
Computer Networks 197 (2021) 108271

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Achieving high reliability and throughput in software defined networks
Xuwei Yang a, Hongli Xu a,∗, Jianchun Liu e, Chen Qian b, Xingpeng Fan a, He Huang c,
Haibo Wang d

a School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
b Department of Computer Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
c School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, China
d Department of computer and information science and engineering, University of Florida, FLorida, FL 32611, USA
e School of Data Science, University of Science and Technology of China, Hefei, Anhui, 230027, China

A R T I C L E I N F O

Keywords:
Software defined networks
Reliability
Failure probability
Approximation

A B S T R A C T

Flow routing is one of the most important issues in a software defined network (SDN), and faces various
challenges. For example, each link may not be reliable all the time (or with a failure probability), and the
flow-table size on each switch is limited. Existing solutions about reliable flow routing may result in a longer
failure recovery delay, a large number of flow entries or massive control overhead. To this end, we propose to
achieve throughput optimization with the constraint that the forwarding reliability probability of each switch
pair should exceed a threshold (e.g., 99.9%). We formally define the reliable flow routing (RLFR) problem with
flow-table size constraint. We present a rounding-based algorithm and analyze its approximation performance.
We further extend our algorithm to preserve the throughput of each switch pair even with link failures. We
implement our proposed algorithms on the SDN platform. The experimental results and large-scale network
simulation results show that our algorithms can improve the network throughput by about 48.0% and reduce
the maximum number of required flow entries by about 53.1%, compared with the existing solutions under
the reliability requirement.
1. Introduction

With the rapid development of network technology, more and more
applications come into our lives, resulting in heavy traffic of the
network. In legacy networks, it is hard to schedule such a large amount
of traffic efficiently due to the distributed control. On contrary, with the
help of the global perspective and centralized control ability, SDN can
provide fine-grained traffic routing control in an optimal way, which
has received wide attention in recent years. Some previous works, e.g.,
SWAN [1] and B4 [2], make full use of the advantages of SDN to
optimize the resource utilization and improve the network throughput.

High reliability is a critical requirement for many applications.
For example, an interruption between each originator-destination (OD)
switch pair will result in a large amount of expensive raw material
waste in advanced manufacturing networks [3]. Moreover, low reliabil-
ity will also affect electronic payment and other businesses in financial
networks, which will cause huge economic losses [4]. However, as
a negative effect, link failures in a network is very likely to occur
during working hours [5]. Though it may be predicted based on sudden
drops in optical signal quality (e.g., with a 50% chance of an outage
within an hour of a drop event and a 70% chance of an outage within

∗ Corresponding author.
E-mail address: xuhongli@ustc.edu.cn (H. Xu).

one day [6]), the indulgence of link failure will reduce the network
reliability. One may think that switch failure will also occur in a
network. However, the previous works have shown that switch failure
accounts for only 0.21% of all failure events [7]. Thus, we only take
the link failure into account to improve the network reliability in this
paper.

In order to ensure the high reliability of SDNs, the traffic passing
through the failed primary path(s) needs to bypass the failure link(s)
using the backup path(s) when the failure event occurs. To recover from
link failures, existing works can be classified into two strategies: the
reactive protection and the proactive protection, respectively. Under
the reactive strategy [8,9], after detecting a failure event, the controller
will recalculate the backup paths for all affected traffic and install
the forwarding rules on switches. Since there is no need to install
rules for the backup paths in advance, the reactive strategy will sig-
nificantly reduce the resource cost, such as flow entries. Due to extra
route computation and rule update, it may lead to a longer recovery
delay (e.g., more than 1 s [9]), which cannot meet the requirements
of many applications. For example, voice propagation delay above
400 ms in interactive applications is unacceptable to human [10].
vailable online 7 July 2021
389-1286/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2021.108271
Received 9 December 2020; Received in revised form 16 June 2021; Accepted 27 J
une 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:xuhongli@ustc.edu.cn
https://doi.org/10.1016/j.comnet.2021.108271
https://doi.org/10.1016/j.comnet.2021.108271
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108271&domain=pdf

Computer Networks 197 (2021) 108271X. Yang et al.

0
r
a
f
w
f
w
t
o
t

d
i
a
o
r
p
s

n
t
t
t
7
o
s

2

a
r

2

a
c
t
𝑐
f
b
s
i

p
o
(
r

2

f
s
i
i
a
d
a



T
p
t
o
i



T
f
w
d
b
o
l
s



F
p



More seriously, a long recovery delay may even cause packet loss
and retransmission. Thus, this strategy is infeasible for many real-time
network applications.

As an alternative way, the proactive strategy [11–13] requires the
controller to deploy backup paths for all primary paths before the
occurrence of the underlying failure events. When some links fail,
the traffic through these links will be quickly rerouted to the backup
path(s) without disturbing the controller, thus reducing the failure
recovery delay. However, the pre-deployed backup paths will consume
a large number of flow-table entries on each switch [13]. On most
commodity switches, flow rules are stored in ternary content address-
able memory (TCAM), which is expensive and power-hungry [14]. As
a result, there are only thousands of flow entries on the mainstream
SDN switches [15]. Although there are more entries on SDN switches
recently, too many occupied entries on a switch will degrade the
flexibility of data plane. For example, the per-rule update time is 3.3 ms
in an empty TCAM table and increased to 18 ms when only 600 rules
in the flow-table. The rule insertion time will further increase with
a large number of installed rules on a switch [16]. Due to traffic
dynamics in practice, the switch needs to update hundreds of new
rules per second in an SDN [17]. If too many flow entries are installed
on a switch, the switch cannot update these flow rules in time. In
addition, managing a large number of flow entries will also cause huge
controller overhead [17]. Thus, the proactive strategy is not suitable in
a large-scale network scenario.

To make full utilization of network resources, some traffic engi-
neering solutions e.g., [18,19], achieve failure recovery by re-allocate
traffic across multiple paths after failures occur, but ignore link failure
probability. Some prior works assume the uniform failure probability
of all links [20]. In practice, the failure probability of all links is
different, and may differ by more than three orders of magnitude [21].
Thus, it is unreasonable to ignore the difference of failure probabilities
among all links. Inspired by financial risk theory, Bogle et al. [21]
explicitly accounts for the likelihood of different failure events and
adjusts the bandwidth of each flow to minimize a formal notion of risk
to an acceptable level. However, this solution has two main disadvan-
tages. (1) It is unable to ensure the reliability requirement between
each originator-destination (OD) switch pair; and (2) needs a lot of
flow-table resources on some switches. Moreover, these works do not
consider the quantitative relationship between reliability, flow-table
size and throughput, which is a critical challenge for SDNs.

To meet these challenges and constraints, we study the throughput-
maximization reliable flow routing in SDNs. In this paper, we choose a
set of paths for each switch pair in advance with two constraints. One is
the reliability requirement for each flow. Specifically, it is required that
the reliability probability of each switch pair should exceed a threshold
𝛼 (e.g., 99.9%) [21]. In other words, the probability of simultaneous
failure of all paths between each switch pair is less than 1- 𝛼 (e.g.,
.1%). The other is the flow-table size constraint. The previous reliable
outing solutions [20,21] often ignore the flow-table size constraint. As
result, many paths may go through some hot spot switches and the

low-table size constraint on these switches may be violated. Therefore,
e carefully choose some paths for each flow without overusing the

low table entries on each switch. After path selection, we derive a
eight for each path and divide flows among these paths according

o the weight. When some links fail, we can quickly adjust the weights
f paths for affected flows to migrate the traffic from the failed paths
o other healthy paths.

The main contributions of this paper are as follows. We formally
efine the reliable flow routing problem with flow-table size constraint
n SDNs. We propose a rounding-based algorithm for this problem
nd analyze its approximation performance. When some failure events
ccur, we further consider how to implement the throughput preserving
eliable routing scheme, and design the optimal solution using linear
rogramming. Our proposed algorithms are implemented on a small-
2

cale testbed with OVS. We then perform evaluation through large-scale
etwork simulations. The experimental results and extensive simula-
ion results show that our proposed algorithms improve the network
hroughput by about 48.0%, compared with the alternatives. Moreover,
he proposed algorithms can reduce the failure recovery delay by about
2.7% compared with the reactive strategy, and reduce the number
f required flow entries by about 53.1% compared with the proactive
trategy.

. Preliminaries

In this section, we first introduce the network model, the flow model
nd the path reliability model. Then, we give the preliminaries of the
eliable flow routing problem.

.1. Network and flow models

An SDN typically consists of a logically-centralized controller, and
set of switches 𝑉 = {𝑣1,… , 𝑣𝑚}, with 𝑚 = |𝑉 |. The network topology

an be modeled by 𝐺 = (𝑉 ,𝐸), where 𝐸 is a set of links connecting
hese switches. The capacity of each link 𝑒 ∈ 𝐸 is characterized by
(𝑒), and each switch 𝑣 is only capable of a limited number 𝛽(𝑣) of
low entries. Since we focus on the data-plane performance (e.g., load
alancing, network throughput), the number of controllers will not
ignificantly impact these metrics. Thus, we assume only one controller
n the control plane for simplicity.

We denote the flows based on originator-destination (OD) switch
airs as 𝛤 = {𝑓1,… , 𝑓𝑛}, with 𝑛 = |𝛤 |. A flow 𝑓 is the aggregation
f traffic with the same originator (ingress) switch and destination
egress) switch [14,21]. Let 𝑟(𝑓) be the estimated traffic rate (or flow
ate) of 𝑓 through long-term observations.

.2. Path reliability model

The controller pre-computes a set of candidate paths, denoted as 𝑇 𝑓 ,
or each flow 𝑓 . For simplicity, we enumerate all the candidate path
ets 𝐷(𝑓) = {𝑑|𝑑 ⊆ 𝑇 𝑓 , 𝑑 ≠ 𝜙} for each flow 𝑓 in advance. Obviously,
f |𝑇 𝑓

| = 𝑘, it follows |𝐷(𝑓)| = 2𝑘 − 1. In this paper, we consider the
mpact of underlying link failure events on the network performance
nd resource cost in an SDN. The failure probability of each link 𝑒 is
enoted as (𝑒). For each path 𝑡, its failure probability can be expressed
s

(𝑡) = 1 −
∏

𝑒∈𝑡
(1 − (𝑒)) (1)

he failure probability of a given path set 𝑑 is the probability that all
aths in this set fail simultaneously. To this end, we should consider
wo cases. The first case is that these paths are link-disjoint. The failure
f each path 𝑡 ∈ 𝑑 is independent and the failure probability of all paths
n set 𝑑 is

(𝑑) =
∏

𝑡∈𝑑
(𝑡) (2)

he second case is that some paths may share at least one link. The
ailure of the shared links will affect the reliability of multiple paths,
hich makes the computation of failure probability of a path set more
ifficult. To this end, we define 𝐸𝑑 as the set of links which are shared
y multiple paths in 𝑑. We use 𝛩𝑑 to keep all the possible combinations
f shared links in 𝐸𝑑 . Obviously, if |𝐸𝑑

| = 𝑙, |𝛩𝑑
| = 2𝑙. For each shared

ink set 𝐵𝑑 ∈ 𝛩𝑑 , we define (𝐵𝑑) as the probability that all links in
et 𝐵𝑑 fail and other links in 𝐸𝑑 ⧵ 𝐵𝑑 work well. That is,

(𝐵𝑑) =
∏

𝑒∈𝐵𝑑

(𝑒) ⋅
∏

𝑒∈𝐸𝑑⧵𝐵𝑑

(1 − (𝑒)) (3)

or ease of calculation, we define (𝑡|𝐵𝑑) as the failure probability of
ath 𝑡 under the condition that only all links in set 𝐵𝑑 fail. That is

(𝑡|𝐵𝑑) =

{

1 , if 𝑒 ∈ 𝑡,∃𝑒 ∈ 𝐵𝑑

∏ 𝑑
(4)
1 − 𝑒∈𝑡⧵𝐸𝑑 (1 − (𝑒)) , if 𝑒 ∉ 𝑡,∀𝑒 ∈ 𝐵

Computer Networks 197 (2021) 108271X. Yang et al.

c
f




i
a
p
a
a
t
𝑑

1

2

p
e
I
e
o
a
T
f
p
i
e
c
i
w
o
p
o
l

m

𝑆

n
n
O
m

2

g
d
w
r

c
r
f
c
|

t
𝐷
w
r
p

m

𝑆

We then define (𝑑|𝐵𝑑) as the failure probability of path set 𝑑 under the
ondition that only all links in set 𝐵𝑑 fail according to multiplication
ormula of probability [22].

(𝑑|𝐵𝑑) =
∏

𝑡∈𝑑
(𝑡|𝐵𝑑) (5)

According to the total probability theorem [22], we obtain the failure
probability of path set 𝑑 as

(𝑑) =
∑

𝐵𝑑∈𝛩𝑑

(𝐵𝑑)(𝑑|𝐵𝑑) (6)

We then denote the reliability probability (𝑑) of a path set 𝑑 as
1−(𝑑). For the sake of unification, we define the function  ({𝑧𝑡𝑓 }|∀𝑡 ∈
𝑇 𝑓) to represent the reliability probability of flow 𝑓 , where 𝑧𝑡𝑓 denotes
whether 𝑓 selects path 𝑡 or not.

For ease of understanding, we give an example to explain the failure
probability of a path set. In Fig. 1, a flow 𝑓 from 𝑣1 to 𝑣4 selects
three paths 𝑡1, 𝑡2 and 𝑡3. In the left plot, the failure probability of
paths {𝑡1, 𝑡2, 𝑡3} is {0.19, 0.37, 0.28} according to Eq. (1) (e.g., (𝑡1) =
1 − (1 − 0.1) × (1 − 0.1) = 0.19). Since these paths are link-disjoint,
we further compute the failure probability of path set 𝑑1 = {𝑡1, 𝑡2, 𝑡3}
according to Eq. (2). That is, (𝑑1) = 0.19 × 0.28 × 0.37 = 0.019684.
If paths 𝑡1 and 𝑡3 share one link 𝑣1𝑣5 as shown in the right plot, it
is difficult to compute the failure probability of the path set 𝑑1. We
first get 𝛩𝑑1 = {𝜙, {𝑣1𝑣5}}, where 𝐵𝑑1

1 = 𝜙 and 𝐵𝑑1
2 = {𝑣1𝑣5} with

(𝐵𝑑1
1) = 0.8 and (𝐵𝑑1

2) = 0.2 according to Eq. (3). If link 𝑣1𝑣5
s healthy, the failure probability of paths {𝑡1, 𝑡2, 𝑡3} is {0.19, 0.37, 0.1}
ccording to the second part of Eq. (4). The failure probability of the
ath set 𝑑1 is (𝑑1|𝐵

𝑑1
1) =

∏

𝑡∈𝑑1 (𝑡|𝐵𝑑1
1) = 0.19 × 0.37 × 0.1 = 0.00703

ccording to Eq. (5). If the shared link 𝑣1𝑣5 fails, both 𝑡1 and 𝑡3 also fail,
nd the failure probability of paths {𝑡1, 𝑡2, 𝑡3} is {1, 0.37, 1} according
o the first part of Eq. (4). The failure probability of the path set
1 is (𝑑1|𝐵

𝑑1
2) =

∏

𝑡∈𝑑1 (𝑡|𝐵𝑑1
2) = 1 × 0.37 × 1 = 0.37 according

to Eq. (5). So the failure probability of the path set 𝑑1 is (𝑑1) =
(𝐵𝑑1

1)(𝑑1|𝐵
𝑑1
1) + (𝐵𝑑1

2)(𝑑1|𝐵
𝑑1
2) = 0.8×0.00703+0.2×0.37 = 0.079624

according to Eq. (6). In this example, we select three paths {𝑡1, 𝑡2, 𝑡3}
for flow 𝑓 in the right plot of Fig. 1. It follows 𝑧𝑡1𝑓 = 𝑧𝑡2𝑓 = 𝑧𝑡3𝑓 = 1.
We compute its reliability function as  ({𝑧𝑡1𝑓 , 𝑧

𝑡2
𝑓 , 𝑧

𝑡3
𝑓 }) =  ({1, 1, 1}) =

− 0.079624 = 0.920376.

.3. Definition of reliable flow routing problem

In this section, we formally define the reliable flow routing (RLFR)
roblem for an SDN. We will choose one or several paths from 𝑇 𝑓 for
ach flow 𝑓 with two constraints. One is the reliability requirement.
t is required that the reliability probability of the chosen path set for
ach flow should exceed the reliability threshold 𝛼 (e.g., 99.9%). The
ther is the flow-table size constraint. If switch 𝑣 lies on the path(s) of
flow, the controller will install a flow entry on switch 𝑣 for this flow.
he number of installed flow entries on switch 𝑣 should not exceed its
low-table size 𝛽(𝑣). We should note that if switch 𝑣 lies on multiple
aths of a flow (e.g., switch 𝑣1 in the left plot of Fig. 1), a group entry
s required to support the multi-path forwarding [15]. Specifically,
ach group entry contains multiple action buckets, and each bucket
ontains an action (e.g., forward to an output port, drop) along with
ts probability (or weight). By properly setting the action field and the
eight of each bucket in a group entry, the multi-path routing based
n weight allocation can be realized. We will assign a weight of each
ath for flow 𝑓 , which determines the fraction of the traffic amount
f 𝑓 through this path. Our objective is to balance the load among all
inks. We give the definition of RLFR in Eq. (7).
3

in 𝜆

.𝑡

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑦𝑡𝑓 ≤ 𝑧𝑡𝑓 , ∀𝑡 ∈ 𝑇 𝑓 , 𝑓
∑

𝑡∈𝑇 𝑓 𝑦𝑡𝑓 = 1, ∀𝑓 ∈ 𝛤

 ({𝑧𝑡𝑓 }|∀𝑡 ∈ 𝑇 𝑓) ≥ 𝛼, ∀𝑓 ∈ 𝛤

𝑧𝑡𝑓 ⋅ 𝐼𝑣𝑡 ≤ 𝑟𝑣𝑓 , ∀𝑡, 𝑣, 𝑓
∑

𝑓∈𝛤 𝑟𝑣𝑓 ≤ 𝛽(𝑣), ∀𝑣 ∈ 𝑉
∑

𝑓∈𝛤
∑

𝑡∈𝑇 𝑓 ∶𝑒∈𝑡 𝑦
𝑡
𝑓 ⋅ 𝑟(𝑓) ≤ 𝜆 ⋅ 𝑐(𝑒), ∀𝑒 ∈ 𝐸

𝑧𝑡𝑓 , 𝑟
𝑣
𝑓 ∈ {0, 1}, ∀𝑡 ∈ 𝑇 𝑓 , 𝑓 , 𝑣

𝑦𝑡𝑓 ,∈ [0, 1], ∀𝑡 ∈ 𝑇 𝑓 , 𝑓

(7)

Variable 𝑦𝑡𝑓 denotes the weight of path 𝑡 for flow 𝑓 . The first set of
inequalities constrains the weight of each path. The second set of equa-
tions tells that all traffic of each flow will be forwarded successfully.
The third set of inequalities indicates that the reliability probability
of the chosen path set for each flow should exceed a threshold of 𝛼.
Function  calculates the reliability probability of the chosen path set
for a flow, which can be derived by Eqs. (1)–(6). The fourth and the
fifth sets of inequalities denote the flow-table size constraint on each
switch, in which constant 𝐼𝑣𝑡 denotes whether switch 𝑣 lies on path 𝑡 or
ot, and variable 𝑟𝑣𝑓 denotes whether flow 𝑓 passes through switch 𝑣 or
ot. The sixth set of inequalities expresses the link capacity constraint.
ur objective is to achieve the load balancing among all links, that is,
in 𝜆.

.4. The PRLF problem

Since the reliability function  in Eq. (7) is very complex, we cannot
ive the closed-form description for the RLFR problem. It is difficult to
erive an efficient algorithm for this problem directly. Alternatively,
e introduce an approximate problem, called PRLF, and design a

ounding-based algorithm for the modified version.
We can transform the RLFR problem into the PRLF problem ac-

ording to the following steps. First, we take the idea of some flow
outing works [14,23], in which one flow will choose one route path
rom a candidate set. To this end, we use set 𝐷(𝑓) to keep all possible
ombinations of paths in 𝑇 𝑓 except 𝜙. Obviously, if |𝑇 𝑓

| = 𝑘, it follows
𝐷(𝑓)| = 2𝑘−1 in the RLFR problem. In order to reduce the complexity,
he controller selects an appropriate number of candidate path sets
̄ (𝑓) from 𝐷(𝑓) for flow 𝑓 in PRLF. Different from the RLFR problem,
e choose one candidate path set 𝑑 ∈ �̄�(𝑓) that satisfies the reliability

equirement for each flow in the PRLF problem. Thus, we give the
roblem formalization of the PRLF problem as follows.

in 𝜆

.𝑡

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑥𝑑𝑓 = 0, ∀𝑓 ∈ 𝛤 ,(𝑑) ≥ (1 − 𝛼)
∑

𝑑∈�̄�(𝑓) 𝑥
𝑑
𝑓 = 1, ∀𝑓 ∈ 𝛤

𝑧𝑡𝑓 =
∑

𝑑∈�̄�(𝑓)∶𝑡∈𝑑 𝑥
𝑑
𝑓 , ∀𝑓 ∈ 𝛤 , 𝑡 ∈ 𝑇 𝑓

∑

𝑓∈𝛤
∑

𝑑∈�̄�(𝑓)∶𝑣∈𝑑 𝑥
𝑑
𝑓 ≤ 𝛽(𝑣), ∀𝑣 ∈ 𝑉

∑

𝑡∈𝑑 𝑦
𝑑,𝑡
𝑓 = 𝑥𝑑𝑓 , ∀𝑓 ∈ 𝛤 , 𝑑 ∈ �̄�(𝑓)

𝑦𝑑,𝑡𝑓 = 0, ∀𝑓 ∈ 𝛤 , 𝑑 ∈ �̄�(𝑓), 𝑡 ∉ 𝑑
∑

𝑓∈𝛤
∑

𝑡∈𝑇 (𝑓)∶𝑒∈𝑡
∑

𝑑∈�̄�(𝑓) 𝑦
𝑑,𝑡
𝑓

⋅𝑟(𝑓) ≤ 𝜆 ⋅ 𝑐(𝑒), ∀𝑒 ∈ 𝐸
𝑥𝑡𝑓 , 𝑧

𝑡
𝑓 ∈ {0, 1}, ∀𝑡, 𝑓 , 𝑑

𝑦𝑑,𝑡𝑓 ,∈ [0, 1], ∀𝑡, 𝑓

(8)

Computer Networks 197 (2021) 108271X. Yang et al.

w
r
t
a
t
t
a

Fig. 1. An example to illustrate the failure probability of a path set for OD-pair (𝑣1 , 𝑣4). Black solid lines and color thick lines denote links and flows, respectively. The number

inside each link denotes its failure probability. Left plot : paths are link-disjoint; Right plot : paths are not link-disjoint.

1
1

1

w

𝑒

𝑓

Variable 𝑥𝑑𝑓 denotes whether flow 𝑓 selects the path set 𝑑 for packet
forwarding or not. Variable 𝑦𝑑,𝑡𝑓 denotes the weight of path 𝑡 for flow 𝑓

hen path set 𝑑 is selected for routing, which will determine its traffic
ate through path 𝑡. The first and the second sets of inequalities indicate
hat each flow 𝑓 will select a path set with a reliability probability of
t least 𝛼. The third and the fourth sets of inequalities denote the flow-
able size constraints. The fifth to the seventh sets of inequalities denote
he link capacity constraints. The objective is to balance the load among
ll links, that is, min 𝜆.

In the PRLF problem, we choose a path subset �̄�(𝑓) from 𝐷(𝑓)
for each flow 𝑓 . One may think that the network performance can be
improved, if we choose more paths for each flow as input. However,
due to time and space constraints, we only consider a small number
of candidate path sets for each flow as input. We will evaluate the
impact of the number of candidate path sets per flow on the network
performance in Section 4. Note that the identical parallel machine
scheduling (IPMS) problem [24] is a special case of the PRLF problem.
As IPMS is NP-hard, the PRLF problem is also NP-hard. We give the
detailed proof in Appendix.

3. Algorithm design

3.1. RDBP: Rounding-based algorithm for PRLF

We then design a rounding-based algorithm RDBP for path selection
and weight assignment in the PRLF problem. To solve the integer linear
program in Eq. (8), the algorithm first constructs a linear program,
denoted as 𝐿𝑃1, as a relaxation of the PRLF problem. Specifically,
we relax the variables {𝑥𝑑𝑓 } and {𝑧𝑡𝑓 } to be fractional. Since 𝐿𝑃1 is
a linear program, the first step of RDBP solves it in polynomial time
with a linear program solver (e.g., pulp [25]). Assume that the optimal
solutions for 𝐿𝑃1 are denoted as {𝑥𝑑𝑓 }, {𝑧

𝑡
𝑓 } and {𝑦𝑑,𝑡𝑓 }, and the optimal

result is denoted as 𝜆. As 𝐿𝑃1 is a relaxation of PRLF, 𝜆 is a lower-bound
result for this problem.

The second step will determine how to select a feasible path set
and assign a weight for each selected path. We obtain integer solutions
{𝑥𝑑𝑓 }, ∀𝑓 ∈ 𝛤 and ∀𝑑 ∈ �̄�(𝑓), using the randomized rounding
method [26]. Specifically, we set 𝑥𝑑𝑓 to 1 with probability 𝑥𝑑𝑓 , which
means that flow 𝑓 will select path set 𝑑. Otherwise, 𝑥𝑑𝑓 is set to 0. If
the path set 𝑑′ is selected for flow 𝑓 (i.e. 𝑥𝑑′𝑓 = 1), we set the weight to
𝑦𝑑

′ ,𝑡
𝑓

𝑥𝑑′𝑓
for each path 𝑡 ∈ 𝑑′ (i.e., we set 𝑧𝑡𝑓 to 1 and set 𝑦𝑑

′ ,𝑡
𝑓 to

𝑦𝑑
′ ,𝑡

𝑓

𝑥𝑑′𝑓
). By

the end of this step, we have determined the paths and their weights
for each flow. The RDBP algorithm is formally described in Alg. 1.
4

Algorithm 1 RDBP: Rounding-Based Algorithm for PRLF
1: Step 1: Solving the Relaxed PRLF Problem
2: Construct a linear program 𝐿𝑃1.
3: Obtain the optimal solutions {𝑥𝑑𝑓 }, {𝑧

𝑡
𝑓 } and {𝑦𝑑,𝑡𝑓 }.

4: Step 2: Path Selection and Weight Assignment
5: Set {𝑥𝑑𝑓 }, {𝑧

𝑡
𝑓 } and {𝑦𝑑,𝑡𝑓 } to 0.

6: for each flow 𝑓 ∈ 𝛤 do
7: Select one path set 𝑑 ∈ �̄�(𝑓) and set 𝑥𝑑𝑓 to 1 with probability 𝑥𝑑𝑓 .
8: for each flow 𝑓 ∈ 𝛤 do
9: for each path set 𝑑 ∈ �̄�(𝑓) do
0: for each path 𝑡 ∈ 𝑇 𝑓 do
1: if 𝑥𝑑𝑓 = 1 then

2: Set 𝑦𝑑,𝑡𝑓 to
𝑦𝑑,𝑡𝑓
𝑥𝑑𝑓

, if 𝑡 ∈ 𝑑. Set 𝑦𝑑,𝑡𝑓 to 0, if 𝑡 ∉ 𝑑.

13: Set 𝑧𝑡𝑓 to 1, if 𝑡 ∈ 𝑑.
14: Select path 𝑡 for flow 𝑓 if 𝑧𝑡𝑓 = 1 with weight ∑𝑑∈�̄�(𝑓) 𝑦

𝑡
𝑓 .

3.2. Performance analysis

To analyze the approximation performance of the proposed RDBP
algorithm, we give two famous theorems for probability analysis.

Theorem 1 (Chernoff Bound). Given 𝑛 independent variables: 𝑧1, 𝑧2,… , 𝑧𝑛,
here ∀𝑧𝑖 ∈ [0, 1]. Let 𝜇 = E[

∑𝑛
𝑖=1 𝑧𝑖]. Then, 𝐏𝐫

[
∑𝑛

𝑖=1 𝑧𝑖 ≥ (1 + 𝜖)𝜇
]

≤
−𝜖2𝜇
2+𝜖 , where 𝜖 is an arbitrary positive value.

Theorem 2 (Union Bound). Given a countable set of 𝑛 events: 𝐴1, 𝐴2,… ,
𝐴𝑛, each event 𝐴𝑖 happens with possibility Pr(𝐴𝑖). Then, Pr(𝐴1 ∪𝐴2 ∪⋯ ∪
𝐴𝑛) ≤

∑𝑛
𝑖=1 Pr(𝐴𝑖).

By the first set of equations in Eq. (8), the reliability require-
ment for each flow can be satisfied. We then give the approximation
performance for link load and the flow-table size constraint.

Lemma 3. Let �̃�(𝑣, 𝑓) denote the number of required flow-table entries for
on switch 𝑣 by the optimal result of the linear program 𝐿𝑃1. The RDBP

algorithm can guarantee that the expected number of required flow entries
for flow 𝑓 on switch 𝑣 is the same as �̃�(𝑣, 𝑓).

Proof. Let variable 𝜅(𝑣, 𝑓) denote the number of required flow-table
entries for flow 𝑓 on switch 𝑣 by our algorithm. The expectation of
variable 𝜅(𝑣, 𝑓) is:

E [𝜅(𝑣, 𝑓)] =
∑

𝑑∈�̄�(𝑓)∶𝑣∈𝑑

𝐏𝐫
[

𝑥𝑑𝑓 = 1
]

=
∑

𝑥𝑑𝑓 = �̃�(𝑣, 𝑓) (9)

𝑑∈�̄�(𝑓)∶𝑣∈𝑑

Computer Networks 197 (2021) 108271X. Yang et al.

o
l

T

e
𝑛

P
e
i

a
f

𝐏

w
n

𝜌

𝐏

𝑛
a
a

t
a

L

o

L

𝐏

E
i

W

𝛾

t
A

E

�̃�

h

v

𝐏

Eq. (9) shows that the expected number of required flow entries for 𝑓
n switch 𝑣 by RDBP is the same as that by the optimal solution of the
inear program 𝐿𝑃1. □

heorem 4. Assume that the minimum flow-table size of all switches is
denoted by 𝛽𝑚𝑖𝑛. After the rounding process, the number of required flow
ntries on each switch will not exceed 𝛽𝑚𝑖𝑛 by a factor of 3 log 𝑛

𝛽𝑚𝑖𝑛 + 3, where
is the number of switches in an SDN.

roof. We use a variable �̃�(𝑣) to denote the number of flow table
ntries installed at switch 𝑣 computed by RDBP. By the fourth set of
nequalities in Eq. (8), the expected number of flow entries at switch 𝑣

is:

E

[

∑

𝑓∈𝛤
𝜅(𝑣, 𝑓)

]

=
∑

𝑓∈𝛤
E [𝜅(𝑣, 𝑓)]

=
∑

𝑓∈𝛤
�̃�(𝑣, 𝑓) = �̃�(𝑣) ≤ 𝛽(𝑣) (10)

Combining Eqs. (8), (9) and (10), we have:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜅(𝑣,𝑓)𝛽𝑚𝑖𝑛
𝛽(𝑣) ∈ [0, 1]

E
[

∑

𝑓∈𝛤
𝜅(𝑣,𝑓)𝛽𝑚𝑖𝑛

𝛽(𝑣)

]

≤ 𝛽𝑚𝑖𝑛.

(11)

Note that the last part of Eq. (11) is derived from Eq. (10). By
pplying Theorem 1, assume that 𝜌1 is an arbitrary positive value. It
ollows:

𝐫
[

∑

𝑓∈𝛤

𝜅(𝑣, 𝑓)𝛽𝑚𝑖𝑛

𝛽(𝑣)
≥ (1 + 𝜌1) ⋅ 𝛽𝑚𝑖𝑛

]

≤ 𝑒
−𝜌21𝛽

𝑚𝑖𝑛

2+𝜌1 (12)

Now, we assume that

𝐏𝐫
[

∑

𝑓∈𝛤

𝜅(𝑣, 𝑓)
𝛽(𝑣)

≥ (1 + 𝜌1)

]

≤ 𝑒
−𝜌21𝛽

𝑚𝑖𝑛

2+𝜌1 ≤ 
𝑛

(13)

here  is the function of network-related variables (such as the
umber of switches 𝑛, etc..) and  → 0 when the network size grows.

The solution for Eq. (13) can be expressed as:

1 ≥
log 𝑛

 +
√

log2 𝑛
 + 8𝛽𝑚𝑖𝑛 log 𝑛



2𝛽𝑚𝑖𝑛
(14)

Set  = 1
𝑛2

. Eq. (13) is transformed into:

𝐫
[

∑

𝑓∈𝛤

𝜅(𝑣, 𝑓)
𝛽(𝑣)

≥ (1 + 𝜌1)

]

≤ 1
𝑛3

,where 𝜌1 =
3 log 𝑛
𝛽𝑚𝑖𝑛

+ 2 (15)

By applying Theorem 2, we have,

𝐏𝐫
[

⋁

𝑣∈𝑉

∑

𝛾∈𝛤

𝜅(𝑣, 𝑓)
𝛽(𝑣)

≥ (1 + 𝜌1)

]

≤
∑

𝑣∈𝑉
𝐏𝐫

[

∑

𝛾∈𝛤

𝜅(𝑣, 𝑓)
𝛽(𝑣)

≥ (1 + 𝜌1)

]

≤𝑛 ⋅ 1
𝑛3

≤ 1
𝑛2

, 𝜌1 =
3 log 𝑛
𝛽𝑚𝑖𝑛

+ 2 (16)

Note that the second inequality holds, because there are at most
switches in the network 𝐺. Eq. (16) means that the proposed RDBP

lgorithm can guarantee that the total number of flow entries installed
t switch 𝑣 ∈ 𝑉 will not exceed the threshold 𝛽(𝑣) by a factor of

1 + 𝜌1 =
3 log 𝑛
𝛽𝑚𝑖𝑛 + 3. □

In the following, we analyze the approximation performance for
he link capacity constraint. We first show the feasibility of the weight
ssignment by RDBP.
5

emma 5. For each flow 𝑓 , RDBP can guarantee the total weight of all
selected paths for flow 𝑓 is 1.

Proof. Assume that 𝑑′ is the selected path set for 𝑓 by RDBP. It follows
𝑦𝑑,𝑡𝑓 = 0 if 𝑡 ∉ 𝑑 or 𝑑 ≠ 𝑑′ by Line 12 of RDBP. Thus, the total weight of
all selected paths for 𝑓 is:
∑

𝑡∈𝑇 𝑓

(
∑

𝑑∈�̄�(𝑓)

𝑦𝑑,𝑡𝑓)

=
∑

𝑡∈𝑑′
(𝑦𝑑

′ ,𝑡
𝑓) =

∑

𝑡∈𝑑′
(
𝑦𝑑

′ ,𝑡
𝑓

𝑥𝑑′𝑓
) =

𝑥𝑑′𝑓
𝑥𝑑′𝑓

= 1 (17)

Eq. (17) shows that the summation of weight for each path 𝑡 ∈ 𝑇 (𝑓) is
ne, which ensures the feasibility of the RDBP algorithm for PRTE. □

emma 6. We use �̃�(𝑒, 𝑓) to denote the traffic load on link 𝑒 from flow 𝑓
by the result of the linear program 𝐿𝑃1. The RDBP algorithm can guarantee
that the expected traffic load on link 𝑒 from flow 𝑓 is same as the optimal
solution �̃�(𝑒, 𝑓) of the linear program 𝐿𝑃1.

Proof. Assume that 𝑑′ is the selected path set for flow 𝑓 by RDBP. It
follows 𝑦𝑑,𝑡𝑓 = 0 if 𝑡 ∉ 𝑑 or 𝑑 ≠ 𝑑′ by Line 12 of RDBP. Let variable 𝑞(𝑒, 𝑓)
denote the traffic load on link 𝑒 from flow 𝑓 by RDBP. The expectation
of variable 𝑞(𝑒, 𝑓) is:

E [𝑞(𝑒, 𝑓)] =
∑

𝑡∈𝑇 𝑓 ∶𝑒∈𝑡

∑

𝑑′∈�̄�(𝑓)

𝐫
[

𝑥𝑑
′

𝑓 = 1
]

𝑟(𝑓)
∑

𝑑∈�̄�(𝑓)

𝑦𝑑,𝑡𝑓

=
∑

𝑡∈𝑇 𝑓 ∶𝑒∈𝑡

∑

𝑑′∈�̄�(𝑓)

(𝑥𝑑
′

𝑓 ⋅ 𝑟(𝑓) ⋅
𝑦𝑑

′ ,𝑡
𝑓

𝑥𝑑′𝑓
)

=
∑

𝑡∈𝑇 𝑓 ∶𝑒∈𝑡

∑

𝑑′∈�̄�(𝑓)

𝑦𝑑
′ ,𝑡

𝑓 ⋅ 𝑟(𝑓) = �̃�(𝑒, 𝑓) (18)

q. (18) shows that the expected load on link 𝑒 from flow 𝑓 by RDBP
s the same as that in the optimal solution of linear program 𝐿𝑃1. □

Assume that the minimum capacity of all links is denoted by 𝑐𝑚𝑖𝑛.
e define a constant 𝛾 as follows:

= min{𝜆 ⋅ 𝑐min

𝑟(𝑓)
, 𝑓 ∈ 𝛤 } (19)

Theorem 7. The proposed RDBP algorithm guarantees that the total traffic
on any link 𝑒 ∈ 𝐸 will not exceed the link capacity by a factor of 4 log 𝑛

𝛾 +3.

Proof. The traffic load of link 𝑒 after the first step is denoted by �̃�(𝑒). By
he definition, variables 𝑞(𝑒, 𝑓) with 𝑓 ∈ 𝛤 are mutually independent.
ccording to Eq. (18), the expected traffic load on link 𝑒 is:
[

∑

𝑓∈𝛤
𝑞(𝑒, 𝑓)

]

=
∑

𝑓∈𝛤
E [𝑞(𝑒, 𝑓)] =

∑

𝑓∈𝛤
�̃�(𝑒, 𝑓) = �̃�(𝑒) (20)

By the seventh set of inequalities in Eq. (8), we have:

(𝑒) =
∑

𝑓∈𝛤

∑

𝑡∈𝑇 (𝑓)∶𝑒∈𝑡

∑

𝑑∈𝐷
𝑦𝑑,𝑡𝑓 ⋅ 𝑟(𝑓) ≤ 𝜆 ⋅ 𝑐(𝑒) (21)

Combining Eqs. (20), (21) and the definition of 𝛾 in Eq. (19), we
ave:
⎧

⎪

⎨

⎪

⎩

𝑞(𝑒,𝑓)⋅𝛾
𝜆⋅𝑐(𝑒)

∈ [0, 1]

E
[

∑

𝑓∈𝛤
𝑞(𝑒,𝑓)⋅𝛾
𝜆⋅𝑐(𝑒)

]

≤ 𝛾.
(22)

By applying Theorem 1, assume that 𝜌2 is an arbitrary positive
alue. It follows:

𝐫
[

∑ 𝑞(𝑒, 𝑓) ⋅ 𝛾
̃

≥ (1 + 𝜌2)𝛾

]

≤ 𝑒
−𝜌22𝛾
2+𝜌2 (23)
𝑓∈𝛤 𝜆 ⋅ 𝑐(𝑒)

Computer Networks 197 (2021) 108271X. Yang et al.
Fig. 2. Illustration of the throughput reduction when link 𝑣1𝑣3 fails. Black solid lines and color thick lines denote links and flows, respectively. The label 𝑥∕𝑦 (e.g., 8/12) inside
each link denote the link load (i.e., 8) and the link capacity (i.e., 12). The label 𝑡𝑖 ∶ 𝑧 (e.g., 𝑡1 ∶ 5) inside each flow denote the path id (e.g., 𝑡1) and the traffic amount through this
path (e.g., 5). Left plot : before link failure; Right plot : after link failure.
Now, we assume that

𝐏𝐫
[

∑

𝑓∈𝛤

𝑞(𝑒, 𝑓)
𝜆 ⋅ 𝑐(𝑒)

≥ (1 + 𝜌2)

]

≤ 𝑒
−𝜌22𝛾
2+𝜌2 ≤ 

𝑛2
(24)

where  is the function of network-related variables (such as the
number of switches 𝑛, etc..) and  → 0 when the network size grows.

The solution for Eq. (24) can be expressed as:

𝜌2 ≥
log 𝑛2

 +
√

log2 𝑛2
 + 8𝛾 log 𝑛2


2𝛾

, 𝑛 ≥ 2 (25)

Set  = 1
𝑛2

. Eq. (24) is transformed into:

𝐏𝐫
[

∑

𝑓∈𝛤

𝑞(𝑒, 𝑓)
𝜆 ⋅ 𝑐(𝑒)

≥ (1 + 𝜌2)

]

≤ 1
𝑛4

,where 𝜌2 =
4 log 𝑛

𝛾
+ 2 (26)

By applying Theorem 2, we have,

𝐏𝐫
[

⋁

𝑒∈𝐸

∑

𝑓∈𝛤

𝑞(𝑒, 𝑓)
𝜆 ⋅ 𝑐(𝑒)

≥ (1 + 𝜌2)

]

≤
∑

𝑒∈𝐸
𝐏𝐫

[

∑

𝑓∈𝛤

𝑞(𝑒, 𝑓)
𝜆 ⋅ 𝑐(𝑒)

≥ (1 + 𝜌2)

]

≤[1
2
𝑛(𝑛 − 1)] ⋅ 1

𝑛4

≤1
2
𝑛2 ⋅ 1

𝑛4
= 1

2𝑛2
, 𝜌2 =

4 log 𝑛
𝛾

+ 2 (27)

Note that the third inequality holds, because there are at most
1
2 𝑛(𝑛−1) links in the network 𝐺. Eq. (27) means that the proposed RDBP
algorithm can guarantee that the total traffic on any link 𝑒 ∈ 𝐸 will not
exceed the fractional solution by a factor of 1 + 𝜌2 =

4 log 𝑛
𝛾 + 3. □

Approximation Factors: According to our analyses, the flow-table
size constraint will not be violated by a factor of 3 log 𝑛

𝛽𝑚𝑖𝑛 + 3, and the
link capacity will not be violated by a factor of 4 log 𝑛

𝛾 + 3 by routing
a full percentage of flows on the chosen path set. It means that our
proposed RDBP algorithm can achieve the optimal solution, violating
the flow-table size constraint by a factor 3 log 𝑛

𝛽𝑚𝑖𝑛 +3 and the link capacity
constraint by a factor 4 log 𝑛

𝛾 + 3 at most, which is also called bi-criteria
approximation [27].

We should address that, in most situations, the RDBP algorithm can
achieve almost the constant bi-criteria approximation. For example, let
𝜆 be 0.4 (with a moderate value). Consider a large-scale network with
𝑛 = 1000 switches, so that log 𝑛 ≈ 10. The link capacity of today’s
networks will be a bandwidth of 10 Gbps at least [14]. Observing the
practical traffic traces, the maximum flow rate may reach 10 Mbps or
100 Mbps. Under two cases, 𝑐min

𝑟(𝑓) will be 103 and 102. The approximation
factors for the link capacity constraint are 3.1 and 4, respectively. Since
6

𝛽𝑚𝑖𝑛 is usually more than 1000, the approximation factor for the flow-
table size constraint is 3.003. In other words, our RDBP algorithm
can achieve almost the constant bi-criteria approximation for the PRLF
problem in many network situations.

3.3. Throughput preserving reliable routing

The PRLF problem in Eq. (8) only guarantees that each flow will be
forwarded through at least one path with high reliability. However, it
cannot preserve throughput for a flow when some links/switches fail.
In this section, we will study throughput preserving reliable routing
scheme for an SDN and give the weight adjustment solution to recover
from failures.

3.3.1. Motivation
When a failure event occurs, the traffic on the failed link(s) will

be blocked. The controller should migrate these affected flows (not all
flows) from the failed paths to other healthy paths, so as to reduce
the control overhead and rule update cost. However, it may result in
throughput reduction. Here we illustrate the throughput reduction by
PRLF after a link failure.

As shown in Fig. 2, an SDN consists of four switches. The capacity
of each link is 12. For simplicity, we only consider two flows in the
network. One is from 𝑣1 to 𝑣4, denoted as 𝑓1 (red dotted arrow), the
other is from 𝑣2 to 𝑣3, denoted as 𝑓2 (purple dotted arrow). The flow
rates of 𝑓1 and 𝑓2 are 10 and 14, respectively. 𝑓1 selects two paths 𝑡1
and 𝑡2, and 𝑓2 selects three paths 𝑡3, 𝑡4 and 𝑡5 for forwarding. According
to the RDBP algorithm, the load on {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5} is {5, 5, 3, 8, 3}. At
this time, the load of all links is 8, illustrated in the left plot of Fig. 2.
When the link 𝑣1𝑣3 fails, the traffic on 𝑡1 can be migrated to 𝑡2, which
will result in congestion on link 𝑣2𝑣4 and further throughput reduction,
as shown in the right part of Fig. 2. In fact, we can allocate the traffic
rate on {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5} to {5, 5, 2, 10, 2}. As a result, when link 𝑣1𝑣3 fails,
traffic on 𝑡1 and 𝑡3 can be migrated to 𝑡2 and 𝑡4, respectively, without
link congestion and further throughput reduction.

3.3.2. Algorithm design
We extend our PRLF problem to achieve throughput preserving re-

liable routing scheme (TPRS) when some links fail. Before the problem
definition, we first consider the concept of failure scenario [21], in
which one or several links may fail simultaneously. Through long-term
observations, the controller knows the candidate failure scenarios, and
the probability of each failure scenario in the network. For example,
considering a scenario 𝑠 with only two failed links 𝑒1 and 𝑒2 (and all
other links work well), it can be denoted as 𝑠({𝑒1, 𝑒2}). The probability
of scenario 𝑠({𝑒1, 𝑒2}) is 𝑠({𝑒1 ,𝑒2}) = (𝑒1) ⋅ (𝑒2)

∏

𝑒𝑖∈𝐸⧵{𝑒1 ,𝑒2}(1 −
(𝑒)) [21]. The number of scenarios (i.e., 2|𝐸|) increases exponentially
𝑖

Computer Networks 197 (2021) 108271X. Yang et al.

i
c

s
t
r
d
f
p

o
o
t
d
V
p
f
s
l
a
T

m

𝑆

s
o
t
a
d
b
s
f
l

w
o
e
s
i
s
l
d
s
w
e
a
a

3

f
o
c
d
p
d
d
w
F



s
s
p
a
u
O
w
o



F
p



W
t
m



o



W
1

4

f
s
a
o
l

4

m
(
s
(
t

l
m

as the number of links increases. Therefore, it is impossible to con-
sider all scenarios in a certain scale network. Based on the marginal
effect [28], we can achieve high throughput and reliability by ignoring
some scenarios with very low probability [21]. Specifically, we focus
on the scenarios whose failure probability is larger than 1 − 𝛼 (e.g., 𝛼
s 99.9%), which is defined in Eq. (8). We call such a scenario as a
andidate failure scenario.

We then introduce the throughput preserving reliable routing
cheme. It adopts the same paths for each flow as that by RDBP, so
hat it satisfies the flow-table size constraint on each switch and the
eliability requirement for each flow. The final solution of RDBP is
enoted as �̂�𝑡𝑓 . Specifically, �̂�𝑡𝑓 denotes whether flow 𝑓 selects path 𝑡
or routing or not by RDBP. We will reassign the weight of all selected
aths for flows.

When a candidate failure scenario occurs, we will adjust the weights
f paths for affected flows to migrate the traffic on the failed paths to
ther healthy paths. Specifically, we set the weight of the path passing
hrough the failed link to 0 and increase the weight of other paths. 𝐴𝑡(𝑠)
enotes whether path 𝑡 works well or not in the candidate scenario 𝑠.
ariable 𝑤𝑡1 ,𝑡2

𝑓 (𝑠) denotes the weight of flow 𝑓 that is migrated from
ath 𝑡1 to path 𝑡2 when candidate failure scenario 𝑠 occurs. 𝑢𝑡𝑓 (𝑠) is the
inal weight of path 𝑡 for flow 𝑓 after recovery from candidate failure
cenario 𝑠. The weight of path for each flow that does not pass the failed
inks will not be changed. Our objective is to balance the load among
ll links for all candidate failure scenarios. We give the definition of
PRS in Eq. (28).

in

.𝑡

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑦𝑡𝑓 ≤ �̂�𝑡𝑓 , ∀𝑡 ⊂ 𝑇 𝑓 , 𝑓
∑

𝑡∈𝑇 𝑓 𝑦𝑡𝑓 = 1, ∀𝑓
∑

𝑡2∈𝑇 𝑓 𝑤𝑡1 ,𝑡2
𝑓 (𝑠) = 𝑦𝑓 𝑡1 , ∀𝑡1, 𝑡2 ⊂ 𝑇 𝑓 , 𝑠, 𝑓

𝑤𝑡1 ,𝑡1
𝑓 (𝑠) = 𝑦𝑡1𝑓 ⋅ 𝐴𝑡1 (𝑠), ∀𝑡1 ⊂ 𝑇 𝑓 , 𝑠, 𝑓

𝑢𝑡1𝑓 (𝑠) = 𝑦𝑡1𝑓 +
∑

𝑡2∈𝑇 𝑓 ⧵𝑡1 𝑤
𝑡2 ,𝑡1
𝑓 (𝑠)

−
∑

𝑡2∈𝑇 𝑓 ⧵𝑡1 𝑤
𝑡1 ,𝑡2
𝑓 (𝑠), ∀𝑡1, 𝑡2 ⊂ 𝑇 𝑓 , 𝑠, 𝑓

∑

𝑓∈𝛤
∑

𝑡∈𝑇 𝑓 ∶𝑒∈𝑡 𝑢
𝑡
𝑓 (𝑠) ⋅ 𝑟(𝑓)

≤  ⋅ 𝑐(𝑒), ∀𝑒, 𝑠
𝑦𝑡𝑓 , 𝑤

𝑡1 ,𝑡2
𝑓 (𝑠) ∈ [0, 1], ∀𝑡1, 𝑡2, 𝑠, 𝑓

(28)

The first set of inequations denotes the weight assignment for each
elected path by RDBP. The second set of equations tells that the traffic
f each flow will be forwarded from source to destination. The third to
he fifth sets of equalities compute the final weight of path 𝑡 for flow 𝑓
fter recovery from failure scenario 𝑠. It is noted that, for the flow that
oes not pass the failed links, the weights of its selected paths will not
e changed, which is shown in the fourth set of inequations. The sixth
et of inequalities denotes the link capacity constraint after recovery
rom different failure scenarios. The objective of TPRS is to balance the
oad among all links for all candidate failure scenarios, that is, min .

Eq. (28) is a linear program and can be solved in polynomial time
ith a linear program solver, e.g., pulp [25]. By solving Eq. (28), we can
btain the weight assignment and path weight adjustment solution for
ach failure scenario 𝑠 (i.e., 𝑤𝑡1 ,𝑡2

𝑓 (𝑠)) to recover from different failure
cenarios without throughput reduction. We set the weight assignment
n the network and store each failure scenario along with the corre-
ponding path weight adjustment solution in the database. In case of
ink failures, the controller can detect the failure scenario, query the
atabase, obtain the path weight adjustment solution, and adjust the
elected paths’ weights of each OD-pair accordingly. For convenience,
e denote this algorithm as RDBP-T. If the failure scenario is an
vent with low probability, the controller cannot find the path weight
djustment solution in the database. As a result, the controller will
dopt a reactive solution CALFR [8] to deal with this failure event.
7

.4. Discussion

We assume that failures are independent when we calculate the
ailure probability of each path in Section 2.2. In fact, failure events
f different links are related. For example, if a switch fails, all links
onnected to this switch will be down. We take this relationship of
ifferent link failure events into account and reconsider the failure
robability of each path. To this end, we should extend the problem
efinition to the case of failure dependence. We redefine (𝑒), which
enotes the probability that link 𝑒 fails when its connected switches
ork well. The failure probability of each switch 𝑣 is denoted as (𝑣).
or each path 𝑡, its failure probability can be expressed as
′(𝑡) = 1 −

∏

𝑒∈𝑡
(1 − (𝑒))

∏

𝑣∈𝑡
(1 − (𝑣)) (29)

Some paths may share at least one switch. Besides the failure of
hared link affects the reliability of multi path, the failure of the shared
witches will also affect it, which makes the computation of failure
robability of a path set more difficult. To this end, we define 𝑉 𝑑

s the set of switches which are shared by multiple paths in 𝑑. We
se 𝜂𝑑 to keep all the possible combinations of shared switches in 𝑉 𝑑 .
bviously, if |𝑉 𝑑

| = 𝑙, |𝜂𝑑 | = 2𝑙. For each shared switch set 𝐶𝑑 ∈ 𝜂𝑑 ,
e define (𝐶𝑑) as the probability that all switches in set 𝐶𝑑 fail and
ther switches in 𝑉 𝑑 ⧵ 𝐶𝑑 work well. That is,

(𝐶𝑑) =
∏

𝑣∈𝐶𝑑

(𝑣) ⋅
∏

𝑣∈𝑉 𝑑⧵𝐶𝑑

(1 − (𝑣)) (30)

or ease of calculation, we define (𝑡|𝐶𝑑) as the failure probability of
ath 𝑡 under the condition that only all switches in set 𝐶𝑑 fail. That is

(𝑡|𝐶𝑑) =

{

1 , if 𝑣 ∈ 𝑡,∃𝑣 ∈ 𝐶𝑑

1 −
∏

𝑣∈𝑡⧵𝑉 𝑑 (1 − (𝑣)) , if 𝑣 ∉ 𝑡,∀𝑣 ∈ 𝐶𝑑
(31)

e then define (𝑑|𝐶𝑑) as the failure probability of path set 𝑑 under
he condition that only all switches in set 𝐶𝑑 fail according to the
ultiplication formula of probability [22].

(𝑑|𝐶𝑑) =
∏

𝑡∈𝑑
(𝑡|𝐶𝑑) (32)

According to the total probability theorem [22] and Eq. (6), we
btain the failure probability of path set 𝑑 as
′(𝑑) = (𝑑) ⋅

∑

𝐶𝑑∈𝜂𝑑
(𝐶𝑑)(𝑑|𝐶𝑑) (33)

e finally denote the reliability probability ′(𝑑) of a path set 𝑑 as
−  ′(𝑑).

. Performance evaluation

In this section, we first introduce the metrics and benchmarks
or performance comparison (Section 4.1). We deploy an SDN on a
mall testbed with OVS and evaluate the effectiveness of our proposed
lgorithm on small-scale networks (Section 4.2). We finally compare
ur proposed solution with some benchmarks through simulations on
arge-scale networks (Section 4.3).

.1. Performance metrics and benchmarks

We adopt seven main metrics for performance evaluation: (1) the
aximum link load ratio (MLR); (2) the network throughput factor

NTF); (3) the maximum number of required flow entries among all
witches (MNE); (4) the reliability satisfied ratio of all OD-pairs (RSR);
5) the failure recovery delay (FRD); (6) the running time (RNT); (7)
he control overhead (CTO).

To measure the network performance, we adopt the maximum
ink load ratio (MLR) and network throughput factor (NTF) as two
etrics. We measure the traffic load 𝑙(𝑒) of each link 𝑒 during system

Computer Networks 197 (2021) 108271X. Yang et al.
running, and the maximum link load ratio is defined as: 𝑀𝐿𝑅 =
max{𝑙(𝑒)∕𝑐(𝑒), 𝑒 ∈ 𝐸}. The lower MLR means better load balancing.
When the flow rate is increasing, some links may be congested and
only fractional traffic of each flow can be forwarded to the destination
to avoid congestion. Each flow 𝑓 can be forwarded traffic amount of
𝜔 ⋅ 𝑟(𝑓) from source to destination, where 𝜔 is the network throughput
factor (NTF), with 0 < 𝜔 ≤ 1. We measure the maximum number
of required flow entries among all switches (MNE). The smaller MNE
means less resource consumption on a switch. Each OD-pair will be
allocated one or several appropriate paths. According to the statistical
information [21], we calculate the failure probability of the selected
path set for each flow by Eqs. (1)–(6). We say that an OD-pair satisfies
the reliability requirement if the reliability probability of this OD-pair
exceeds a threshold 𝛼 (e.g., 𝛼 = 99.9%). We adopt the reliability satisfied
ratio of all OD-pairs (RSR), which represents the proportion of the
number of OD-pairs that satisfy the reliability requirement to the total
number of OD-pairs. The larger RSR means higher reliability of an SDN.
We also measure the duration of any packet loss after a single link
failure (FRD) for all benchmarks. In addition, we measure the running
time (RNT) of the RDBP algorithm.

When a failure event occurs, the controller needs to update the
flow/group-table entries on some switches so as to successfully forward
traffic after detecting the failure, which results in additional control
overhead. We measure the number of control commands [29] (e.g.,
OFPFlowMod, OFPGroupMod messages) to indicate control overhead
(CTO) as a metric. We also measure the MLR and NTF after recovery
from a failure event.

The proposed RDBP solution needs to input the reliability proba-
bility of each path set in advance. To this end, we can get the working
time and failure time of each link through long-time measurement, and
then calculate the failure probability of each link. Based on this, we
can calculate the reliability probability of each path set. In order to
ensure the accuracy of the calculated reliability probability, we update
the reliability probability of the path regularly according to the latest
measurement results [21], so as to ensure the effectiveness of the RDBP
algorithm.

To evaluate the performance of our proposed RDBP solution, we
choose two related benchmarks.

1. The first one is BLR [13], which is a proactive failure recovery
method. Each flow will select a primary path and pass through
this path when no failure occurs. It also determines a link-
disjoint backup path. When any link on the primary path fails,
the affected traffic will be routed along the backup path without
disturbing the controller [13], which is implemented by using
the fast failover function [29] at the group table of each switch.

2. The second one is CALFR [8], which is a reactive failure recovery
method. After detecting a failure event, the controller needs
to explore a backup path for each affected flow. As a result,
some flow-table entries for backup paths will be installed to
recover from failure. Specifically, CALFR adopts flexible flow
aggregation to further reduce the use of flow-table entries.

4.2. System implementation on OVS platform

With the development of network virtualization technology and
cloud computing, virtual switch has attracted the attention of many
major manufacturers (e.g., Amazon) and open source projects (e.g.,
Openstack). Open Virtual Switch (OVS) [30], with its good support for
OpenFlow protocol, has become the most popular virtual switch in the
field of SDN. We implement the RDBP, BLR and CALFR benchmarks
on a small-scale OVS testbed. The OVS platform is comprised of three
parts: an SDN controller, 7 SDN-enabled virtual switches and 6 hosts,
as shown in Fig. 3. This topology is called Sanren [31] from South
Africa. The bandwidth of each link is set to 1 Gbit/s. As we focus on the
performance of the data plane and the controller does not participate
8

Fig. 3. OVS testbed topology.

Fig. 4. Failure recovery delay vs. failed link.

in data forwarding, we omit the controller in Fig. 3 for simplicity.
For more convenient deployment and management of the network,
we adopt the virtualization technology for system implementation.
Specifically, all 7 SDN-enabled switches are implemented using Open
Virtual Switches (version 2.7.2 [30]), and each host is implemented
using the kernel-based virtual machine (KVM). Each OVS and the
connected KVMs are implemented on a server with a CORE i5-3470
processor and 8 GB of RAM. For example, {𝑣1, ℎ1, ℎ4}, {𝑣2}, {𝑣3, ℎ3,
ℎ6}, {𝑣4}, {𝑣5}, {𝑣6, ℎ2, ℎ5} and {𝑣7} are run on 7 servers, respectively.
Besides, we use Ryu [32] that supports the OpenFlow v1.3 standard
as the controller software running on another server with a CORE i7-
8700K processor and 32 GB of RAM. We execute each test 20 times and
average the numerical results. We use ‘‘ovs-ofctl mod-port switch port
down’’ command to turn down a port on the OVS, so that the related
link fails.

The first set of testings observes the failure recovery delay and the
number of control commands. Let host ℎ1 send ICMP packets to ℎ3
as fast as possible by using ‘‘ping -f’’ command. We measure the time
during which no response packet is received by the sender ℎ1 when
some link fails. The results are shown in Fig. 4. Since CALFR needs
to recalculate the backup path(s) and install rules to the data plane,
the failure recovery delay of CALFR is much larger than that of the
other two solutions. Because the controller only needs to modify the
weight of two group-table entries in RDBP, the failure recovery delay
of RDBP is less than that of CALFR. As BLR is a proactive solution, the
data plane can automatically switch traffic to backup path(s) without
interfering with the controller. The failure recovery delay of BLR is
smaller than that of the other two benchmarks. Specifically, the fail-
ure recovery delay of RDBP, BLR and CALFR is 287 ms, 35 ms and
1052 ms, respectively when we break link 𝑣1𝑣2 in Fig. 3. That is, our
proposed RDBP algorithm reduces the failure recovery delay by 72.7%
compared with CALFR. When a failure event occurs, the controller will
install backup paths by sending control commands (i.e., OFPFlowMod
messages) to some switches in CALFR and modify the weight of group

Computer Networks 197 (2021) 108271X. Yang et al.

t
p

Fig. 5. Number of control commands on each switch.

Fig. 6. Number of required flow entries on each switch.

Fig. 7. Link load.

Fig. 8. Network throughput vs. average flow rate.

entries by sending control commands (i.e., OFPGroupMod messages) to
a few switches in RDBP. We count the number of control commands on
each switch and the results are shown in Fig. 5. The average number of
control commands on each switch in RDBP and CALFR is 0.29 and 1.71,
respectively. Our RDBP solution achieves a lower control overhead than
CALFR.

The second testing observes the number of required flow entries
on each switch without link failure as shown in Fig. 6. Since BLR is
a proactive solution, both primary paths and backup paths need to be
installed in advance. As a result, BLR requires more flow entries on each
switch than CALFR and RDBP. As CALFR is a reactive solution, only the
9

p

primary paths need to be installed. CALFR requires fewer flow entries
on each switch than the other two solutions. Specifically, the maximum
number of required flow entries among all switches in RDBP, BLR and
CALFR is 5, 8 and 4, respectively.

The third set of testings shows the link traffic load and network
throughput in Figs. 7–8. Each host will send UDP traffic to all the other
hosts, and the average flow rate is 100 Mbps with 2–8 distribution [33].
Since BLR and CALFR choose the same primary path for each flow,
the load on each link under these two solutions is the same before a
failure event occurs, in which 𝑣1𝑣2 (or 𝑣2𝑣3) burdens the maximum
load (i.e., 425 Mbps) among all links by BLR and CALFR. Because RDBP
uses a multi-path forwarding mechanism, the flow traffic is divided on
multiple paths as evenly as possible, and the load among all links is
very balanced. The maximum link load by RDBP is 225 Mbps, which
is far less than that by BLR and CALFR. Fig. 8 shows that the network
throughput increases with the increasing flow rate for three solutions.
However, the network throughput of BLR and CALFR increases more
slowly than that of RDBP as the average flow rate increases. Our
proposed RDBP algorithm achieves higher network throughput than
BLR and CALFR when the average flow rate is more than 100 Mbps.
Specifically, the network throughput of RDBP, BLR and CALFR is 2.4
Gbps, 1.5 Gbps and 1.5 Gbps, respectively when the average flow rate
is 250 Mbps. RDBP improves network throughput by 60.0% compared
with BLR as well as CALFR. In a word, Figs. 7 and 8 show that our
RDBP algorithm can achieve better routing performance than the other
two benchmarks.

According to the testing results, we can make the following con-
clusions. RDBP can significantly improve traffic throughput by 60.0%
compared with BLR and CALFR. Moreover, RDBP reduces the maximum
number of required flow entries by 37.5% compared with BLR, and
reduces the failure recovery delay and control overhead by 72.7% and
83.0% compared with CALFR.

4.3. Simulation results on large-scale networks

Network Topologies: We choose two kinds of typical topologies for
large-scale network simulations. The first one is a data center topology
called Fat-tree [34], denoted as (a), which contains 80 switches (includ-
ing 16 core switches, 32 aggregation switches, and 32 edge switches) as
well as 128 servers (each edge switch connecting to 4 servers). The link
capacity is 1/5/20 Gbit/s for the link connecting host and edge switch/
link connecting edge switch and aggregate switch/ link connecting
aggregate switch and core switch, respectively in topology (a). The
second topology is a campus network, denoted as (b), which contains
100 switches (including 17 core switches and 83 edge switches) as
well as 475 servers from Monash university [35]. The link capacity is
1 Gbit/s for all links in topology (b). These two topologies represent
various networks with different features. For example, Fat-tree (a) is
structured and designed for data center networks, while the campus
topology (b) is unstructured and for local area networks. By default, we
set an RYU controller [32] in both topologies for management. The link
capacity between host and edge switch is 1 Gbps for both topologies
in our simulations. Moreover, Less than 20% of the top-ranked flows
may be responsible for more than 80% of the total traffic [33]. Thus,
we allocate the size for each flow according to this 2–8 distribution.
We set the reliability threshold as 99.9% by default. We use link down
command to cause the link failure in the test. The failure probability of
the link conforms to the Gaussian distribution, and its average value is
0.1%. We execute each simulation 100 times and average the numerical
results.

We run four groups of simulations to check the performance of the
proposed RDBP algorithm.

Important parameter settings for RDBP: The first set of simula-
ions evaluates the effect of the number of candidate path sets on the
erformance of RDBP. We have introduced the concept of candidate

ath sets in the problem definition of PRLF (i.e., Eq. (8)). For each flow

Computer Networks 197 (2021) 108271X. Yang et al.

𝑓
t
a
l
s
M
s
s
r
(
W
s
t
1
t

s
n
b
b
i
p
M

Fig. 9. Maximum link load ratio vs. Number of candidate path sets. Left plot : Topology (a); right plot : Topology (b).
Fig. 10. Running time vs. number of candidate path sets. Left plot : Topology (a); right plot : Topology (b).
Fig. 11. Maximum link load ratio vs. average flow rate. Left plot : Topology (a); right plot : Topology (b).

a
c
w
b
w
C
T
w

a
i
T
r
w
n
t
i
R
f
1
i
c

, the number of candidate path sets may reach 2|𝑇 𝑓
|−1, where |𝑇 𝑓

| is
he number of candidate paths for flow 𝑓 . We set 4 paths for each flow,
nd there are 15 candidate path sets at most. We test the maximum link
oad ratio and running time by changing the number of candidate path
ets from 3 to 15. Fig. 9 shows the MLR of RDBP in two topologies. The
LR of RDBP decreases with the increasing number of candidate path

ets. However, the change is small especially when the number of path
ets is more than 6. Specifically, the MLR of RDBP is 0.188 and 0.185,
espectively when we choose 6 and 15 candidate path sets in topology
a). Therefore, it is reasonable to choose only a few path sets for RDBP.
e then test the running time of RDBP by changing the number of path

ets for each flow. Fig. 10 shows that the RNT of RDBP increases with
he increasing number of candidate path sets. Combining Figs. 9 and
0, we can choose the appropriate number of path sets (e.g., 6) by the
radeoff between the MLR and RNT in the following simulations.
Network performance before link failure recovery: The second

et of simulations evaluates the maximum link load ratio (MLR) and
etwork throughput factor (NTF) before the appearance of failure event
y changing the average flow rate from 200 kbps to 1000 kbps in
oth topologies. The MLRs of all three algorithms increase with the
ncreasing flow rate. As we choose the same primary path for each OD-
air under BLR and CALFR, their MLRs are the same all the time. The
10

LR of RDBP is less than that of BLR and CALFR all the time. When the e
verage flow rate exceeds 600 kbps in both topologies, some links are
ongested by BLR and CALFR, while our proposed RDBP algorithm still
orks well. It means that the proposed RDBP algorithm can achieve
etter load balancing than the other two benchmarks. Specifically,
hen the average flow rate is 400 kbps, the MLRs of RDBP, BLR and
ALFR are 0.18, 0.71 and 0.71, respectively by the left plot of Fig. 11.
hat is, the proposed RDBP algorithm reduces MLR by 74.6% compared
ith BLR and CALFR.

We then observe the network throughput factor (NTF) before the
ppearance of the failure event by changing the average flow rate
n two topologies, and the simulation results are shown in Fig. 12.
he NTFs of all three algorithms decrease with the increasing flow
ate. When we increase the flow rate, the bandwidth of some links
ill be exhausted, which leads to link congestion. At this time, the
etwork throughput is reduced to avoid congestion. The NTFs of all
hree methods are 1 when the average flow rate is less than 400kbps
n both topologies. When the average flow rate exceeds 600 kbps, only
DBP can achieve the throughput factor of 1. However, it is not the case

or BLR and CALFR. Specifically, the NTFs of RDBP, BLR and CALFR are
, 0.70 and 0.70, respectively when the average flow rate is 800 kbps
n topology (a). That is, our RDBP solution improves NTF by 30.3%
ompared with BLR and CALFR.
Overhead for link failure recovery: The third set of simulations

valuates the maximum number of required flow entries (MNE) and

Computer Networks 197 (2021) 108271X. Yang et al.

e
(

Fig. 12. Network throughput factor vs. average flow rate. Left plot : Topology (a); right plot : Topology (b).
Fig. 13. Maximum number of required flow entries vs. reliability threshold 𝛼. Left plot: Topology (a); right plot: Topo. (b).
Fig. 14. Control overhead over different failure scenarios. Left plot : Topology (a); right plot : Topology (b).
control overhead (CTO). One or several appropriate paths will be allo-
cated to each OD-pair. According to the statistical information [21], we
calculate the failure probability of the selected path set for each flow by
Eqs. (1)–(6). We say that an OD-pair satisfies the reliability requirement
if the reliability probability of this OD-pair exceeds a threshold 𝛼 (e.g.,
𝛼 = 99.9%). Note that 𝛼 is the minimum reliability requirement for
ach flow. We measure the maximum number of required flow entries
MNE) by changing the reliability threshold 𝛼 in both topologies, as

shown in Fig. 13, which indicates the overhead in the data plane.
RDBP can guarantee that the reliability probability of each flow should
exceed the reliability threshold 𝛼. The larger value of 𝛼 means better
robustness of the proposed RDBP algorithm. It is obvious that the MNE
of RDBP increases with the increasing reliability threshold 𝛼 in both
topologies. With a larger threshold, each OD-pair will use more paths to
forward traffic and each switch will consume more flow entries for path
installment. As BLR is a proactive method that deploys all backup paths
in advance, BLR achieves higher MNE than the other two solutions. As
CALFR is a reactive method, it consumes a small amount of flow entries
on all switches in the network. However, it does not guarantee that
the number of required flow entries on each switch is balanced. Some
switches may suffer from severe flow entries consumption by CALFR,
which results in high MNE in some situations. Our RDBP solution limits
flow entries consumption on each switch. The MNE of RDBP is less
than that of CALFR in topology (a) all the time, but we obtain the
opposite conclusion in topology (b) when the reliability threshold 𝛼 is
11
larger than 99.99%. Specifically, the MNEs of RDBP, BLR and CALFR
are 840, 1792 and 896 in topology (a) when the reliability threshold
𝛼 is 99.9%. That is, our RDBP algorithm reduces MNE by 53.1% and
6.25% compared with BLR and CALFR.

When the failure event occurs, the controller needs to adjust the
flows’ routes to ensure network reliability, which will incur extra
control overhead. We then observe the control overhead (CTO or the
number of control commands) when different failure scenarios appear
in both topologies. The CTO of BLR is always 0, as it is a proactive
failure recovery solution. Because CALFR is a reactive solution, it needs
to compute a backup path for each affected flow and install rules at the
data plane, which results in significant control overhead. However, in
RDBP, the controller needs to only modify the weight on a few switches
where multiple paths of the same flow intersect, which will cause
lightweight control overhead. So the CTO of RDBP is less than that of
CALFR. We test the CTOs of RDBP and CALFR when different failure
scenarios appear in both topologies and list the maximum five CTO
values among all failure scenarios in Fig. 14. Specifically, the maximum
CTOs of RDBP and CALFR are 112 and 672, respectively in topology (a).
Our proposed RDBP algorithm reduces the control overhead by 83.3%
compared with CALFR.

Network performance after link failure recovery: The fourth set
of simulations evaluates the robustness of all benchmarks, including
the reliability satisfied ratio of all OD-pairs (RSR), maximum link
load ratio (MLR) and the network throughput (NTF) after recovery

Computer Networks 197 (2021) 108271X. Yang et al.

w
I
a
t
F
w
b
l
s
i
f
B
A
r
c

Fig. 15. OD-pair available ratio vs. reliability threshold. Left plot : Topology (a); right plot : Topology (b).
Fig. 16. Max. link load ratio after failure recovery vs. average flow rate. Left plot : Topology (a); right plot : Topology (b).
Fig. 17. NTF after failure recovery vs. average flow rate. Left plot : Topology (a); right plot : Topology (b).
from failure scenarios. We observe the RSR by changing the reliability
threshold 𝛼 in both topologies, and the simulation results are shown
in Fig. 15. When we increase the reliability threshold, the RSR of
RDBP is always 100%. However, the RSRs of BLR and CALFR decrease
with the increase of reliability threshold 𝛼 in both topologies. When
the reliability threshold is 99.9% in topology (a), only 7.1% of OD-
pairs can meet the reliability threshold by CALFR, and all OD-pairs can
meet the reliability threshold by BLR and RDBP. When the reliability
threshold is 99.999% in topology (a), the RSR of BLR falls to 49.8%
and will further decline with the increase of reliability threshold 𝛼,

hich shows higher reliability of RDBP compared with BLR and CALFR.
n a word, the proposed RDBP algorithm increases the RSR by 12.6%
nd 76.9% compared with BLR and CALFR, respectively. We evaluate
he MLR and NTF after recovery from different failure scenarios in
igs. 16 and 17. When some links fail, the affected flow can rapidly
ork well by RDBP-T. Fig. 16 shows MLR after recovery from failure
y changing the average flow rate in both topologies. We break some
inks and measure the MLR after failure recovery. MLRs of all three
olutions increase with the increasing flow rate. The MLR of RDBP-T
s lower than that of BLR and CALFR all the time. When the average
low rate exceeds 600kbps in both topologies (a) and (b), MLRs of
LR and CALFR achieve 1, which means congestion on some links.
t this time, our proposed RDBP-T algorithm still works well. As a
esult, RDBP-T can achieve better load balancing after failure recovery
12

ompared with others. Specifically, the MLRs of RDBP-T, BLR and
CALFR are 0.23, 0.72 and 0.72, respectively when the average flow rate
is 400kbps in topology (a). That is, our RDBP-T algorithm reduces MLR
by 68.1% compared with BLR and CALFR. We then test the achievable
throughput factor after the network recovers from all candidate failure
scenarios by changing the average flow rate in both topologies. The
simulation results are shown in Fig. 17. As RDBP-T is a throughput
preserving solution, the NTF of RDBP-T is always 1. However, it is not
the case for BLR and CALFR. In fact, when the average flow rate is more
than 400 Kbps, the NTFs of BLR and CALFR are similar and decrease
with the increase of average flow rate in topology (a), which means
that BLR and CALFR should reduce throughput to avoid congestion.
Specifically, when the average flow rate is 1000 Kbps, the NTFs of
RDBP-T, BLR and CALFR are 1, 0.52 and 0.52, respectively in topology
(a). RDBP-T improves the NTF by 48.0% compared with others after
failure recovery.

We also observe the maximum link load ratio (MLR) by changing
the average link failure probability from 0.1% to 0.9% in topology
(a), and the simulation results are shown in Fig. 18. With the increase
of the average link failure probability, the failure probability of each
path will increase. At this time, due to the limited flow table on each
switch, some suitable paths cannot be selected. As a result, the MLR
of RDBP increases with the increasing average link failure probability.
Specifically, the MLR of RDBP is 23.9% and 37.3% when the average
link failure probability is 0.1% and 0.5%, respectively.

We can make some conclusions according to the simulation results.

First, by Figs. 11–12, our proposed RDBP algorithm can reduce the

Computer Networks 197 (2021) 108271X. Yang et al.
Fig. 18. Maximum link load ratio vs. average link failure probability in topology (a).

MLR by 74.6% and improve the NTF by 30.3% compared with BLR
and CALFR without failure. Second, by Fig. 13, RDBP can make more
efficient use of flow entries than BLR. Specifically, RDBP reduces MNE
by 53.1% compared with BLR. According to Fig. 14, when some links
fail, RDBP can reduce the control overhead by 83.3% compared with
the reactive method (i.e., CALFR) to fulfill failure recovery. Third, by
Fig. 15, we can find out that RDBP can achieve higher path reliability,
compared with BLR and CALFR. Finally, by Figs. 16–17, RDBP-T re-
duces the MLR by 68.1% and improves the traffic throughput by 48.0%
compared with BLR and CALFR after recovery from failure scenarios.
The simulation results under large-scale topologies are consistent with
the testing results at the SDN testbed. Thus, RDBP can achieve better
network performance with less resource consumption (i.e., TCAM) and
lower failure recovery delay.

5. Related work

Since software defined network can exploit a global view of the
whole network and easy to perform global updates by the central
controller, it has been favored by many traffic engineering for WAN
recently (e.g., B4 [2], SWAN [36] and FFC [20]). Prior work optimizing
the bandwidth allocation by leveraging re-configurable optical de-
vices [37,38], under inaccurate knowledge of traffic demands [19,39],
but they all disregard the failure event. Suchara et al. [18] achieve
failure recovery by re-allocate traffic across multiple paths after failures
occur, but ignore failure probabilities. Inspired by financial risk theory,
Teavar [21] explicitly accounts for the likelihood of different failure
events and adjusts the bandwidth for each flow to minimize a formal
notion of risk to an acceptable level as well as improve the network
throughput.

A crucial challenge faced by TE is how to react to the presence of
underlying link/node failures. Existing solutions to recover underlying
link/node failures can be divided into 2 categories reactive strategy
and proactive strategy. The difference between these two strategies is
obvious. When some links fail in the network, the reactive strategy
installs backup paths for affected flows when detecting the failure.
Cheng et al. [8] design a new resilience approach to balance failure
recovery time and forwarding entries occupation, it aggregates all
traffic flows assigned to the same backup path into a ‘‘big’’ flow in
order to reduce the number of reconfigured forwarding rules. Wang et
al. [9] define the link failure problem in SDN and propose a 2-stage
algorithm, rapid connectivity restoration in an acceptable time(50s),
and backup path adjustment to reallocate network resources based
on bandwidth and delay requirements. It can reduce the recovery
time with QoS requirements. Since the controller needs to participate
in failure recovery, reactive strategy will cause real-time controller
overhead. In the meantime, take action after failure occurs can cause
an impossible-to-ignore recovery time.

Proactive strategy recovers the failed network before the failure
occurs by deploying additional alternate paths in advance. The under-
13

lying failure will be recovered rapidly without the intervention of the
controller. Chu et al. [11] aim to solve the resilience issue in a hybrid
SDN network where SDN switch and traditional IP router coexist, it
redirects traffic on the failed link to a designated SDN switch through
IP tunnels. This designated SDN switch decides how to route the flow to
appropriate next hop. After that the traffic can be further delivered to
its destination. This work deploys SDN switches as little as possible to
guarantee traffic reachability in the presence of any single link failure.
Li et al. [12] slightly modified [11] by replacing some SDN switches
with traditional switches. It uses traditional switches as designated
switches only when necessary to further reduce the number of SDN
switches needed. Mohan et al. [13] develop two proactive rerouting
algorithms (i.e. FLR and BLR) to react to underlying failure events. FLR
computes a set of backup paths for each primary path, each path in the
set is corresponds to one link on the primary path. BLR reroutes the
affected flows backward from the failed link to the source node and
then flows to the destination along a link-node-disjoint path, which is
computationally simpler than FLR.

6. Conclusion

In this paper, we have introduced the reliable flow routing problem
for better dealing with failure event. We have defined the RLFR prob-
lem for minimizing the maximum load of all links with both reliability
and flow-table size constraints in SDNs. We propose a rounding-based
algorithm RDBP for this problem and analyze its approximation perfor-
mance. We further consider how to implement the throughput preserv-
ing reliable routing scheme for each OD-pair. We have implemented the
RDBP algorithm on an OVS testbed. The extensive simulation results
show high efficiency of our proposed algorithms.

CRediT authorship contribution statement

Xuwei Yang: Conceptualization, Methodology, Writing - review &
editing, Software. Hongli Xu: Conceptualization, Methodology, Writ-
ing - review & editing, Supervision. Jianchun Liu: Investigation,
Software. Chen Qian: Conceptualization. Xingpeng Fan: Methodol-
ogy, Software. He Huang: Methodology. Haibo Wang: Investigation,
Methodology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This article was supported in part by the National Science Founda-
tion of China (NSFC) under Grants 61822210, 61936015, and
U1709217; and in part by Anhui Initiative in Quantum Informa-
tion Technologies under Grant AHY150300; and in part by the Fun-
damental Research Funds for the Central Universities under Grant
WK5290000001.

Appendix. NP hardness of PRLF

To show the NP-hardness, we first give the following definition.

Definition 1 (Identical Parallel Machines Scheduling (IPMS) Problem
[40]). Given 𝑚 parallel machines and 𝑛 independent jobs, each job is
to be assigned to one of the machines that have identical processing
speed. Thus, every job will take the same amount of processing time on
each machine. The objective is to schedule jobs on suitable machines
to minimize the makespan.

Computer Networks 197 (2021) 108271X. Yang et al.
Fig. 19. A special example of the PRLF problem.

Proof. Since IPMS is NP-hardness, We prove the NP-hardness by
showing that the IPMS [40] is a special case of the PRLF problem. We
consider an arbitrary IPMS instant . There are a set of 𝑚 machines and
a set of 𝑛 jobs. Moreover, the processing time of job 𝑖 on each machine
is denoted as 𝑡𝑖.

Next, we consider a special example of the PRLF problem. Given
a network topology as shown in Fig. 19. There are 𝑛 ingress switches
denoted as 𝑠𝑖 with 𝑖 = 1, 2,… , 𝑛 and 𝑛 egress switches denoted as 𝑑𝑖
with 𝑖 = 1, 2,… , 𝑛. Each flow is routed from 𝑠𝑖 to 𝑑𝑖, with 𝑖 = 1, 2,… , 𝑛.
A switch 𝑣0 is connected to all ingress switches and another switch
𝑣′0 is connected to all egress switches. Moreover, there are 𝑚 switches
denoted as 𝑣𝑗 with 𝑗 = 1, 2,… , 𝑚 that connect to both 𝑣0 and 𝑣′0. The
capacity of link 𝑣0𝑣𝑗 and 𝑣𝑗𝑣′0 are set as 𝑐0 and ∞, respectively, where
𝑐0 is constant. Assume that the failure probability of all paths from 𝑠𝑖
to 𝑑𝑖 are far less than the threshold 1 − 𝛼, and each available path set
contains only one path. In addition, assume that switch 𝑣0 has at most 𝑛
flow entries. So we will select only one path for each OD pair (𝑠𝑖, 𝑑𝑖) to
forward its traffic 𝑡𝑖⋅𝑐0, so as to minimize the maximum traffic load ratio
in a network. Thus, we regard each flow from 𝑠𝑖 to 𝑑𝑖 and each link 𝑣0𝑣𝑗
as a job 𝑖 and machine 𝑗, respectively. Moreover, the processing time for
job 𝑖 is 𝑡𝑖⋅𝑐0

𝑐0
= 𝑡𝑖. This is just the IPMS instant . As a result, each IPMS

instance is a special instant of PRLF, which shows the NP-hardness of
the PRLF problem. □

References

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R.
Wattenhofer, Achieving high utilization with software-driven WAN, in: ACM
SIGCOMM, 2013, pp. 15–26, https://dl.acm.org/citation.cfm?id=2486012.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.
Wanderer, J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed
software defined WAN, in: ACM SIGCOMM, 2013, pp. 3–14, https://dl.acm.org/
citation.cfm?id=2486019.

[3] A. Hatami-Marbini, S.M. Sajadi, H. Malekpour, Optimal control and simulation
for production planning of network failure-prone manufacturing systems with
perishable goods, Comput. Ind. Eng. (2020) 106614.

[4] A. Krause, S. Giansante, Interbank lending and the spread of bank failures: A
network model of systemic risk, J. Econ. Behav. Organ. 83 (3) (2012) 583–608.

[5] R. Govindan, I. Minei, M. Kallahalla, B. Koley, A. Vahdat, Evolve or die: High-
availability design principles drawn from googles network infrastructure, in:
Proceedings of the 2016 ACM SIGCOMM Conference, ACM, 2016, pp. 58–72,
https://dl.acm.org/citation.cfm?id=2934891.

[6] M. Ghobadi, R. Mahajan, Optical layer failures in a large backbone, in: Proceed-
ings of the 2016 Internet Measurement Conference, ACM, 2016, pp. 461–467,
https://dl.acm.org/citation.cfm?id=2987483.
14
[7] V. Paxson, End-to-end routing behavior in the internet, IEEE/ACM Trans. Netw.
5 (5) (1997) 601–615, https://ieeexplore.ieee.org/abstract/document/649563/.

[8] Z. Cheng, X. Zhang, Y. Li, S. Yu, R. Lin, L. He, Congestion-aware local
reroute for fast failure recovery in software-defined networks, IEEE/OSA J.
Opt. Commun. Networking 9 (11) (2017) 934–944, https://ieeexplore.ieee.org/
abstract/document/8113138/.

[9] L. Wang, L. Yao, Z. Xu, G. Wu, M.S. Obaidat, CFR: A cooperative link failure
recovery scheme in software-defined networks, Int. J. Commun. Syst. 31 (10)
(2018) e3560, https://ieeexplore.ieee.org/abstract/document/8113138/.

[10] Y. Chen, T. Farley, N. Ye, Qos requirements of network applications on the
internet, Inf. Knowl. Syst. Manag. 4 (1) (2004) 55–76, https://content.iospress.
com/articles/information-knowledge-systems-management/iks00061.

[11] C.-Y. Chu, K. Xi, M. Luo, H.J. Chao, Congestion-aware single link failure recovery
in hybrid SDN networks, in: 2015 IEEE Conference on Computer Communications
(INFOCOM), IEEE, 2015, pp. 1086–1094, https://ieeexplore.ieee.org/abstract/
document/7218482/.

[12] D. Li, J. Wu, D. Wang, Single-link failure recovery with or without software-
defined networking switches, in: 2018 International Conference on Information
and Computer Technologies (ICICT), IEEE, 2018, pp. 87–91, https://ieeexplore.
ieee.org/abstract/document/8356846/.

[13] P.M. Mohan, T. Truong-Huu, M. Gurusamy, TCAM-Aware local rerouting for
fast and efficient failure recovery in software defined networks, in: 2015 IEEE
Global Communications Conference (GLOBECOM), IEEE, 2015, pp. 1–6, https:
//ieeexplore.ieee.org/abstract/document/7417309/.

[14] X. Yang, H. Xu, L. Huang, G. Zhao, P. Xi, C. Qiao, Joint virtual switch deployment
and routing for load balancing in SDNs, IEEE J. Sel. Areas Commun. 36 (3)
(2018) 397–410, https://ieeexplore.ieee.org/abstract/document/8314714/.

[15] G. Zhao, H. Xu, S. Chen, L. Huang, P. Wang, Deploying default paths by
joint optimization of flow table and group table in SDNs, in: 2017 IEEE 25th
International Conference on Network Protocols (ICNP), IEEE, 2017, pp. 1–10,
https://ieeexplore.ieee.xilesou.top/abstract/document/8117539/.

[16] X. Jin, H.H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, R.
Wattenhofer, Dynamic scheduling of network updates, in: Proceedings of the
2014 ACM Conference on SIGCOMM, ACM, 2014, pp. 539–550.

[17] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, Y. Sun, Minimizing controller
response time through flow redirecting in SDNs, IEEE/ACM Trans. Netw. (2018)
https://dl.acm.org/citation.cfm?id=3190751.

[18] M. Suchara, D. Xu, R. Doverspike, D. Johnson, J. Rexford, Network architecture
for joint failure recovery and traffic engineering, in: Proceedings of the ACM
SIGMETRICS Joint International Conference on Measurement and Modeling of
Computer Systems, ACM, 2011, pp. 97–108.

[19] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C.L. Lim,
R. Soulé, Semi-oblivious traffic engineering: The road not taken, in: 15th
{𝑈𝑆𝐸𝑁𝐼𝑋} Symposium on Networked Systems Design and Implementation
({𝑁𝑆𝐷𝐼} 18), 2018, pp. 157–170.

[20] H.H. Liu, S. Kandula, R. Mahajan, M. Zhang, D. Gelernter, Traffic engineering
with forward fault correction, in: ACM SIGCOMM Comput. Commun. Rev., 44,
(4) ACM, 2014, pp. 527–538.

[21] J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjørner, A. Valadarsky, M.
Schapira, TEAVAR: striking the right utilization-availability balance in wan
traffic engineering, in: Proceedings of the ACM Special Interest Group on
Data Communication, ACM, 2019, pp. 29–43, https://dl.acm.org/citation.cfm?
id=3342069.

[22] Y.S. Chow, H. Teicher, Probability Theory: Independence, Interchangeability,
Martingales, Springer Science & Business Media, 2003.

[23] A. Haghani, S.-C. Oh, Formulation and solution of a multi-commodity, multi-
modal network flow model for disaster relief operations, Transp. Res. A
30 (3) (1996) 231–250, https://sciencedirect.xilesou.top/science/article/pii/
0965856495000208.

[24] D. Johnson, Computers and Intractability-A Guide to the Theory of NP-
Completeness, Freeman, San Fransisco, CA, 1979, https://ci.nii.ac.jp/naid/
10030608028/.

[25] S. Mitchell, M. OSullivan, I. Dunning, PuLP: a linear programming toolkit
for python, The University of Auckland, Auckland, New Zealand, 2011,
http://www.optimization-online.org/DBFILE/2011/09/3178 http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.416.4985&rep=rep1&type=pdf.

[26] A. Srinivasan, Approximation Algorithms Via Randomized Rounding: a Survey,
in: Series in Advanced Topics in Mathematics, Polish Scientific Publishers PWN,
1999, pp. 9–71, https://dl.acm.org/citation.cfm?id=3190751.

[27] R. Cohen, L. Lewin-Eytan, J.S. Naor, et al., On the effect of forward-
ing table size on SDN network utilization, in: Proc. IEEE INFOCOM,
IEEE, 2014, pp. 1734–1742, https://www.sciencedirect.com/science/article/pii/
S1876735410000024.

[28] A. Chateauneuf, M. Cohen, Risk seeking with diminishing marginal utility in
a non-expected utility model, J. Risk Uncertain. 9 (1) (1994) 77–91, https:
//link.springer.com/article/10.1007/BF01073404.

[29] The Openflow Switch, openflowswitch.org.

https://dl.acm.org/citation.cfm?id=2486012
https://dl.acm.org/citation.cfm?id=2486019
https://dl.acm.org/citation.cfm?id=2486019
https://dl.acm.org/citation.cfm?id=2486019
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb3
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb3
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb3
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb3
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb3
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb4
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb4
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb4
https://dl.acm.org/citation.cfm?id=2934891
https://dl.acm.org/citation.cfm?id=2987483
https://ieeexplore.ieee.org/abstract/document/649563/
https://ieeexplore.ieee.org/abstract/document/8113138/
https://ieeexplore.ieee.org/abstract/document/8113138/
https://ieeexplore.ieee.org/abstract/document/8113138/
https://ieeexplore.ieee.org/abstract/document/8113138/
https://content.iospress.com/articles/information-knowledge-systems-management/iks00061
https://content.iospress.com/articles/information-knowledge-systems-management/iks00061
https://content.iospress.com/articles/information-knowledge-systems-management/iks00061
https://ieeexplore.ieee.org/abstract/document/7218482/
https://ieeexplore.ieee.org/abstract/document/7218482/
https://ieeexplore.ieee.org/abstract/document/7218482/
https://ieeexplore.ieee.org/abstract/document/8356846/
https://ieeexplore.ieee.org/abstract/document/8356846/
https://ieeexplore.ieee.org/abstract/document/8356846/
https://ieeexplore.ieee.org/abstract/document/7417309/
https://ieeexplore.ieee.org/abstract/document/7417309/
https://ieeexplore.ieee.org/abstract/document/7417309/
https://ieeexplore.ieee.org/abstract/document/8314714/
https://ieeexplore.ieee.xilesou.top/abstract/document/8117539/
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb16
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb16
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb16
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb16
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb16
https://dl.acm.org/citation.cfm?id=3190751
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb18
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb18
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb18
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb18
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb18
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb18
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb18
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb19
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb19
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb19
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb19
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb19
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb19
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb19
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb20
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb20
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb20
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb20
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb20
https://dl.acm.org/citation.cfm?id=3342069
https://dl.acm.org/citation.cfm?id=3342069
https://dl.acm.org/citation.cfm?id=3342069
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb22
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb22
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb22
https://sciencedirect.xilesou.top/science/article/pii/0965856495000208
https://sciencedirect.xilesou.top/science/article/pii/0965856495000208
https://sciencedirect.xilesou.top/science/article/pii/0965856495000208
https://ci.nii.ac.jp/naid/10030608028/
https://ci.nii.ac.jp/naid/10030608028/
https://ci.nii.ac.jp/naid/10030608028/
http://www.optimization-online.org/DBFILE/2011/09/3178
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.4985&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.4985&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.4985&rep=rep1&type=pdf
https://dl.acm.org/citation.cfm?id=3190751
https://www.sciencedirect.com/science/article/pii/S1876735410000024
https://www.sciencedirect.com/science/article/pii/S1876735410000024
https://www.sciencedirect.com/science/article/pii/S1876735410000024
https://link.springer.com/article/10.1007/BF01073404
https://link.springer.com/article/10.1007/BF01073404
https://link.springer.com/article/10.1007/BF01073404
http://openflowswitch.org

Computer Networks 197 (2021) 108271X. Yang et al.
[30] Open vswitch, http://openvswitch.org/.
[31] The Network Topology from the South Africa, http://www.topology-zoo.org/

maps/Sanren.jpg.
[32] J.-M. Kang, T. Lin, H. Bannazadeh, A. Leon-Garcia, Software-defined infrastruc-

ture and the SAVI testbed, in: International Conference on Testbeds and Research
Infrastructures, Springer, 2014, pp. 3–13, https://link.springer.com/chapter/10.
1007/978-3-319-13326-3_1.

[33] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S. Banerjee,
Devoflow: Scaling flow management for high-performance networks, in: ACM
SIGCOMM, Vol. 41, (4) ACM, 2011, pp. 254–265, https://dl.acm.org/citation.
cfm?id=2018466.

[34] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network
architecture, in: ACM SIGCOMM Computer Communication Review, Vol. 38, (4)
ACM, 2008, pp. 63–74, https://dl.acm.org/citation.cfm?id=1402967.

[35] The Network Topology from the Monash University, http://www.ecse.monash.
edu.au/twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies.

[36] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Watten-
hofer, Achieving high utilization with software-driven WAN, in: ACM SIGCOMM
Computer Communication Review, Vol. 43, (4) ACM, 2013, pp. 15–26.

[37] A. Mahimkar, A. Chiu, R. Doverspike, M.D. Feuer, P. Magill, E. Mavrogiorgis,
J. Pastor, S.L. Woodward, J. Yates, Bandwidth on demand for inter-data center
communication, in: Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, ACM, 2011, p. 24.

[38] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, J. Rexford, Optimizing
bulk transfers with software-defined optical WAN, in: Proceedings of the 2016
ACM SIGCOMM Conference, ACM, 2016, pp. 87–100.

[39] D. Applegate, E. Cohen, Making intra-domain routing robust to changing and un-
certain traffic demands: Understanding fundamental tradeoffs, in: Proceedings of
the 2003 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ACM, 2003, pp. 313–324.

[40] M.R. Garey, D.S. Johnson, Computers and intractability: A guide to the theory
of npcompleteness (series of books in the mathematical sciences), ed, Comput.
Intractability (1979) 340.

Xuwei Yang received B.S. degree in network engineering
from the Chang’an University and the Ph.D. degree in com-
puter science and technology from the University of Science
and Technology of China in 2016 and 2021, respectively.
His main research interest is software defined networks and
cloud network.

Hongli Xu received the B.S. degree in computer science and
the Ph.D. degree in computer software and theory from the
University of Science and Technology of China in 2002 and
2007, respectively. He is currently an Associate Professor
with the School of Computer Science and Technology,
University of Science and Technology of China. He has
authored or coauthored over 70 papers, and held about
30 patents. His main research interest is software-defined
networks, cooperative communication, and vehicular ad hoc
network.
15
Jianchun Liu received B.S. degree in 2017 from the North
China Electric Power University. He is currently a Ph.D.
candidate in the School of Data Science, University of
Science and Technology of China (USTC). His main research
interests are software defined networks, network function
virtualization, edge computing and federated learning.

Chen Qian received the B.S. degree from Nanjing University
in 2006, the M.Phil. degree from The Hong Kong University
of Science and Technology in 2008, and the Ph.D. degree
from The University of Texas at Austin in 2013, all in
computer science. He is currently an Assistant Professor
with the Department of Computer Engineering, University
of California at Santa Cruz. His research interests include
computer networking, network security, and Internet of
Things. He has authored over 60 research papers in highly
competitive conferences and journals. He is a member of
the ACM.

Xingpeng Fan received B.S. degree in 2017 from the
University of Science and Technology of China . He is
currently a Ph.D candidate student in Computer Science
at the University of Science and Technology of China. He
will receive the doctor’s degree in 2022. His main research
interest is software defined networks, data center network,
cloud computing and edge computing.

Dr. He Huang is an associate professor in the School of
Computer Science and Technology at Soochow University,
P.R. China. He received his Ph.D. degree in Department
of Computer Science and Technology from University of
Science and Technology of China (USTC), in 2011. His
current research interests include traffic measurement, spec-
trum auction, privacy preserving in auction, and algorithmic
game theory. He is a Member of both IEEE and ACM.

Haibo Wang received B.S. degree in 2016 and M.S. degree
in 2019 from the University of Science and Technology of
China . He is currently a Ph.D. student in the Department
of Computer and Information Science and Technology, Uni-
versity of Florida . His main research interest is software
defined networks and Internet traffic measurement.

http://openvswitch.org/
http://www.topology-zoo.org/maps/Sanren.jpg
http://www.topology-zoo.org/maps/Sanren.jpg
http://www.topology-zoo.org/maps/Sanren.jpg
https://link.springer.com/chapter/10.1007/978-3-319-13326-3_1
https://link.springer.com/chapter/10.1007/978-3-319-13326-3_1
https://link.springer.com/chapter/10.1007/978-3-319-13326-3_1
https://dl.acm.org/citation.cfm?id=2018466
https://dl.acm.org/citation.cfm?id=2018466
https://dl.acm.org/citation.cfm?id=2018466
https://dl.acm.org/citation.cfm?id=1402967
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb36
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb37
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb38
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb38
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb38
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb38
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb38
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb39
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb39
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb39
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb39
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb39
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb39
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb39
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb40
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb40
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb40
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb40
http://refhub.elsevier.com/S1389-1286(21)00296-6/sb40

	Achieving high reliability and throughput in software defined networks
	Introduction
	Preliminaries
	Network and flow models
	Path reliability model
	Definition of reliable flow routing problem
	The PRLF problem

	Algorithm design
	RDBP: Rounding-based algorithm for PRLF
	Performance analysis
	Throughput preserving reliable routing
	Motivation
	Algorithm design

	Discussion

	Performance evaluation
	Performance metrics and benchmarks
	System implementation on OVS platform
	Simulation results on large-scale networks

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. NP hardness of PRLF
	References

