the model performance, and it will not incur additional
training cost for resource-constrained clients.

G. Comparison of Methods for Online Optimization

In fact, after formulating the problem as Eq. (11) and de-
signing the reward function in Eq. (16), we can adopt different
online optimization methods to find the optimal P and C.
MAB-based algorithms [49] and Bayesian optimization [50]
are powerful tools to make decisions online under uncertainty.
Herein, we compare training cost, model accuracy and the time
for decision making when Boltzmann exploration, UCB, GP-
UCB and Bayesian optimization are adopted in our system.
The experimental results are presented in Table VI. Training
time and traffic consumption are compared when models
achieve 80% accuracy and the time for decision making is
accumulative during the whole training process. Four methods
achieve similar training performance while it takes much
more time to make decisions by Bayesian optimization than
others. Nevertheless, the time for decision making can be

12

TABLE VI: Comparison of different methods for adaptive
model training on CIFAR10 with α = 0.5. (BE: Boltzmann

exploration; BO: Bayesian optimization.)

Model Training Decision Making
Metrics Time (min) Traffic (GB) Accuracy (%) Time (min)

BE 304 96 83.3 0.03
UCB 310 95 82.9 0.02

GP-UCB 302 99 83.0 0.33
BO 305 93 83.5 2.65

always ignored, compared with the time for model training.
Thus, Ada-FedSemi is compatible with different optimization
methods and we adopt Boltzmann exploration for its efficiency
and ease of implementation.

H. The Impact of Learning Rate Restart

Finally, we also conduct experiments to evaluate the impact
of learning rate restart. The constant learning rate 0.05, de-
noted as no-restart, is taken as comparison. We perform model
training on CIFAR10 with FedSemi-0.2-0.9 and FedSemi-
0.2-0.7, and the corresponding results are presented in Figs.
13(a) and 13(b), respectively. It shows that the test accuracy
first degrades at each moment of learning rate restart and
then resumes quickly. Although the models trained with the
constant learning rate can achieve continuous improvement,
it converges earlier and fails to reach higher test accuracy,
compared with the models trained with learning rate restart.
This is because the constant learning rate may make the
models get trapped in local minimum, especially when there
exists noise in pseudo-labels. Instead, restarting learning rate
helps the models jump out of local minimum and converge to
better solutions.

V. RELATED WORKS

A. Federated Learning with Labeled and Unlabeled Data

The significant improvement of AI in recent years is largely
attributed to the utilization of large scale labeled dataset.
However, obtaining labels of data is often very costly and time-
consuming in practice [6]. Therefore, semi-supervised learning
(SSL) [51] is proposed to train models on both small scale of
labeled dataset and large scale of unlabeled dataset.

There are two main methods in SSL. The first one is
consistency regularization based algorithms [52], [53]. These
algorithms require that the predictions of unlabeled data are
invariant to different data augmentations of a single data sam-
ple, which significantly increases training overhead [26]. The
other method is pseudo-labeling based algorithms [20], [26],
which regard the high-confidence predictions of unlabeled data
as their pseudo-labels. However, all above methods only care
about the final test accuracy of the trained model but don’t
take the features (e.g., limited capacity of communication and
computation) of FL into consideration and thus fail to achieve
training efficiency.

Recently, several works try to perform SSL under FL
settings. Some works try to exploit on-device unlabeled data.
For example, Jeong et al. [14] propose to select other clients’
local models for each client to help exploit local unlabeled
data. Besides, Long et al. [15] adopt two networks (teacher

and student) at each client to train models on both labeled and
unlabeled data. Moreover, considering the limited scale of on-
device unlabeled data, works [16], [17] first distribute in-cloud
unlabeled data to clients and then perform SSL algorithms.
However, all above methods try to utilize unlabeled data at
clients, which will increase training cost for clients. Since end
devices are always resource-constrained and there are large-
scale in-cloud public unlabeled data, it is more efficient to
utilize these data at the PS rather than on end devices.

B. Resource-efficient Federated Learning
To achieve efficient training of FL, many algorithms are

proposed to reduce time cost and communication cost. Some
recent works [22], [30] aim to optimize the training time
by utilizing deep reinforcement learning (DRL) to schedule
clients for federated model training. However, these works all
employ a fixed participating fraction of clients and mainly
concentrate on optimizing a single objective (e.g., training
time), which cannot satisfy the various cost preferences (e.g.,
fast convergence or low communication cost) for different FL
tasks. As stated in the work [21], a large participating fraction
can lead to reduction of training time while a small fraction
contributes to saving communication cost. However, the work
[21] is designed to determine the (offline) optimal participating
fraction before performing the FL tasks, which fails to adapt
to the dynamic changes of cost preferences online.

In addition, to reduce the volume of transmitted data, many
works propose various compression techniques for distributed
model training, e.g., Quantization [54] and Sparsification [55].
Moreover, Wang et al. [32] propose to determine the optimal
local updating steps adaptively with the constraint of available
resource. Note that our work, which determines the optimal
participating fraction of clients and confidence threshold of
pseudo-labels adaptively, is orthogonal to compression tech-
niques and adaptive frequency of local updating. Thus, other
communication-efficient techniques can be adopted in our
system to further reduce training cost.

VI. CONCLUSIONS

To fully utilize the on-device labeled and in-cloud unlabeled
data in FL, we propose an adaptive FSSL system called Ada-
FedSemi. It employs an MAB based online learning algorithm
to adaptively determine the fraction of participating clients and
confidence threshold for pseudo-labeling during the federated
model training. The dynamic optimization of participating
fraction and confidence threshold can contribute to the trade-
off between model accuracy and training efficiency given the
limited resource budgets. The extensive experimental results
demonstrate that Ada-FedSemi significantly outperforms the
existing baselines, including FedAvg and FedSemi.

ACKNOWLEDGMENTS

The corresponding authors of this paper are Yang Xu and
Hongli Xu. This research is supported in part by the National
Science Foundation of China (NSFC) under Grants 62132019,
61936015, 62102391 and U1709217, and the National Key
Research and Development Program of China (Grant No.
2021YFB3301501).

13

REFERENCES

[1] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review
of machine learning and iot in smart transportation,” Future Internet,
vol. 11, no. 4, p. 94, 2019.

[2] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,
P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on deep learn-
ing techniques for image and video semantic segmentation,” Applied Soft
Computing, vol. 70, pp. 41–65, 2018.

[3] A. S. Tulshan and S. N. Dhage, “Survey on virtual assistant: Google
assistant, siri, cortana, alexa,” in International symposium on signal
processing and intelligent recognition systems. Springer, 2018, pp.
190–201.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[5] Y. Wang, Y. Tong, D. Shi, and K. Xu, “An efficient approach for
cross-silo federated learning to rank,” in 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2021, pp. 1128–1139.

[6] K. Li, G. Li, Y. Wang, Y. Huang, Z. Liu, and Z. Wu, “Crowdrl: An
end-to-end reinforcement learning framework for data labelling,” in
2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 2021, pp. 289–300.

[7] T. Weyand, I. Kostrikov, and J. Philbin, “Planet-photo geolocation with
convolutional neural networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 37–55.

[8] R. Rothe, R. Timofte, and L. Van Gool, “Deep expectation of real
and apparent age from a single image without facial landmarks,”
International Journal of Computer Vision, vol. 126, no. 2, pp. 144–157,
2018.

[9] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring
generalization in deep learning,” arXiv preprint arXiv:1706.08947, 2017.

[10] C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu, “Big data and cloud com-
puting: innovation opportunities and challenges,” International Journal
of Digital Earth, vol. 10, no. 1, pp. 13–53, 2017.

[11] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed, “Social media
big data analytics: A survey,” Computers in Human Behavior, vol. 101,
pp. 417–428, 2019.

[12] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool, “Webvision
database: Visual learning and understanding from web data,” arXiv
preprint arXiv:1708.02862, 2017.

[13] S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M. R. Scott, and
D. Huang, “Curriculumnet: Weakly supervised learning from large-scale
web images,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 135–150.

[14] W. Jeong, J. Yoon, E. Yang, and S. J. Hwang, “Federated semi-
supervised learning with inter-client consistency & disjoint learning,”
in International Conference on Learning Representations, 2021.

[15] Z. Long, L. Che, Y. Wang, M. Ye, J. Luo, J. Wu, H. Xiao, and F. Ma,
“Fedsemi: An adaptive federated semi-supervised learning framework,”
arXiv preprint arXiv:2012.03292, 2020.

[16] S. Itahara, T. Nishio, Y. Koda, M. Morikura, and K. Ya-
mamoto, “Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-iid private data,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[17] I. Bistritz, A. Mann, and N. Bambos, “Distributed distillation for on-
device learning,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[18] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised knowledge transfer for deep learning from private
training data,” in International Conference on Learning Representations,
2017.

[19] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and
Ú. Erlingsson, “Scalable private learning with pate,” in International
Conference on Learning Representations, 2018.

[20] P. Cascante-Bonilla, F. Tan, Y. Qi, and V. Ordonez, “Curriculum
labeling: Revisiting pseudo-labeling for semi-supervised learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[21] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in IEEE INFOCOM 2021-IEEE Conference
on Computer Communications, 2021.

[22] W. Xia, T. Q. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu,
“Multi-armed bandit-based client scheduling for federated learning,”
IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp.
7108–7123, 2020.

[23] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel,
E. D. Cubuk, A. Kurakin, and C.-L. Li, “Fixmatch: Simplifying semi-

supervised learning with consistency and confidence,” in Advances in
Neural Information Processing Systems, vol. 33, 2020, pp. 596–608.

[24] P. Zhou, Q. Lin, D. Loghin, B. C. Ooi, Y. Wu, and H. Yu,
“Communication-efficient decentralized machine learning over heteroge-
neous networks,” in 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE, 2021, pp. 384–395.

[25] A. Li, L. Zhang, J. Wang, J. Tan, F. Han, Y. Qin, N. M. Freris, and X.-Y.
Li, “Efficient federated-learning model debugging,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021,
pp. 372–383.

[26] M. N. Rizve, K. Duarte, Y. S. Rawat, and M. Shah, “In defense of
pseudo-labeling: An uncertainty-aware pseudo-label selection frame-
work for semi-supervised learning,” in International Conference on
Learning Representations, 2021.

[27] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[28] D. Verma, S. Julier, and G. Cirincione, “Federated ai for building ai
solutions across multiple agencies,” arXiv preprint arXiv:1809.10036,
2018.

[29] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in International Conference on Learning
Representations, 2020.

[30] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 2020, pp.
1698–1707.

[31] M. Tang and V. W. Wong, “An incentive mechanism for cross-silo
federated learning: A public goods perspective,” in IEEE INFOCOM
2021-IEEE Conference on Computer Communications. IEEE, 2021,
pp. 1–10.

[32] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[33] X. J. Zhu, “Semi-supervised learning literature survey,” 2005.
[34] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification

for efficient federated learning: An online learning approach,” in 2020
IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2020, pp. 300–310.

[35] J. Gareth, W. Daniela, H. Trevor, and T. Robert, An introduction to
statistical learning: with applications in R. Spinger, 2013.

[36] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised deep
learning results,” in Advances in Neural Information Processing Systems,
vol. 30, 2017.

[37] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[38] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuin-
ness, “Pseudo-labeling and confirmation bias in deep semi-supervised
learning,” in 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2020, pp. 1–8.

[39] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” in International Conference on Learning Representa-
tions, 2017.

[40] A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher, “A closer look at
deep learning heuristics: Learning rate restarts, warmup and distillation,”
in International Conference on Learning Representations, 2019.

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[42] O. Besbes, Y. Gur, and A. Zeevi, “Stochastic multi-armed-bandit
problem with non-stationary rewards,” Advances in neural information
processing systems, vol. 27, pp. 199–207, 2014.

[43] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
2011.

[44] N. Cesa-Bianchi, C. Gentile, G. Lugosi, and G. Neu, “Boltzmann
exploration done right,” in Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc., 2017.

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[46] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

14

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[48] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in International Confer-
ence on Learning Representations, 2020.

[49] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv preprint arXiv:1402.6028, 2014.

[50] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[51] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,”
Synthesis lectures on artificial intelligence and machine learning, vol. 3,

no. 1, pp. 1–130, 2009.
[52] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A.

Raffel, “Mixmatch: A holistic approach to semi-supervised learning,” in
Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc., 2019.

[53] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in International Conference on Learning
Representations, 2018.

[54] Z. Tang, S. Shi, and X. Chu, “Communication-efficient decentralized
learning with sparsification and adaptive peer selection,” arXiv preprint
arXiv:2002.09692, 2020.

[55] T. Dettmers, “8-bit approximations for parallelism in deep learning,” in
International Conference on Learning Representations, 2016.

