
Computer Networks 178 (2020) 107339

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

PrePass: Load balancing with data plane resource constraints using

commodity SDN switches

Haibo Wang

a , Hongli Xu

a , ∗ , Chen Qian

b , Juncheng Ge

c , Jianchun Liu

c , He Huang

d , ∗

a School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
b Department of Computer Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
c School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
d School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China

a r t i c l e i n f o

Keywords:

Software defined networks

Load balancing

Switch resource constraint

Rounding

a b s t r a c t

Software Defined Networks (SDN) enables the network control logic to be designed and operated on a global

network view by decoupling the control plane from the data plane. Due to versatility and universality of network

applications, network layer load balancing is crucial to ensure operational efficiency in a network with a variety

of workloads. However, limited resources (e.g. , TCAM and computing capacity) on SDN switches bring critical

challenges for load balancing. On one hand, though some solutions satisfy resource constraints, these methods

do not work well especially for network asymmetry and traffic dynamics. On the other hand, most previous

works achieve load balancing with additional hardware or software resources, which increase the system cost

and limit the applicability. Thus, this paper tries to deal with the following challenge: how to achieve load balancing

without additional device and software on commodity switches while dealing with network/traffic uncertainties ? To this

end, we design and implement PrePass, which uses wildcard entries for some aggregate flows to satisfy the flow

table size constraint, and performs reactive routing for newly arrived flows to achieve load balancing even with

network/traffic uncertainties. We define the problem of load balancing with flow table size constraint, and prove

its NP-hardness. We then present an efficient algorithm based on randomized rounding, and analyze that our

algorithm can achieve constant bi-criteria approximation under most practical situations. To make our problem

more robust, an extended version without traffic size knowledge is also studied. We implement PrePass on a real

SDN testbed. The experimental results and extensive simulation results show that our proposed method can satisfy

different resource constraints on switches, and only increase the link load ratio by about 5%-10% compared with

per-flow routing scheme under various traffic scenarios.

1

r

c

f

a

s

l

(

l

a

w

i

T

p

S

t

t

h

d

s

t

T

h

e

h

s

h

h

R

A

1

. Introduction

Network layer load balancing is an important technique that uses
outing decisions to avoid potential congestion on certain links and in-
rease the network bandwidth utilization. Load balancing is important
or various types of networks including ISP, data centers [1] , WAN [2] ,
nd enterprise networks [3] . In particular, modern networks should
upport an increasingly diverse set of workloads, ranging from small
atency-sensitive flows (e.g. , search) to bandwidth-hungry large flows
 e.g. , VM migration [4] or video [5]). To better serve a diversity of flows,
oad balancing is crucial to ensure operational efficiency and suitable
pplication performance.

As a recent trend, Software Defined Networking (SDN) has been
idely used in modern networks. In a typical SDN, the controller mon-

tors the network and determines the forwarding paths of traffic flows.
∗ Corresponding authors.

E-mail addresses: xuhongli@ustc.edu.cn (H. Xu), huangh@suda.edu.cn (H. Huang

ttps://doi.org/10.1016/j.comnet.2020.107339

eceived 9 April 2020; Received in revised form 8 May 2020; Accepted 24 May 2020

vailable online 28 May 2020

389-1286/© 2020 Elsevier B.V. All rights reserved.
he switches carry out different operations (e.g. , forwarding or drop-
ing) for flows/packets based on the rules installed by the controller.
ince the controller is able to implement centralized and reactive con-
rol for each flow through the header packet reporting mechanism [6] ,
he controller can manage the network in a fine-grained manner, which
elp to improve the network bandwidth utilization compared with tra-
itional network load balancing [2] . However, limited resources on SDN
witches pose additional difficulty for load balancing. Specifically, two
ypes of resources are of major concerns. (1) Memory resource. Since
ernary Content Addressable Memory (TCAM) is expensive and power
ungry, the size of a TCAM-based flow table is often limited (e.g. , 1500
ntries on HP 5406zl switch [3]). (2) Computing resource. Switches
ave special hardware for packet forwarding processing. In addition, as
pecified in the OpenFlow standard [6] , each OpenFlow capable switch
as a software implemented OpenFlow agent for basic functions like
).

https://doi.org/10.1016/j.comnet.2020.107339
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107339&domain=pdf
mailto:xuhongli@ustc.edu.cn
mailto:huangh@suda.edu.cn
https://doi.org/10.1016/j.comnet.2020.107339

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

Table 1

Comparison of existing load balancing schemes.

Schemes Handle dynamics? Satisfy FTS constraint? Need hard/software? Switch computing overhead

ECMP [8] No Yes No Low

WCMP [10] Partially

DRB [12]

RBDP [16]

RLJD [17] Yes No No Low

Hedera [1]

DevoFlow [3] Yes Yes Yes Low

DRILL [18]

HS [14]

LocalFlow [19] Yes Yes Yes High

HULA [20]

Presto 1 [15]

CONGA [11]

LetFlow [21]

PrePass Yes Yes No Low

l

i

i

P

t

d

m

e

i

t

f

a

p

h

m

e

o

fl

[

p

a

c

i

m

r

(

a

c

o

a

c

r

a

c

s

p

r

b

l

w

O

c

t

E

b

(

i

s

t

p

a

w

ink layer discovery, which typically runs on a low-end CPU with lim-
ted processing power [7] . These resource constraints certainly limit how

ndividual flows can be controlled in the network for best load balancing .
A natural and common way for load balancing is Equal-Cost Multi-

ath (ECMP) based multi-path forwarding [8,9] . This mechanism dis-
ributes the traffic of different flows on multiple equal-cost paths ran-
omly, such that the load among all links can be balanced. Under sym-
etric network topology, ECMP can achieve satisfactory load balancing

ffect. However, it may perform poorly for dynamic flow traffic, which
s common in practice. To deal with this weakness, the weighted mul-
iple paths, called WCMP [10] , is designed. It assigns different weights
or paths based on link load distribution with the objective of load bal-
ncing. Therefore, WCMP performs better in asymmetric topology com-
ared with ECMP. However, these solutions of multi-path forwarding
ave three main disadvantages. First, it may perform poorly in asym-
etric topologies, which are common in today’s networks due to het-

rogeneous network components or link/device failures [10,11] . Sec-
nd, since the multi-path forwarding is usually implemented based on
ow hashing, it may cause link congestion when hash collisions occur
1,12,13] . Third, these methods often route flows based on the traffic
rediction. Due to traffic uncertainties, it may still lead to load imbal-
nce if without immediate flow rerouting.

Many SDN-based load balancing solutions have been proposed to
onquer the disadvantages of ECMP-like multi-path forwarding. Most,
f not all, of them may incur problems of resource constraints on com-
odity switches. To deal with the resource constraints, they typically

equire additional hardware or software to increase the flow table size
FTS) and/or computing capacity of the SDN data plane for load bal-
ncing. As a result, they all increase the network deployment cost and
omplexity.

• Methods constrained by limited memory resource: Some flow-level
scheduling algorithms perform fine-grained flow management to
achieve the load balancingdo without considering flow table size
constraint on switches, such as Hedera [1] . To deal with the lim-
ited flow table size, the controller pre-deploys default paths (such
as ECMP) for all flows by setting up wildcard rules on switches,
and then reroutes some elephant flows for better performance by
installing per-flow rules on switches, such as DevoFlow [3] , Planck
[13] , and HS [14] . All flows at first will follow the default paths, then
the elephant flows will follow the per-flow rules when the per-flow
rules are set up. They all require the traffic statistics information of
each individual (or elephant) flow for rerouting and load balancing.
However, additional hardware/software is required to obtain traffic
statistics of individual flows, because those information for the flows
through default paths are unavailable only through the flow table.
For example, HS [14] mirrors flow traffics to servers for traffic anal-
ysis and DevoFlow [3] requires additional functions in the action
part of wildcard rules for traffic measurement.

• Methods constrained by limited computing resource: Some methods are
proposed to achieve load balancing via flow-level or even subflow-
level control. For example, Presto [15] implements the flowcell
(fixed-size units) scheduling for load balancing. However, since com-
modity switches have no such computing resource, Presto requires
deploying one virtual switch (vswitch) for every physical switch. It
is because a vswitch has more powerful processing capacity com-
pared with a physical switch [7] . Meanwhile, subflow-level control
also requires massive flow entries, which conflict with the memory
resource constraint on switches.

Many previous load balancing methods require additional hardware
r software, which brings plenty of weaknesses for network deployment
nd applications. First, when additional hardware is required, it in-
reases the system cost and limits the applicability. For example, Presto
equires to deploy one vswitch for each physical switch, which leads to
 higher deployment cost and worse scalability. Second, many current
ommodity switches (e.g. , HP 5460zl [3]) do not support the required
oftware programs, such as flowlet control. Even if future switches sup-
ort these functions, it will introduce huge cost for switch update and
eplacement, which may be unnecessary. We summarize existing load
alancing solutions in Table 1 .

This paper tries to answer the following question: how to perform

oad balancing without additional device or software on commodity switches,

hile conquering network asymmetry and traffic dynamics/uncertainties ?
ur important observation is that load balancing can be achieved by
ontrolling only a part (< 50%) of all flows in the network and let
he other flows follow aggregate paths deployed in advance, such as
CMP paths. In this work, we design and implement PrePass for load
alancing. PrePass periodically computes and installs forwarding rules
 i.e. , proactive routing) for a part of aggregated flows (not all flows)
n advance while considering the flow table size constraint and flows’
patial distribution. The remaining flows will be assigned route paths by
he controller reactively. We note that our scheme is different from the
revious default path scheme (e.g. , DevoFlow [3] and HS [14]), in which
ll flows will follow default paths and some of them will be rerouted
hen congestion occurs. PrePass has some significant advantages:

1. PrePass installs wildcard rules for some (not all) flows with switch-
switch granularity (explained in Section 2.4) in advance, which helps
to reduce the controller-switch interaction overhead. These forward-
ing rules are determined by the network traffic and the flow table
size constraint.

2. PrePass installs forwarding rules with switch-host granularity (ex-
plained in Section 2.4) under the reactive scheme rather than with
5-tuple granularity, which can largely reduce flow entry consump-
tion and avoid frequent controller-switch interaction overhead. As

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

S

c

r

c

s

p

e

c

t

(

p

2

b

c

k

2

i

l

H

f

m

w

t

[

w

a

fl

p

s

a

t

v

r

f

p

w

t

f

fl

I

t

i

B

[

[

Fig. 1. Problems caused by traffic dynamics.

2

t

f

p

c

p

a

s

s

i

t

5

w

t

s

e

s

2

t

t

n

e

p

v

c

fi

h

fi

a

u

i

c

b

r

t

2

s

m

g

p

s

fl

o

a
the controller performs reactive routing for other flows, the routing
performance (e.g. , load balancing or network throughput) will still
be efficient even with traffic dynamics, which will be validated by
experiments in Section 6 .

3. Our method only requires that each SDN switch performs the nor-
mal matching-and-forwarding operations, without additional con-
trol or computing requirements, which is compatible with commod-
ity switches.

In this paper, we design and implement PrePass for load balancing.
pecifically, we define the problem of load balancing with flow table size
onstraint (LB-FTS), and prove its NP-hardness. A rounding-based algo-
ithm is designed and the analysis shows that the proposed algorithm
an achieve the constant bi-criteria approximation under most practical
ituations. This paper also discusses some practical issues to enhance the
racticality of PrePass. We implement PrePass on our SDN testbed. The
xperimental results and extensive simulation results show that PrePass
an satisfy the different resource constraints on switches without addi-
ional hardware/software, while only increasing a little link load ratio
about 5%-10%) compared with a routing scheme using unlimited data
lane resources, under various and dynamic traffic scenarios.

. Background and motivation

The purpose of this paper is to design a simple and efficient load
alancing scheme that conforms to the flow table size and computing
apacity constraints on commodity switches. This section presents the
ey insights underlying our design.

.1. Load balancing with FTS constraint

Due to the high cost and power consumption of TCAM, commod-
ty switches can only support flow tables with limited size 1 (usually
ess than 5000 flow entries on commodity switches [22] , e.g. , 1500 on
P 5406zl switch [3]), which becomes the bottleneck of routing per-

ormance, especially in large-scale networks. For example, even in a
oderate-size network [23] , the number of flows may reach 10 6 [22] ,
hich is usually far more than the flow table size. Thus, it is impossible

o install a rule for each individual flow. One intuitive way, like RLJD
17] , discards some flows so as to satisfy the flow table size constraint,
hich will reduce the network throughput and experience quality. To
ccommodate all flows, some wildcard rules are installed to match more
ows. For example, we can perform prefix aggregate routing instead of
er-flow routing, where flows with the same address prefix share the
ame path [3,13,14] . Since many flows match one wildcard flow entry
nd/or follow a single path, it may result in load imbalance. Moreover,
he controller cannot obtain traffic statistics information of each indi-
idual flow. Thus, it is difficult to achieve load balancing through flow
erouting.

An SDN switch cannot support all flows with per-flow rules for the
ollowing two reasons. (1) TCAMs consume lots of ASIC space and
ower. Specifically, an OpenFlow rule is described by 10 header fields,
hich costs total 288 bits [6] , while an Ethernet forwarding descrip-

or is 60 bits, thus OpenFlow entries use more states than Ethernet
orwarding entries and are impractical to support large quantities of
ow entries due to the limited TCAM size on commodity switches. (2)

t takes an unacceptably long time to collect statistics for a large flow
able. For example, the statistics-pulling latency for the 5406zl switch
s less than 1 s when the flow table has fewer than 5600 entries [3] .
ut this can be increased to 2.5 s if there are 13 K flow table entries
3] , which is too long for some practical application flow scheduling
1] .
1 Presto requires extra soft edge (i.e. , vSwitch and hypervisor) [15] .

e

i

e
.2. Switch computing capacity constraint

The key characteristic for an SDN is to separate data plane and con-
rol plane, and let different parts perform their own functions. The core
unction of an SDN switch is to forward packets, leaving the control
lane in charge of complex decision and control functions. Since most
ommodity switches run on a low-end CPU, they only have finite com-
uting capacity, which should be mainly responsible for flow entry setup
nd statistics collection, etc. The testing results in Curtis et al. [3] have
hown that the 5406zl switch can complete only 275 flow setups per
econd even without any traffic load. Due to limited computing capac-
ty, the statistics-pulling interferes with flow setup. When traffic statis-
ics are pulled once a second, collecting less than 4500 counters, the
406zl switch can only install fewer than 150 flows per second. In other
ords, statistics pulling will significantly degrade the entry setup func-

ions (from 275 to 150 flow setups per second). Thus, to make SDN
witch work efficiently, we expect less extra computing overhead on
ach switch other than necessary operations, e.g. , flow entry setup and
tatistics collection.

.3. Network uncertainties

Modern networks are filled with the following two main uncertain-
ies. (1) Asymmetric topologies are common in practical situations due
o link failures and heterogeneous switching equipment (e.g. , a different
umber of ports, forwarding speed, etc.). For instance, data centers may
xperience frequent link cuts (40.8 times on average per day caused by
rotocol issues like UniDirectional Link Detection (UDLD) [24] and de-
ice issues in a production data center [24]). (2) Traffic dynamics also
ontribute to network uncertainty. Previous studies [25] show that traf-
c in production data centers is highly dynamic, and the link may be
eavy-loaded once a few elephant flows burst. An example of route con-
guration is shown in Fig. 1 (a), in which all links have capacity of 10,
nd flows f 2 and f 3 share the same link V3 → V4. Under this config-
ration, all links are congestion-free. When flow f 3 changes its traffic
ntensity from 3 to 8, as shown in Fig. 1 (b), flows f 1 and f 2 have to
hoose path V0 → V2 → V4 to avoid link congestion and achieve load
alancing. Through the example, we can see that the load balancing
outing scheme is affected by the traffic dynamics and we can change
he routing paths of partial flows (flow f 2) to achieve load balancing.

.4. Load balancing with different flow granularities

To provide qualified services for load balancing and satisfy the re-
ource constraints, like FTS and computing capacities, on the switches,
any load balancing solutions adopt different granularities of flow ag-

regation to save the resource consumption. For example, the default-
ath scheme distinguishes and schedules flows using their egress
witches [26] . For each routing path with different granularities, the
ow entries on switches may be wildcard rules, which is essentially one
r multiple mask of bits that indicates which parts of a packet header
vailable for matching. We stress that its matching speed is very fast,
.g., 1 billion packet per second [27] , and its flow entry consumption
s the same, i.e., one. Because TCAM supports search using three differ-
nt inputs: 0, 1 and X . The “X ” input, which is often referred to as a

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

Fig. 2. Maximum occupied flow entries on each switch vs. number of flows.

Fig. 3. Link load ratio (normalized to host-host scheme) vs. number of flows.

“

g

l

w

t

s

t

w

t

i

[

[

fi

i

p

t

t

l

t

Fig. 4. Ratio of flows with reactive rules with switch-host granularity vs.

Link Load Ratio (normalized to 100% switch-switch-granularity load balancing

scheme). top plot : Data Center Topology; bottom plot : Campus Topology.

fl

r

w

h

s

a

5

m

r

i

T

s

5

e

i

2

i

i

r

s

M

i

a

o
wildcard ” state, enables TCAM to perform routing policy for different
ranularities with the one flow entry. Here we list some typical granu-
arities for load balancing in the following.

• egress-switch based: flows with the same egress switch will be re-
garded as one flow and share one flow entry on a switch [26] .

• switch-switch: also called OD-pair (origin-destination switch pair
[28]). Flows are distinct if they possess different ingress or egress
switches.

• switch-host: flows are distinguished by the source ingress switch and
destination host. Note that multiple hosts are connected to the egress
switches.

• host-host: all packets with the same source host and destination host
are considered as one flow. A switch-host or switch-switch path may
contain multiple host-host paths if multiple hosts are connected to
the switch.

• 5-tuple: the most fine-grained granularity for load balancing, where
flows with different 5-tuples will be arranged separately. A 5-tuple in
TCP/IP connection refers to a set of five different values including a
source IP address/port number, destination IP address/port number
and the protocol in use.

To illustrate the resource consumption and effect of load balancing
ith different flow granularities, we conduct simulations on a large fat-

ree network with 180 switches and 2520 hosts, to evaluate the con-
umption of flow entries and link load ratio (also called LLR

2). We adopt
he greedy algorithm for load balancing where each new arrival flow
ill be forwarded to the least light-loaded path. Moreover, we change

he number of flows with 5-tuple granularity from 10K/min to 1M/min
n the simulation, where 1M flows are practical in today’s data centers
23] and 1min is the default idle time for a flow entry in OpenFlow
29] . The results are shown in Figs. 2 and 3 . Fig. 2 shows that, the more
ne-grained flow management the routing scheme adopts, the more
2 An OpenFlow switch can record the transmitted bytes per port, which

s called port_statistics. To calculate the LLR, the controller first collects the

ort_statistics once the period starts and ends respectively, and then calculates

he transmitted bytes through the port during a period. After that, we obtain

he link utilization of that port by dividing the time length of the period and the

ink capacity. Finally, LLR equals to the maximum link utilization of all ports in

he network.

t

o

o

w

s

t

r

t
ow entries are consumed. For instance, the switch-host-granularity
outing scheme satisfies the FTS constraint on commodity switches,
hile the more fine-grained routing schemes (routing schemes with
ost-host granularity or 5-tuple granularity) may violate the FTS con-
traint. Fig. 3 shows that the switch-switch-granularity routing scheme
nd the egress-switch-based routing scheme cannot achieve low LLR like
-tuple-granularity scheme, increasing 20% compared with other three
ore fine-grained routing schemes. LLR of egress-switch-granularity

outing scheme is not shown in figure because it is too large, increas-
ng 20% compared with other three more fine-grained routing schemes.
herefore, switch-host-granularity routing scheme may be a feasible
cheme because of its low LLR like host-host-granularity scheme and
-tuple-granularity scheme, and its low flow entry consumption like
gress-switch-based routing scheme and switch-switch-granularity rout-
ng scheme.

.5. Let partial flows balance the load

In the following, we will show that, even though the controller only
nstalls forwarding rules with switch-switch granularity for partial flows
n advance (i.e. , proactive scheme) and reactively installs forwarding
ules with switch-host granularity for remaining flows (i.e. , reactive
cheme), the network performance (e.g. , LLR) will still be preserved.
eanwhile, this hybrid scheme can largely reduce the controller-switch

nteraction overhead and the number of flow entry setup for the new-
rrival flows under the reactive routing scheme. The network topol-
gy can be considered either the asymmetric topology or the symmetric
opology. For the generality of our motivation, we adopt two topologies,
ne for campus networks representing the asymmetric topology and the
ther for data center networks representing symmetric topology, which
ill be explained in details in Section 6.3.1 . We generate the aggregate

witch-switch paths for each flow. Fig. 4 shows that the link load ra-
io will be reduced when the controller installs switch-host-granularity
ules for more flows in the reactive scheme. We find that there is no need
o install forwarding rules with switch-host granularity for all flows to

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

Fig. 5. Illustration of PrePass’s workflow. (a) Proactive routing scheme trig-

gered by timer. (b) Reactive routing scheme triggered by new-arrival packets.

a

n

s

g

t

2

s

t

h

s

s

r

s

a

c

t

r

D

s

a

s

(

a

t

F

i

t

d

r

m

c

s

t

t

S

s

t

p

fl

Algorithm 1 Rounding-based algorithm for LB-FTS.

1: Step 1: Solving the relaxed LB-FTS problem

2: Construct a linear program 𝐿𝑃 1 based on Eq. (??)
3: Obtain the optimal solution ̃𝑦 𝑝

𝑓
, ̃𝑦 𝑝 𝛾 and ̃𝑧 𝛾

4: Step 2: Aggregate routing for selected macroflows

5: Derive an integer solution ̂𝑧 𝛾 through randomized rounding method
6: for each macroflow 𝛾 ∈ Γ do

7: if 𝑧 𝛾 = 1 then

8: for each feasible path 𝑝 ∈  𝛾 do

9: Compute �̄� 𝑝 𝛾 =

𝑦
𝑝
𝛾

𝑧 𝛾

Derive an integer solution 𝑦 𝑝 𝛾 through randomized rounding
method

10: for each feasible path 𝑝 ∈  𝛾 do

11: if 𝑦
𝑝
𝛾 = 1 then

12: Install wildcard entries on switches along path 𝑝

c

t

3

3

o

c

r

a

d

T

t

3

a

o

fi

f

m

r

m

a

a

t

h

i

e |

e

t

a

t

w

t

c

t

c

t

o

m

(

m
chieve better routing performance. Specifically, Fig. 4 shows that the
etwork performance can be almost optimized if the controller only in-
talls switch-host-granularity rules for 30%-40% flows on both topolo-
ies. These simulation results motivate us to cope with scalability issues
hrough the proposed hybrid routing scheme.

.6. System workflow of PrePass

Due to a large quantity of flows in modern networks and the limited
ize of flow tables, it is impractical to install per-flow rules for every 5-
uple flow. Recall that only partial flows with reactive scheme will also
elp to achieve better load balancing in Section 2.5 . Motivated by the
imulation results in Fig. 4 , we study the optimal deployment of switch-
witch-granularity rules (proactive scheme) and switch-host-granularity
ules (reactive scheme) for load balancing. PrePass adopts two routing
chemes. (1) Proactive scheme. The controller periodically calculates the
ggregated routes with switch-switch granularity for a set of flows (also
alled macroflows [30] in Definition 1). (2) Reactive scheme. The con-
roller will dynamically determine the switch-host-granularity paths for
emaining flows to achieve load balancing.

efinition 1 (Macroflow) . A macroflow includes multiple flows that
hare a same path and only cost one (wildcard) flow entry on each switch
long the path. Specifically, in this paper all flows from one ingress
witch to another egress switch are regarded as a macroflow.

To this end, we separate PrePass’s workflow into two main parts:
1) proactive routing scheme triggered by timer, as shown in Fig. 5 (a);
nd (2) reactive routing scheme triggered by new-arrival flows (flows
hat cannot match current rules on the ingress switch), as shown in
ig. 5 (b). For the proactive routing scheme, when a period (e.g. , 10min)
s fired, PrePass first estimates the traffic synopsis based on the long-
erm traffic statistics [31] . Then, the controller executes Algorithm 1 to
etermine how to install wildcard rules (Section 4). Note that proactive
outing scheme needs the long-term (not instant) traffic information of
acroflows (not flows), that is, this scheme can bear long time delay to

ollect the coarse-grained (macroflow) information. Thus, existing mea-
urement solutions like sampling and sketches can be applied to obtain
raffic information. To be more practical, since the traffic size estima-
ion may be inaccurate, we will discuss how to deal with this case in
ections 4.3.3 and 5 .

Now let’s introduce the reactive routing scheme in Fig. 5 (b). During
ystem running, when a packet arrives at a switch, the switch looks up
he flow table. If there is a flow entry matching this packet header, the
acket will be processed according to the action field of the matching
ow entry. Otherwise, the switch will report the packet header to the
ontroller for path selection. Accordingly, the controller will determine
he route path through dynamic flow routing in Section 4.3.2 .

. Problem formulation

.1. Network model

A software defined network (SDN) discussed in this paper consists
f a set of SDN switches, 𝑉 = { 𝑣 1 , 𝑣 2 , … , 𝑣 𝑛 } , with 𝑛 = |𝑉 |; and a logi-
ally centralized controller. The switches comprising the data plane are
esponsible for the packet forwarding function. When a flow arrives at
 switch, if there is no matched rule for this flow, the controller will
etermine the route path for this flow in a logically centralized manner.
he network topology can be modeled by a graph G (V, E), where E is
he set of links connecting two switches in the network.

.2. Definition of load-balancing with flow table size constraint (LB-FTS)

In an SDN, the flow table size of each switch v i is denoted by 𝛽(v i),
nd the capacity of each link e ∈ E is denoted by c (e). We consider a set
f macroflows in the network Γ = { 𝛾1 , … , 𝛾𝑚 } , with 𝑚 = |Γ|, and the traf-
c amount of a macroflow 𝛾 is denoted by s (𝛾). For example, all flows

rom one ingress switch to another egress switch can be regarded as a
acroflow. Since all flows in a macroflow 𝛾 match the same wildcard

ule on each switch, the controller can gather the traffic statistics infor-
ation of this macroflow by the Counter field in the flow entry. We also

ssume that the controller knows the number of switch-host-granularity
ggregate flows | 𝛾| in the macroflow 𝛾 through long-term traffic statis-
ics for two reasons. (1) The controller can compute the average switch-
ost-granularity flow size s (f) through statistics collection of forward-
ng flow entries deployed by the reactive routing scheme, and get the
stimated number of these switch-host-granularity aggregate flows as
𝛾| =

𝑠 (𝛾)
𝑠 (𝑓) . (2) The number of switch-host-granularity aggregate flows in

ach macroflow can also be predicted by the state-of-the-art prediction
echniques. For example, Peng et al. [31] shows time-advance and high
ccuracy in terms of traffic forecasting. Thus, all required information as

he input of LB-FTS can be supported by the current commodity switches,

ithout requiring extra resources on control/data planes . To be more prac-
ical, there may be prediction errors of | 𝛾| and s (𝛾), which will be dis-
ussed in Section 5 . Note that our simulation results in Section 6 show
hat our proposed algorithm can better tolerate these estimation errors
ompared with other benchmarks described in Section 6 (except the op-
imal algorithm).

Each macroflow 𝛾 ∈ Γ can be denoted by 𝛾 = { 𝑓 1 , … , 𝑓 |𝛾|} . More-
ver, there is a feasible route path set, denoted by  𝛾 , which is deter-
ined based on the management policies and performance objectives

 e.g., k shortest paths). For switch-host-granularity flows in the same
acroflow, since they usually have the same source and destination,

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

t

p

f

p

i

m

n

r

s

b

m

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fl

m

d

s

T

p

m

s

o

i

a

s

fl

𝜆

o

l

f

T

P

m

s

t

m

m

s

fl

t

h

4

i

r

t

t

4

r

(

p

d

n

s

p

b

d

s

s

o

e

r

g

A

r

l

s

s

i

p

a

a

t

𝑓

t

f

p

t

g

t

i

4

s

d

𝛼

U

l

a

l

L

w

𝑒

L

e

𝐴

l

L

t

hese switch-host-granularity flows usually have the same feasible route
aths. Without confusion, we denote  𝑓 as the feasible route path set
or switch-host-granularity flow f ∈ 𝛾 and  𝑓 is same as  𝛾 .

The LB-FTS problem will choose a subset of macroflows Γ′ using
roactive routing scheme, and deploy a feasible path for each macroflow
n Γ′ . We note that the flows will be directly forwarded if there exist
atched wildcard rules at switches by proactive scheme. Otherwise, the
ew-arrival packet will be reported to the controller. We expect to (1)
eserve enough flow entries for remaining flows using reactive routing
cheme and (2) remain much more bandwidth on each link for load
alancing. We formulate the problem as:

in 𝜆

∑
𝑝 ∈ 𝑓

𝑦
𝑝

𝑓
+ 𝑧 𝛾 = 1 ∀𝑓 ∈ 𝛾, 𝛾 ∈ Γ∑

𝑝 ∈ 𝛾
𝑦
𝑝
𝛾 = 𝑧 𝛾 ∀𝛾 ∈ Γ∑

𝑓 ∶ 𝑓 ∈𝛾,𝛾∈Γ
𝑝 ∶ 𝑣 ∈𝑝,𝑝 ∈ 𝑓

𝑦
𝑝

𝑓
+

∑
𝛾∶ 𝛾∈Γ

𝑝 ∶ 𝑣 ∈𝑝,𝑝 ∈ 𝛾

𝑦
𝑝
𝛾 ≤ 𝛽(𝑣) ∀𝑣 ∈ 𝑉

∑
𝛾∶ 𝛾∈Γ

𝑝 ∶ 𝑒 ∈𝑝,𝑝 ∈ 𝛾

𝑦
𝑝
𝛾 ⋅ 𝑠 (𝛾) ≤ 𝜆 ⋅ 𝑐(𝑒) ∀𝑒 ∈ 𝐸

𝑦
𝑝

𝑓
, 𝑧 𝛾 , 𝑦

𝑝
𝛾 ∈ {0 , 1} ∀𝑝∈ 𝑓 , 𝑓∈𝛾,𝛾∈Γ

(1)

Note that variable 𝑦 𝑝
𝑓

denotes whether the switch-host-granularity

ow f ∈ 𝛾 selects the path 𝑝 ∈  𝑓 or not, and 𝑦 𝑝 𝛾 denotes whether the
acroflow 𝛾 selects the path 𝑝 ∈  𝛾 as its aggregate path or not. In ad-
ition, z 𝛾 represents whether the macroflow 𝛾 chooses the proactive
cheme or not, and 𝜆 is the load balancing factor for the macroflows.
he first set of equations means that either macroflow 𝛾 chooses the
roactive routing scheme or all switch-host-granularity flows in this
acroflow choose the reactive scheme. The second set of equations en-

ures that there is exact one route path selected as the aggregate path
nce the macroflow chooses proactive scheme. The third set of inequal-
ties means that the total number of flow entries for both proactive
nd reactive routing schemes doesn’t exceed the flow table size of each
witch. The fourth set of inequalities ensures the balance of link load for
ows choosing the proactive routing scheme. The load balancing factor
is the maximum link load ratio among all links in the network. Obvi-

usly, the larger 𝜆 is, the heavier the link load is. The smaller 𝜆 is, the
arger the throughput is. Our objective is to minimize the load balancing
actor, i.e. , min 𝜆.

heorem 1. The LB-FTS problem is NP-hard.

roof. We consider a special case in which each macroflow contains
any flows such that all flows have to choose the proactive routing

cheme (because of the flow table size constraint). In other words, if
he controller deploys per-flow rules for all flows in one macroflow, it
ay violate the flow table size constraint. Thus all flows in the same
acroflow should be regarded as one flow. Under the above circum-

tance, our LB-FTS problem becomes the unsplittable multi-commodity
ow with minimum congestion problem [32] , which is NP-hard. Since
he special case of the problem is NP-hard, the LB-FTS problem is NP-
ard too. □

. Algorithm description

Due to the NP-hardness, it is difficult to solve the LB-FTS problem
n polynomial time. In this section, we propose a rounding-based algo-
ithm for LB-FTS, and then analyze the approximation performance of
he proposed algorithm. After that, we give some discussion to enhance
he algorithm.

.1. Algorithm description

In this section, we propose a rounding-based wildcard rule configu-
ation algorithm in PrePass for the LB-FTS problem. For each macroflow
or flow), there is a feasible path set. Actually, the number of feasible
aths connecting two terminals could be exponential to the network
iameter. To achieve the trade-off between algorithm complexity and
etwork performance, same as [14,17] , we only construct some of fea-
ible paths for each switch-host-granularity flow or macroflow. These
aths may be the shortest paths between terminals, which can be found
y depth-first search. Since Eq. (1) is an integer linear program, it is
ifficult to be solved directly. The proposed algorithm includes two
teps, relaxing the problem and rounding to the integer solution, re-
pectively. In the first step, we construct a linear program as a relaxation
f the LB-FTS problem. Specifically, LB-FTS assumes that the traffic of
ach switch-host-granularity flow or macroflow is splittable and can be
outed through multiple feasible paths.

Since the relaxed version of LB-FTS, denoted by LP 1 , is a linear pro-
ram, we can solve it in polynomial time by a linear program solver.
ssume that the optimal solution for LP 1 is { ̃𝑦

𝑝

𝑓
, ̃𝑦

𝑝
𝛾 , ̃𝑧 𝛾} , and the optimal

esult is 𝜆. Since LP 1 is the relaxation of the LB-FTS problem, 𝜆 is the
ower-bound result for LB-FTS.

In the second step, we determine how to deploy aggregate paths for
ome chosen macroflows. For each macroflow 𝛾, we obtain an integer
olution 𝑧 𝛾 using the randomized rounding method [33] . More specif-
cally, we set 𝑧 𝛾 = 1, which means that an aggregate path will be de-
loyed for macroflow 𝛾, with probability ̃𝑧 𝛾 . If 𝑧 𝛾 = 0, this means that
ll switch-host-granularity flows in macroflow 𝛾 will be routed with re-
ctive scheme. According to the first set of equations in Eq. (1) , we have
he following equation after the randomized rounding for ̂𝑧 𝛾 : ∑
∈𝛾,𝑝 ∈ 𝑓

𝑦
𝑝

𝑓
= 1 − ̂𝑧 𝛾 =

{

0 , if ̂𝑧 𝛾 = 1
1 , if ̂𝑧 𝛾 = 0 (2)

According to the second set of equations in Eq. (1) , there is a frac-
ional result 𝑦 𝑝 𝛾 for each feasible path 𝑝 ∈  𝛾 , and the sum of all these
ractional results is

∑
𝑝 ∈ 𝛾

𝑦
𝑝
𝛾 = ̃𝑧 𝛾 . Since we will only select one feasible

ath by randomized rounding, we need to normalize the expectation of

hese variables. For each feasible path 𝑝 ∈ 

𝑝
𝛾 , we set �̄� 𝑝 𝛾 =

𝑦
𝑝
𝛾

𝑧 𝛾
. Then, we

et the integer solution 𝑦 𝑝 𝛾 through randomized rounding [33] . In par-
icular, ̂𝑦 𝑝 𝛾 is set as 1 with probability �̄� 𝑝 𝛾 . The PrePass routing algorithm
s formally described in Algorithm 1 .

.2. Performance analysis

This section analyzes the approximation performance of PrePass. As-
ume that the minimum capacity of all the links is denoted by c min . We
efine a variable 𝛼 as follow:

= min { 𝛽(𝑣) , 𝑣 ∈ 𝑉 ;
𝜆 ⋅ 𝑐 min
𝑠 (𝛾)

, 𝛾 ∈ Γ} (3)

nder most practical situations, since the flow intensity is usually much
ess than the link capacity, it follows 𝛼 ≫ 1. As PrePass is a randomized
lgorithm, we analyze the expected resource cost. We give two famous
emmas for probability analysis.

emma 2 (Chernoff Bound) . Given n independent variables: 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ,

here ∀x i ∈ [0, 1] . Let 𝜇 = 𝔼 [
∑𝑛

𝑖 =1 𝑥 𝑖] . Then, 𝐏𝐫
[∑𝑛

𝑖 =1 𝑥 𝑖 ≥ (1 + 𝜖) 𝜇
]
≤

− 𝜖2 𝜇
2+ 𝜖 , where 𝜖 is an arbitrary positive value.

emma 3 (Union Bound) . Given a countable set of n events: 𝐴 1 , 𝐴 2 , … , 𝐴 𝑛 ,

ach event A i happens with possibility Pr (A i) . Then, 𝐏𝐫 (𝐴 1 ∪ 𝐴 2 ∪… ∪
 𝑛) ≤

∑𝑛
𝑖 =1 𝐏𝐫 (𝐴 𝑖) .

Link capacity performance We give the following lemma to show the
ink capacity performance of out algorithm.

emma 4. After the rounding process, the load of each link will not exceed

he constraint 𝜆 ⋅ 𝑐(𝑒) by a factor of 𝜖 + 1 =

4 log 𝑛 + 3 .

𝛼

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

v

D

𝑥

𝑥

e

𝔼

⎧⎪⎨⎪⎩

v

P

P

w

o

𝜖

P

P

≤

≤

l

r

L

s

f

d

L

a

b

s

m

1

s

l

I

t

[

fl

t

f

t

t

a

l

s

e

T

h

o

n

p

4

o

4

t

fl

fi

d

s

m

t

h

b

w

4

p

r

m

h

a

e

s

t

r

w

t

p

r

h

t

fl

4

a
Before analyzing the link resource performance, we define a random
ariable 𝑥 𝑒 𝛾 to denote the traffic amount on link e from macroflow 𝛾.

efinition 2. For each macroflow 𝛾 and each link e , a random variable

𝑒
𝛾 is defined as:

𝑒
𝛾 =

⎧ ⎪ ⎨ ⎪ ⎩
𝑠 (𝛾) , with probability

∑
𝑝 ∶ 𝑒 ∈𝑝,𝑝 ∈ 𝛾

𝑦
𝑝
𝛾

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(4)

According to the definition, 𝑥 𝑒 𝛾1
, 𝑥 𝑒 𝛾2

… are mutually independent. The
xpected link load on link e is:

[∑
𝛾∈Γ

𝑥 𝑒 𝛾

]

=

∑
𝛾∈Γ

𝔼 [𝑥 𝑒 𝛾] =

∑
𝛾∈Γ

∑
𝑝 ∶ 𝑒 ∈𝑝,𝑝 ∈ 𝛾

𝑦 𝑝 𝛾 ⋅ 𝑠 (𝛾) ≤ ̃𝜆 ⋅ 𝑐(𝑒) (5)

Combining Eq. (5) and the definition of 𝛼 in Eq. (3) , we have

𝑥 𝑒 𝛾 ⋅𝛼

𝜆⋅𝑐(𝑒)
∈ [0 , 1]

𝔼
[∑

𝛾∈Γ
𝑥 𝑒 𝛾 ⋅𝛼

𝜆⋅𝑐(𝑒)

]
≤ 𝛼.

(6)

Then, by applying Lemma 2 , assume that 𝜖 is an arbitrary positive
alue. It follows

r

[∑
𝛾∈Γ

𝑥 𝑒 𝛾 ⋅ 𝛼

𝜆 ⋅ 𝑐(𝑒)
≥ (1 + 𝜖) 𝛼

]

≤ 𝑒
− 𝜖2 𝛼
2+ 𝜖 (7)

Now, we assume that

r

[∑
𝛾∈Γ

𝑥 𝑒 𝛾 ⋅ 𝛼

𝜆 ⋅ 𝑐(𝑒)
≥ (1 + 𝜖) 𝛼

]

≤ 𝑒
− 𝜖2 𝛼
2+ 𝜖 ≤

𝔽
𝑛 2

(8)

here 𝔽 is the function of network-related variables (such as the number
f switches n, etc.) and 𝔽 → 0 when the network size grows.

The solution for Eq. (8) is expressed as:

≥

log 𝑛
2

𝔽 +

√

log 2 𝑛
2

𝔽 + 8 𝛼 log 𝑛
2

𝔽
2 𝛼

, 𝑛 ≥ 2 (9)

roof. Set 𝔽 =

1
𝑛 2

. Eq. (8) is transformed into:

r

[∑
𝛾∈Γ

𝑥 𝑒 𝛾 ⋅ 𝛼

𝜆 ⋅ 𝑐(𝑒)
≥ (1 + 𝜖) 𝛼

]

≤

1
𝑛 4

, where 𝜖 ≥

4 log 𝑁

𝛼
+ 2

By applying Lemma 3 , we have,

Pr

[⋁
𝑒 ∈𝐸

∑
𝛾∈Γ

𝑥 𝑒 𝛾 ⋅ 𝛼

𝜆 ⋅ 𝑐(𝑒)
≥ (1 + 𝜖) 𝛼

]

∑
𝑒 ∈𝐸

Pr

[∑
𝛾∈Γ

𝑥 𝑒 𝛾 ⋅ 𝛼

𝜆 ⋅ 𝑐(𝑒)
≥ (1 + 𝜖) 𝛼

]

 𝑛 2 ⋅
1
𝑛 4

=

1
𝑛 2

, 𝜖 ≥

4 log 𝑛
𝛼

+ 2 (10)

Note that the third inequality holds, because there are at most n 2

inks in a network. The approximation factor of our algorithm is 𝜖 + 1 =
4 log 𝑛

𝛼
+ 3 . □

Flow table resource performance Lemma 5 guarantees the flow table
esource performance.

emma 5. After the rounding process, the number of flow entries on each

witch will not exceed the constraint 𝛽(v) by a factor of 𝜌 + 2 =

3 log 𝑛
𝛼

+ 4 .

The analysis of Lemma 5 is similar to the analysis of Lemma 4 . There-
ore, we do not repeat the proof here, which can found in balancing with
ata plane resource constraints using commodity sdn switches [34] .

Approximation factors By Lemmas 4 and 5 , we conclude:

emma 6. The traffic load will hardly be violated by a factor of
4 log 𝑛

𝛼
+ 3 ,

nd the flow table constraint will not be violated by a factor of
3 log 𝑛 + 4 .
𝛼

In most practical situations, PrePass can reach almost the constant
i-criteria approximation. For example, let ̃𝜆 and n be 0.4 and 1000. Ob-
erving the practical flow traces, the maximum intensity of a macroflow
ay reach 100 Mbps. In today’s networks, the link capacity can be
0 Gbps [9] . The flow table size is usually 4000. Under these circum-

tances, 𝛼 =

𝜆⋅𝑐 min
𝑠 (𝛾) will be 40. Thus, the approximation factors for the

ink capacity and the flow table constraint are 3.7 and 4.5, respectively.
n other words, PrePass can achieve the constant bi-criteria approxima-
ion for the LB-FTS problem under many practical situations.

Now we discuss the time complexity of the Algorithm 1 . Cohen et al.
17] have shown that a set of constant number (k) of paths for each
ow are enough for performance optimization compared with all po-
ential polynomial number of feasible paths for each flow. Therefore,
or all flows, the maximum number of feasible paths, namely Δ, equals
o k · r , where r denotes the number of all flows, namely 𝑟 = |Γ|. Since
he number of variables in the linear program is polynomial value of r
nd the number of switches (n), it takes polynomial time to solve this
inear program. The second step uses randomized rounding for route
election. Specifically, it selects one feasible path as the route path for
ach macroflow, and then installs flow entries along the route path.
hus, the time complexity is 𝑘 ⋅ 𝑟 ⋅ 𝛿 = Δ ⋅ 𝛿, where 𝛿 is the maximum
op number of all feasible paths. As a result, the total time complexity
f Algorithm 1 is polynomial of the number of all feasible paths (Δ), the
umber of switches (n) and the maximum hop number of all feasible
aths (𝛿).

.3. Discussion

This section provides some discussion to improve the practicability
f PrePass.

.3.1. Port statistics collection

During system running, the controller should master the real-time
raffic load on each link to better deal with traffic dynamics. The open-
ow standard specifies the OFPT_PORT_STATUS interface for port traf-
c statistics collection [29] . Since each link connects with two ports on
ifferent switches, we can collect port traffic statistics only from a sub-
et of switches to reduce the controller overhead. Therefore, we use the
inimum set cover algorithm for port traffic statistics collection. Since

he number of ports on each switch is usually small (e.g. , 24), the over-
ead (or delay) for port statistics collection is very low (or small). For
etter trade-off between the statistics accuracy and collection overhead,
e trigger the port statistics collection with a fixed period, e.g. 5s.

.3.2. Dynamic flow routing

When a new flow arrives at an SDN switch, this switch reports the
acket header to the controller, which will dynamically determine its
oute path. In this paper, we introduce a simple and efficient routing
echanism, in which the controller chooses the least-congestion switch-
ost-granularity route path with flow table size constraint for each new-
rrival flow. As described in Section 4.3.1 , the controller has the knowl-
dge of the link traffic load (or the link load ratio) by collecting the port
tatistics information at the beginning of each period. Since the flow
able of each switch is updated by the controller, the controller can de-
ive the number of occupied flow entries on a switch and determines
hether this switch can accommodate this flow or not. For each path p ,

he congestion of this path is the maximum load ratio of all links on this
ath. The controller adopts the Dijkstra algorithm [35] to explore the
oute path with the least congestion for this flow, and installs switch-
ost-granularity rules on switches along this path. Under this situation,
he controller can immediately determine the route path for new-arrival
ows, which helps to deal with the dynamics of the traffic.

.3.3. Dealing with flow estimation deviation

When a flow f arrives at a switch, if there is no matched flow entry
nd the flow table is saturated, the controller cannot install a flow entry

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

o

b

p

i

r

n

d

o

e

s

r

5

p

o

i

s

j

c

a

5

(

(

t

w

e

l

w

m

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p

t

p

t

fl

s

T

P

p

s

(

h

w

s

a |

v

e

0

b

(

o

p
w

e

o

c

a

t

t

L

5

t

a

r

𝑦

a

c

l

t

M

r

f

m

g
=
w

t

𝑓

t

f

b

o

i

𝑦

A

A

n this switch for flow f . Due to flow estimation deviation, the total num-
er of required flow entries may exceed the flow table size. When it hap-
ens, we will aggregate some arrived flows with reactive routing scheme
nto one flow entry with switch-switch granularity using the wildcard
ule. Given a flow f , we determine its corresponding macroflow, de-
oted by 𝛾, choose a least-congestion path for this macroflow, and up-
ate the flow tables on different switches. First, we add a wildcard rule
n each switch along this aggregate path. Then, we will remove all flow
ntries for switch-host-granularity flows in this macroflow on different
witches. As a result, the number of required flow entries on switches is
educed.

. Algorithm description for the extended case

The previous section studies the efficient deployment of aggregate
aths for macroflows based on the long-term traffic statistics. To make
ur problem more robust and generalized, this section studies the case
n which the controller has no knowledge of the traffic size of each
witch-host-granularity flow/macroflow. In this case, we expect to ad-
ust/control as many switch-host-granularity flows as possible, which
ontribute to load balancing. For ease of expression, we denote PrePassE
s the algorithm for this extended case.

.1. Definition of load-balancing with maximum adjustable flows

LB-MDF)

Compared with proactive routing scheme, reactive routing scheme
with switch-host-granularity rules) can provide more fine-grained con-
rol for each flow. If one flow is forwarded through the reactive scheme,
e call this as an adjustable flow. To achieve better load balancing, we

xpect to remain as many adjustable flows as possible while taking the
imited flow table size into account. We formulate the load balancing
ith maximum adjustable flows (LB-MDF) problem as:

ax
∑

𝑓∈𝛾,𝛾∈Γ,𝑝 ∈ 𝑓

𝑦
𝑝

𝑓

∑
𝑝 ∈ 𝑓

𝑦
𝑝

𝑓
+ 𝑧 𝛾 = 1 ∀𝑓 ∈ 𝛾, 𝛾 ∈ Γ∑

𝑝 ∈ 𝛾
𝑦
𝑝
𝛾 = 𝑧 𝛾 ∀𝛾 ∈ Γ∑

𝑓 ∶ 𝑓 ∈𝛾,𝛾∈Γ
𝑝 ∶ 𝑣 ∈𝑝,𝑝 ∈ 𝑓

𝑦
𝑝

𝑓
+

∑
𝛾∶ 𝛾∈Γ

𝑝 ∶ 𝑣 ∈𝑝,𝑝 ∈ 𝛾

𝑦
𝑝
𝛾 ≤ 𝛽(𝑣) ∀𝑣 ∈ 𝑉

𝑦
𝑝

𝑓
, 𝑧 𝛾 , 𝑦

𝑝
𝛾 ∈ {0 , 1} ∀𝑝∈ 𝑓 , 𝑓∈𝛾,𝛾∈Γ

(11)

The first set of equations means that either macroflow 𝛾 chooses the
roactive routing scheme or all flows in this macroflow choose the reac-
ive scheme. The second set of equations ensures there is exact one route
ath selected as the default path once the macroflow chooses the proac-
ive scheme. The third set of inequalities means that the total number of
ow entries does not exceed the flow table size constraint on each SDN
witch.

heorem 7. The LB-MDF problem is NP-hard.

roof. We prove the NP-hardness by showing that the 0–1 knapsack
roblem [36] is a special case of our LB-MDF problem. Considering a
pecial case of LB-MDF, in which the network only has one switch u
or all switches have infinite flow entries except that only one switch
as limited flow table size). There are k macroflows { 𝛾1 , 𝛾2 , … , 𝛾𝑘 } , in
hich each macroflow 𝛾 i includes | 𝛾 i | flows. The flow table size on the

witch u is 𝛽(u). We construct a knapsack whose capacity is 𝛽(𝑢) − 𝑘,

nd each item i whose weight and value are 𝑤 𝑖 = |𝛾𝑖 | − 1 and 𝑣 𝑖 = 𝑤 𝑖 =
𝛾𝑖 | − 1 , respectively. The 0–1 knapsack problem is to maximize the total
alues of items in the knapsack while the total weight is less than or
qual to the knapsack capacity. Assume that the optimal solution of the
–1 knapsack problem is denoted by 𝐵 = { 𝑏 , 𝑏 , … , 𝑏 } , where b is a
1 2 𝑘 i
inary variable representing whether the item i is selected (b i = 1) or not
 b i = 0), and we have

∑𝑘
𝑖 =1 𝑏 𝑖 ⋅𝑤 𝑖 ≤ 𝛽(𝑢) − 𝑘 . If the item i is selected by the

ptimal solution in the 0–1 knapsack problem, macroflow 𝛾 i will choose
roactive routing, otherwise, reactive routing. Thus the macroflow 𝛾 i

ill occupy 𝑏 𝑖 ⋅𝑤 𝑖 + 1 flow entries. The total number of occupied flow
ntries for all macroflows is

∑𝑘
𝑖 =1 (𝑏 𝑖 ⋅𝑤 𝑖 + 1) ≤ 𝛽(𝑢) − 𝑘 + 𝑘 = 𝛽(𝑢) . Thus

ur constructed example of 0–1 knapsack can satisfy the flow table size
onstraint. Similar analysis for the objective to maximize the number of
djustable flows. Thus the optimal result B for 0–1 knapsack problem is
he optimal result for the special case of LB-MDF problem. Obviously,
he 0–1 knapsack problem is NP-hard [36] . Since the special case of our
B-MDF problem is NP-hard, LB-MDF is NP-hard too. □

.2. Algorithm description

In this section, we propose a rounding-based wildcard rule configura-
ion algorithm called PrePassE for the LB-MDF problem. Since Eq. (11) is
n integer linear program, it is difficult to solve it directly, thus we first
elax the integer linear program by replace the fourth constraints with

𝑝

𝑓
, 𝑧 𝛾 , 𝑦

𝑝
𝛾 ∈ [0 , 1] . That is, each switch-host-granularity flow is splittable

nd can be forwarded to several paths. After the relaxation, Eq. (11) be-
omes a linear program, and we can solve it in polynomial time by a
inear program solver. Note that { ̃𝑦 𝑝

𝑓
, ̃𝑦

𝑝
𝛾 , ̃𝑧 𝛾} is the optimal solution for

he linear program. Since the linear program is the relaxation of the LB-
DF problem, the optimal result ̃𝜃 =

∑
𝑓∈𝛾,𝛾∈Γ,𝑝 ∈ 𝑓

𝑦
𝑝

𝑓
is the upper-bound

esult for LB-MDF.
In the second step, we determine how to deploy an aggregate path

or each macroflow. We obtain an integer solution ̂𝑧 𝛾 using the rounding
ethod [33] . More specifically, we set ̂𝑧 𝛾 = 1, which means that an ag-

regate path is deployed for macroflow 𝛾, with the probability ̃𝑧 𝛾 . If ̂𝑧 𝛾
 0, this means that all the switch-host-granularity flows in macroflow 𝛾

ill be routed with forwarding rules. According to the first set of equa-
ions in Eq. (11) , we have Eq. 12 after randomized rounding:

∑
∈𝛾,𝑝 ∈ 𝑓

𝑦
𝑝

𝑓
=

{

0 , if ̂𝑧 𝛾 = 1
1 , if ̂𝑧 𝛾 = 0 (12)

According to the second set of equations in Eq. (11) , there is a frac-
ional result 𝑦 𝑝 𝛾 for each feasible path 𝑝 ∈  𝛾 , and the sum of all these
ractional results is:

∑
𝑝 ∈ 𝛾 𝑦

𝑝
𝛾 = ̃𝑧 𝛾 . Since we need to select one path

y randomized rounding, it is required to normalize the expectation

f these variables. For each feasible path 𝑝 ∈ 

𝑝
𝛾 , �̄�

𝑝
𝛾 =

𝑦
𝑝
𝛾

𝑧 𝛾
. Then, we get

nteger solution 𝑦 𝑝 𝛾 through randomized rounding [33] . In particular,
 ̂

𝑝
𝛾 is set as 1 with the probability �̄� 𝑝 𝛾 . PrePassE is formally described in
lgorithm 2 .

lgorithm 2 Rounding-based algorithm for LB-MDF.

1: Step 1: Solving the relaxed LB-MDF problem

2: Construct a relaxed linear program based on Eq. (??)
3: Obtain the optimal solution ̃𝑦 𝑝

𝑓
, ̃𝑦 𝑝 𝛾 and ̃𝑧 𝛾

4: Step 2: Proactive routing for selected macroflows

5: Derive an integer solution ̂𝑧 𝛾 by randomized rounding
6: for each macroflow 𝛾 ∈ Γ do

7: if 𝑧 𝛾 = 1 then

8: for each feasible path 𝑝 ∈  𝛾 do

9: Compute �̄� 𝑝 𝛾 =

𝑦
𝑝
𝛾

𝑧 𝛾

10: Derive an integer solution ̂𝑦 𝑝 𝛾 by randomized rounding
11: for each feasible path 𝑝 ∈  𝛾 do

12: if 𝑦
𝑝
𝛾 = 1 then

13: Install wildcard entries on switches along 𝑝

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

5

P

b

𝜂

a

c

L

n

b

P

L

a

𝐏

[

r

o

D

𝜋

T

𝔼

C{

v

P

P

w

o

f

𝜉

P

1

I

W

b

t

|

t

𝜂

t

[

t

a

s

fl

L

t

t

b

s

p

p

6

r

6

s

t

p

r

j

a

i

c

a

b

r

a

p

L

o

i

d

t

fl

w

t

w

(

fi

d

9

p

.3. Performance analysis

In this section, we analyze the approximation performance of
rePassE in terms of the number of adjustable flows and the flow ta-
le resource. We first define a variable 𝜂 as follows:

= min { 𝛽(𝑣) , 𝑣 ∈ 𝑉 ; ̃𝜃∕ |𝛾|, 𝛾 ∈ Γ} (13)

Under most practical situations, it follows that 𝜂 ≫ 1. As PrePassE is
 randomized algorithm, we analyze the expected data plane resource
ost.

emma 8. The proposed PrePassE algorithm can guarantee that the total

umber of adjustable flows will not be less than the upper bound of LB-MDF

y a factor of (1 − 2
√

log 𝑛
𝜂

) ,

roof. To prove the Lemma 8 , we first introduce a widely used formula.

emma 9 (Chernoff Low Bound) . Given n independent vari-

bles: 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 , where ∀x i ∈ [0, 1] . Let 𝜇 = 𝔼 [
∑𝑛

𝑖 =1 𝑥 𝑖] . Then,

𝐫
[∑𝑛

𝑖 =1 𝑥 𝑖 ≤ (1 − 𝜉) 𝜇
]
≤ 𝑒

− 𝜉2 𝜇
2 , where 𝜉 is an arbitrarily positive value in

0,1].

Since all flows in a macroflow adopt the same (proactive/reactive)
outing scheme, we define a random variable 𝜋𝛾 to denote the number
f adjustable flows in the macroflow 𝛾.

efinition 3. For each macroflow 𝛾, variable 𝜋𝛾 is defined as:

𝛾 =

{ |𝛾|, with probability 1 − 𝑧 𝛾
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(14)

According to the definition, 𝜋𝛾1
, 𝜋𝛾2

… are mutually independent.
he expected number of ajustable flows are:

[∑
𝛾∈Γ

𝜋𝛾

]

=

∑
𝛾∈Γ

𝔼 [𝜋𝛾] =

∑
𝛾∈Γ

|𝛾| ⋅ (1 − 𝑧 𝛾)

=

∑
𝛾∈Γ

∑
𝑝 ∈𝑷 𝑓 ,𝑓∈𝛾

𝑦
𝑝

𝑓
= ̃𝜃 (15)

ombining Eq. (15) and the definition of 𝜂 in Eq. (13) , we have
 𝜋𝛾 ⋅𝜂

𝜃
∈ [0 , 1]

𝔼
[∑

𝛾∈Γ
𝜋𝛾 ⋅𝜂

𝜃

]
≤ 𝜂.

(16)

Then, by applying Lemma 9 , assume that 𝜉 is an arbitrary positive
alue. It follows

r
[∑

𝛾∈Γ
𝜋𝛾 ⋅ 𝜂∕ ̃𝜃 ≤ (1 − 𝜉) 𝜂

]
≤ 𝑒

− 𝜉2 𝜂
2 (17)

Now, we assume that

r
[∑

𝛾∈Γ
𝜋𝛾 ⋅ 𝜂∕ ̃𝜃 ≥ (1 − 𝜉) 𝜂

]
≤ 𝑒

− 𝜉2 𝜂
2 ≤ 𝑭 ∕ 𝑛 (18)

here F is the function of network-related variables (such as the number
f switches n, etc.) and F → 0 when the network size grows. The solution
or Eq. (18) is expressed as:

≥

√
2 log 𝑛 − 2 log 𝑭 ∕ 𝜂, 𝑛 ≥ 2 (19)

Set 𝑭 =

1
𝑛
. Eq. (18) is transformed into:

r

[∑
𝛾∈Γ

𝜋𝛾 ⋅ 𝜂

𝜃
≤ (1 − 𝜉) 𝜂

]

≤

1
𝑛 2

, where 𝜉 ≥ 2

√

log 𝑛
𝜂

The approximation factor of our algorithm is 1 − 𝜉 =
 − 2

√
log 𝑛 ∕ 𝜂. □

In most practical situations, the approximation factor is constant.
n a network with n switches, the number of macroflows is 𝑛 (𝑛 − 1) .

e assume that only 30% of the flows are adjustable and the num-
er of flows in each macroflow obeys poisson distribution. Note that
he expected number of flows in macroflow 𝛾 is |�̄�|, and we have
𝛾| ∼ 𝑃 (|�̄�|) . According to poisson distribution and mathematical compu-
ation, 𝑃 𝑟 (|𝛾| > 4 |�̄�|) < 0 . 0012 , thus we have max { |𝛾|, 𝛾 ∈ Γ} ≤ 4 |�̄�|, and
is 0.3 ⋅ 1 4 ⋅ 𝑛 (𝑛 − 1) . For example, the number of switches is usually more

han 100, and the number of flow entries on each switches is about 4000
3] . Thus 𝜂 = min { 𝛽(𝑣) , 𝑣 ∈ 𝑉 ; ̃𝜃∕ |𝛾|, 𝛾 ∈ Γ} = 750, and the approxima-
ion factor is 0.84. For a large-scale network with 1000 switches, the
pproximation factor is 0.92. In summary, PrePassE can achieve con-
tant approximation performance in terms of the number of adjustable
ows compared with the upper bound of LB-MDF.

emma 10. The proposed PrePassE algorithm can achieve the approxima-

ion factor of
3 log 𝑛

𝜂
+ 4 for the flow table size constraint.

The proof is similar to the proof of Lemma 4 . Therefore, we omit
he detailed proofs of the above lemma here, which can be found in
alancing with data plane resource constraints using commodity sdn
witches [34] . Moreover, The analysis for Lemma 4 shows that the ap-
roximation factor is constant in most practical situations, which is ap-
licable here.

. Performance evaluation

To demonstrate the feasibility and efficiency of the proposed algo-
ithms, we conduct the experiment and simulation-based evaluation.

.1. Performance metrics and benchmarks

We have designed PrePass for proactive and reactive routing
chemes, respectively. For ease of description, we denote PrePass as
he integrated two algorithms. We evaluate PrePass through testbed im-
lementation and large-scale network simulations. We adopt five met-
ics for performance evaluation. The first metric is the number of ad-
ustable flows (NAF), which refers to the number of flows that can be
djusted/controlled by the controller in the reactive scheme. Maximiz-
ng NAF is the objective of PrePassE. The larger NAF means that we can
ontrol/adjust more individual flows, which are of benefit to load bal-
ncing in general. Since the packet header of each adjustable flow will
e reported to the controller, the number of adjustable flows greatly
eflects the controller overhead. Since this paper studies the load bal-
ncing under strict flow table size constraint by deploying aggregate
aths for partial macroflows, the second metric is link load ratio (LLR).
LR is defined as max { f (e)/ c (e), e ∈ E }, where f (e) is the traffic load
f link e . The smaller LLR means better load balancing effect. Another
mportant data-plane resource is flow entries. We adopt the cumulative
istribution function (CDF) of occupied flow entries on all switches as
he third metric. When the number of required flow entries exceeds the
ow table size, or the link is congested, flows may be dropped. Thus
e adopt throughput as the fourth metric, which is defined as the total

raffic amount of flows that are successfully forwarded in the network
ith flow table size constraint. The final metric is flow completion time

FCT), which defined as the lasting time that the flow transmission is
nished. FCT is an important metric [37] because some services are
elay-sensitive. This section evaluates both the average FCT and the
9th percentile FCT for worst case performance [38] . To evaluate the
erformance of our proposed algorithms, we adopt four benchmarks:

1. OSPF [35] . Each switch constructs the shortest path to each desti-
nation. Therefore, the flow granularity is egress-switch based gran-
ularity.

2. ECMP [8] . Each switch constructs multiple (e.g. , 3 in our evaluaion)
equal-cost paths to each another switch. Therefore, it will first con-
struct multiple equal-cost paths with egress-switch-based granular-
ity. Then, for each packet matching the destination address, it will be
for-warded to one of the multiple paths randomly. This kind of ran-
domization is based on packet level. We should note that the ECMP
method requires group entries when there are multiple equal-cost
paths to the destination in an SDN. We will compare it with our
algorithms in terms of the link load ratio and throughput.

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

Fig. 6. Topology of the SDN platform.

6

6

s

t

h

(

E

(

8

i

c

a

a

i

s

fl

d

a

i

t

n

t

s

h

f

r

t

i

fl

i

t

r

b

f

f

t

Fig. 7. No. of occupied flow entries on switches.

Fig. 8. No. of flows vs. link load ratio (LLR).

Table 2

Number of adjustable flows (NAF) by PrePass.

No. of flows 200 300 400 500 600 700 800

NAF 200 226 213 203 196 195 191

d

fl

1

6

p

t

b

s

3

t

d

t

r

w

fl

T

(

w

b

b

n

t

w

4

c

L

f

o

w

e

o

s

c
3. RLJD [17] . In RLJD, flows are forwarded with per-flow rules (5-tuple
flows). Since RLJD discards flows if there are not enough flow en-
tries, we will compare it with our algorithm in terms of network
throughput. Moreover, we use RLJDM to represent that the flow ta-
ble size is infinite. That is, each flow will be routed with per-flow
rules. We compare RLJDM with our proposed algorithm by evaluat-
ing the link load ratio and CDF of occupied flow entries.

4. Presto [15] , which applies OVS [39] on the edge switches to en-
hance the flow table and the processing capacity of edge switches.
After that, it will follow the default path with egress-switch-based
granularity, which is like OSPF. Though Presto can provide flowcell
scheduling in a network, we assume that the controller schedules
each flow (not flowcell) on its ingress switch for fairness.

.2. System implementation and testing

.2.1. Implementation on the platform

We implement PrePass, OSPF, RLJDM, Presto and ECMP on a small-
cale testbed. Our testbed is mainly composed of three parts: a con-
roller, eight virtual switches and seven virtual machines (acting as
osts). Each virtual switch is implemented using the open virtual switch
OVS version 2.4.0) [39] , which supports OpenFlow v1.3 standard [6] .
ach virtual switch and the connected Kernel-based Virtual Machine
KVM) are implemented on a server with a core i5-3470 processor and
 GB of RAM. Since the controller will not participate in data forward-
ng, it is not explicitly shown in Fig. 6 . We use Ryu 4.17 [40] as the
ontroller software running on a server with a core i5-3470 processor
nd 16 GB of RAM.

In our implementation, we generate different quantities of flows on
 small-scale topology. Specifically, each virtual machine (or host) is
nstalled with a traffic generator, and requests flows according to Pois-
on distribution from randomly chosen hosts with different ports. The
ow size is synthetic but accords with the heavy-tailed distribution of
ata mining workload [8] , where 95% of the traffic amount comes from
bout 3.6% of elephant flows (more than 10MB). The traffic generator
s adopted from [41] . As mentioned in Section 2.4 , flow routing using
he switch-host granularity will benefit to load balancing in large-scale
etworks. However, the testbed’s topology is of small scale. We thus dis-
inguish a flow using the 5-tuple granularity in the Implementation part
o as to generate an adequate number of flows. The flows from a source
ost will be forwarded to a destination host randomly. To estimate the
abric’s load balancing performance, we expect flows to traverse the fab-
ic. Moreover, the proactive routing scheme manages macroflows with
he long-term traffic size of these macroflows. But, in practice, each flow
n a macroflow may just last for a much shorter time and cause link load
uctuation. Since multiple flows belonging to a macroflow start and fin-

sh in different time, it will alleviate this variation. In the experiments,
he proactive routing scheme is triggered every 5s, and the link load
atio (LLR) is computed by collecting port statistics. Since the traffic
etween two hosts attached with the same switch doesn’t traverse the
abric, it has no impact on the fabric’s load. Then, we deploy one host
or each switch and use source IP, destination IP and source port to iden-
ify a flow. We also identify a macroflow with the same source IP and
estination IP. Then, each host is able to generate different numbers of
ows in a network. All the links have the unique link bandwidth, i.e. ,
 Gbps.

.2.2. Experimental results

We run three sets of experiments on the SDN platform. In each ex-
eriment, we set the flow table size on each switch is 110. In the first
esting, we generate 600 flows in the network, and observe the num-
er of required flow entries on all switches. The testing results in Fig. 7
how that the maximum number of occupied flow entries is 110 and
53 for PrePass and RLJDM, respectively. In addition, PrePass satisfies
he flow table size constraint on each switch. That is because PrePass
eploys aggregate paths for partial macroflows with proactive scheme
o reduce the occupied flow entries. Specifically, PrePass can averagely
educe the number of occupied flow entries by 241−87 241 = 64% compared
ith RLJDM. In the second testing, we observe the number of adjustable
ows and link load ratio by changing the number of flows in an SDN.
he results in Table 2 show that (1) when the number of flows increases
to 300 flows), the number of adjustable flows increases too; and (2)
hen the number of flows increases (more than 300 flows), the num-
er of adjustable flows decreases. That is because more macroflows will
e forwarded through aggregate paths with more and more flows in a
etwork. We observe LLR by changing the number of flows from 200
o 800. In Fig. 8 , LLR of PrePass is close to that of RLJDM (within 5%),
hile PrePass significantly reduces the link load ratio by 21%, 26% and
4% compared with Presto, ECMP, and OSPF, respectively. That is be-
ause PrePass deploys aggregate paths with the objective to minimize
LR of aggregate paths and dynamically routes flows with per-flow rules
or others.

We observe the FCT performance by generating different numbers
f flows on the platform. We do not compare our PrePass algorithm
ith Presto and RLJDM, for Presto requires additional OVS placed on

ach ingress switch, and RLJDM requires a large number of flow entries
n switches. Similar to PIAS [42] , we evaluate the FCT performance of
mall flows (< 100 KB) and large flows (> 1 MB), respectively, for
omprehensive comparison. The FCT results under 600 flows and 1200

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

Fig. 9. Performance comparison of FCT under 600 flows.

Fig. 10. Performance comparison of FCT under 1200 flows.

fl

t

F

E

P

t

t

c

1

a

b

d

d

p

r

a

6

6

d

w

T

[

W

e

t

f

l

i

c

d

a

a

w

t

f

s

6

t

P

b

s

Fig. 11. Number of flows vs. NAF in topology T1. Left plot : enterprise workload;

right plot : data mining workload.

Fig. 12. Number of flows vs. NAF in topology T2. Left plot : enterprise workload;

right plot : data mining workload.

Fig. 13. Number of flows vs. LLR in topology T1. Left plot : enterprise workload;

right plot : data mining workload.

N

i

i

a

fl

i

p

i

o

w

R

3

T

m

L

f

p

e

w

F

o

s

p

o

R
w

a

r

o

a

E

t

f
ows are shown in Figs. 9 and 10 , respectively. As we can see, when
here are 600 flows (without congestion), PrePass increases the average
CT and 99th percentile FCT a little (both within 5%) compared with
CMP for both small flows and large flows by Fig. 9 . That is because
rePass needs to report Packet-In messages for partial flows to the con-
roller, which will increase the FCT. With more flows in the network,
he link load will be increased. As a result, the FCT and the 99th per-
entile FCT increase for both two algorithms by comparing Figs. 9 and
0 . Fig. 10 shows that PrePass performs better than ECMP on both the
verage FCT and the 99th percentile FCT. Under this case, the link load
y ECMP is close to its link capacity. As a result, the impact of queuing
elay on the FCT will outweigh that of the controller-switch interaction
elay. Since PrePass can achieve lower link load ratio than ECMP, it out-
erforms ECMP in terms of the FCT performance. For instance, PrePass
educes the average FCT and 99th percentile FCT of large flows by 35%
nd 32% compared with ECMP, respectively, by Fig. 10 (b).

.3. Simulations

.3.1. Simulation setting

We select two practical topologies. The first topology is fat-tree [9] ,
enoted by T1, containing 80 switches and 1120 hosts. It has been
idely applied in many data centers. The second topology, denoted by
2, is a campus network containing 100 switches and 1000 hosts from
43] . For both topologies, each link has a uniform capacity, 5 Gbps.
e conduct extensive simulations with realistic workloads based on the

mpirical traffic patterns in practical networks. Specifically, we adopt
wo traffic workloads. The first distribution is derived from traffic traces
rom a practical data center [11] and represents a large enterprise work-

oad . The second distribution is from a large cluster running data min-

ng jobs [8] . Both workloads are heavy-tailed: a small fraction of flows
ontributes most of the traffic amount. In particular, the data mining
istribution has a very heavy tail with 95% of the traffic amount from
bout 3.6% of elephant flows larger than 20 MB, while 20% of the flows
ccount for 80% of the traffic for enterprise workloads. Same as [25] ,
e generate flows between random senders and receivers with varying

raffic loads. The flow table size is different for various switches. By de-
ault, FTS on each switch is set to a moderate value (e.g. , 4 K [3]) in our
imulations.

.3.2. Routing performance and the number of occupied flow entries

We first observe the number of adjustable flows (NAF) by changing
he number of flows in a network. Figs. 11 and 12 show that NAF of
rePass increases as the number of flows increases. But when the num-
er of flows increases to 6 × 10 4 , the number of adjustable flows is
table in a certain interval. For example, left plot of Fig. 11 shows that
AF increases from 3 × 10 4 to 4.7 × 10 4 when the number of flows
ncreases from 3 × 10 4 to 6 × 10 4 . After then, NAF remains in the
nterval [4.4 × 10 4 , 4.7 × 10 4]. The reason is as follow. When there
re less flows, e.g. , 30 K, the flow table is enough to accommodate all
ows with per-flow rules. However, when the number of flows keeps

ncreasing, due to the limited flow table size, more and more flows will
ass through the aggregate paths. As a result, NAF is stable in a certain
nterval. From these two figures, we also conclude that the controller
verhead keeps stable with more and more flows in a network.

The second set of simulations studies the link load ratio performance
hen the number of flows increases. We compare PrePass with OSPF,
LJDM, Presto and ECMP under different numbers of flows ranging from
 × 10 4 to 18 × 10 4 . The link load ratio (LLR) results on topology
1 are shown in Fig. 13 . We observe that LLR increases with more and
ore flows for all five algorithms. In comparison, ECMP can reduce

LR by 10% compared with Presto for the enterprise workload, while
or the data mining workload, Presto reduces LLR by about 6% com-
ared with ECMP. PrePass can achieve almost the same LLR as RLJDM,
specially when the number of flows is less than 9 × 10 4 . For example,
hen the number of flows is 9 × 10 4 with the enterprise workload by
ig. 13 , OSPF occurs congestion (or LLR is 1), while the link load ratios
f PrePass, RLJDM, Presto and ECMP are 0.52, 0.52, 0.72 and 0.66, re-
pectively. As a result, PrePass can reduce LLR by 27.7% and 21.2% com-
ared with Presto and ECMP, respectively. However, simulation results
n topology T2 are quite different. ECMP has higher LLR than Presto,
LJD and PrePass. For example, when the number of flows is 6 × 10 4

ith the data mining workload, LLRs of ECMP, Presto, RLJD and PrePass
re 0.69, 0.53, 0.39 and 0.39, respectively. That accords with previous
esearches [15] , which have shown that ECMP performs less efficiently
n asymmetric topology like topology T2. For both topologies, PrePass
chieves close LLR (within 5%) to RLJDM and outperforms Presto and
CMP, even when the number of flows is large (e.g. , 150 K) and most of
he flows pass through aggregate paths.

The third set of experiments evaluates the cumulative distribution
unction (CDF) of occupied flow entries on all switches. We compare

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

Fig. 14. Number of flows vs. LLR in topology T2. Left plot : enterprise workload;

right plot : data mining workload.

Fig. 15. No. of occupied flow entries vs. CDF in topology T1. Left plot : enterprise

workload; right plot : data mining workload.

Fig. 16. No. of occupied flow entries vs. CDF in topology T2. Left plot : enterprise

workload; right plot : data mining workload.

t

i

R

n

t

d

m

t

o

f

a

a

O

a

i

P

i

E

t

t

P

o

t

9

t

r

s

c

w

S

c

Fig. 17. No. of flows vs. throughput in topology T1. Left plot : enterprise work-

load; right plot : data mining workload.

Fig. 18. No. of flows vs. throughput in topology T2. Left plot : enterprise work-

load; right plot : data mining workload.

Fig. 19. Prediction error parameter X vs. LLR in topology T1. Left plot : enter-

prise workload; right plot : data mining workload.

6

s

D

n

e

a

e

e

i

o

s

𝑓

𝛾

o

o

u

F

b

j

w

s

1

l

e

i

R

c

f

m

e

w

d

c
he number of occupied flow entries for PrePass with RLJDM. As shown
n Figs. 15 and 16 , PrePass needs no more than 4 K flow entries, while
LJDM uses at most 10K flow entries. Moreover, most of switches
eed 2 K-4 K entries by PrePass. But for RLJDM, more than 79% of
he switches exceed the FTS constraint. That is because PrePass has
eployed aggregate paths for partial macroflows, and flows in these
acroflows will directly match wildcard entries without consuming ex-

ra flow entries. Thus, PrePass can significantly reduce the number of
ccupied flow entries, and satisfy the FTS constraint on each switch.

The fourth set of simulations observes the network throughput per-
ormance when the flow table size is constant (i.e. , 4000). The results
re shown in Figs. 17 and 18 . We observe that the throughput increases
s the number of flows increases for all five algorithms. But RLJD and
SPF can accommodate much less traffic compared with Presto, ECMP
nd PrePass. That is because OSPF has high link load ratio and RLJD
s constricted by the flow table size. ECMP has similar throughput as
resto in topology T1, but much less throughput compared with Presto
n topology T2. For example, when the number of flows is 15 × 10 4 ,
CMP increases throughput by 4.8% compared with Presto in terms of
he enterprise workload by Fig. 17 , But in topology T2, Presto increases
hroughput by 27.7% compared with ECMP by Fig. 18 (a). Moreover,
rePass achieves much more throughput than other four benchmarks
n both topologies and workloads. For example, in Fig. 18 with the en-
erprise workload, PrePass increases the throughput by 22.2%, 52.7%,
6.7% and 103.3% compared with Presto, ECMP, RLJD and OSPF, when
he number of flows is 15 × 10 4 . That is consistent with the above
esults that PrePass not only achieves similar LLR to RLJDM, but also
atisfies the FTS constraint.

From the above simulations in Figs. 11–18 , we can draw some con-
lusions. First, PrePass can reduce LLR by 30%, 40% and 63% compared
ith Presto, ECMP and OSPF for both two topologies and workloads.
econd, PrePass satisfies the flow table size constraint while it only in-
reases the link load ratio by about 5% compared with RLJDM.
.3.3. Performance under traffic dynamics

The aggregate path deployment determined by the predicted traffic
tatistics, which is the long-term traffic statistics collection on switches.
ue to the flow dynamics, the prediction error is unavoidable. Thus, it is
ecessary to evaluate the routing performance when the prediction error
xists. There are two kinds of prediction errors, the number of flows in
 macroflows and the traffic size of a macroflow. The proactive scheme
nsures that one macroflow needs one and only one wildcard entry on
ach switch along the path, no matter how many flows the macroflow
ncludes. Thus we only consider the error of traffic size prediction. With-
ut loss of generality, it is assumed that the controller collects the traffic
ize with prediction error parameter X . Specifically, note that f (𝛾) and
 ̄(𝛾) are the predicted traffic size and actual traffic size of macroflow
respectively. We will simulate the case that the predicted traffic size

f macroflow 𝛾 obeys the uniform distribution from (1- X %) ⋅𝑓 (𝛾) to 𝑓 (𝛾)
r from 𝑓 (𝛾) to (1- X %) ⋅𝑓 (𝛾) . X can be positive or negative, representing
nder-prediction and over-prediction respectively.

This section evaluates the impacts of traffic dynamics. According to
igs. 11 and 12 , when the number of flows is 12 × 10 4 , the num-
er of adjustable flows is about 4.5 × 10 4 . It means the ratio of ad-
ustable flows to all flows is 37.5%. Since most of the flows are for-
arded through aggregate paths, we choose 12 × 10 4 to conduct our

imulations by changing the prediction error parameter X from -100 to
00. Since ECMP, Presto and RLJDM make routing decisions in flow
evel, not macroflow level, they will not be affected by the prediction
rror and remain fixed. The simulation results in terms of LLR are shown
n Figs. 19 and 20 . When the error parameter X is 0, the gap between
LJDM and PrePass is the smallest. When | X | increases, the gap in-
reases too. For example, the gap between PrePass and RLJDM increases
rom 5% to 10% when X increases from 0 to 100 by Fig. 19 (a). What’s
ore, PrePass outperforms Presto and ECMP, even when the prediction

rror parameter X is 100. That is because PrePass routes partial flows
ith switch-host granularity to highly utilize the link capacity and re-
uce the prediction error caused by aggregate paths. In a word, PrePass
an well adapt to the flow traffic dynamics and uncertainty, and achieve

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

Fig. 20. Prediction error parameter X vs. LLR in topology T2. Left plot : enter-

prise workload; right plot : data mining workload.

Fig. 21. Running time of PrePass under different scales of networks.

Fig. 22. No. of flows vs. link load ratio (LLR) in topology T1. Left plot : enterprise

workload; right plot : data mining workload.

t

r

6

w

s

t

c

F

s

w

t

i

6

r

fl

i

c

r

a

c

E

t

W

L

1

Fig. 23. No. of flows vs. link load ratio (LLR) in topology T2. Left plot : enterprise

workload; right plot : data mining workload.

Fig. 24. Number of flows vs. throughput in topology T1. Left plot : enterprise

workload; right plot : data mining workload.

Fig. 25. Number of flows vs. throughput in topology T2. Left plot : enterprise

workload; right plot : data mining workload.

1

t

P

m

8

w

t

r

w

o

o

7

o

P

d

s

(

r

t

i

e

e

e

(

s

p

l

i

s

he similar LLR (less than 10%) to RLJDM even when the prediction er-
or parameter X is 100.

.3.4. Running time of PrePass

We evaluate the computing cost of PrePass in different scales of net-
orks. The topologies is fat-tree as it is scalable. The results in Fig. 21

how that PrePass requires more time to solve the routing scheme when
he number of switches increases. In spite of this, we stress that PrePass
an solve the problem in time even when the network is very large.
or instance, in our simulation with 80-switch topology, the proactive
cheme will be triggered every 10min, which is much longer compared
ith the computing cost of PrePass (1.98 s). Therefore, we can conclude

hat PrePass is practical and PrePass can perform proactive routing pol-
cy efficiently in the beginning of each period.

.3.5. Performance for PrePassE

This section evaluates the performance of the PrePassE algo-
ithm, in which the controller is oblivious to the traffic size of each
ow/macroflow. For simplicity, the integrated routing algorithm, comb-

ng PrePassE and reactive scheme, is also called PrePassE. Since we fo-
us on the load balancing in this paper, this section mainly observes the
outing performance of PrePassE.

The first set of simulations observes the link load ratio performance
nd the results are shown in Figs. 22 and 23 . As are result, PrePassE
an reduce LLR by about 25%, 29.5%, and 60% compared with Presto,
CMP and OSPF, respectively. Moreover, PrePassE can achieve almost
he same LLR as RLJDM when the number of flows is less than 9 × 10 4 .

hen the number of flows exceeds 9 × 10 4 , PrePassE increases a little
LR compared with RLJDM. For example, when the number of flows is
2 × 10 4 and 15 × 10 4 , PrePassE increases LLR by about 7% and
0% respectively from Fig. 22 (a). The second set of simulations studies
he performance of network throughput. As shown in Figs. 24 and 25 ,
rePassE can improve network throughput compared with four bench-
arks. In particular, PrePassE increases throughput by 8.0%, 35.9%,
1.9%, and 146.7% compared with Presto, ECMP, OSPF, and RLJD,
hen the number of flows is 15 × 10 4 . Note that Presto needs addi-

ional virtual switches for each physical switch. From these simulation
esults, we can conclude that PrePassE can achieve close LLR to RLJDM,
hich required unlimited flow table size, and improve throughput than
ther benchmarks, even if the controller is oblivious to the traffic size
f each flow for deployment of aggregate paths.

. Conclusions

In this paper, we study the impact of data plane resource constraints
n load balancing in SDNs. To overcome this challenge, we propose
rePass, which combines proactive routing and reactive routing with
ifferent granularities in an SDN, to satisfy data plane resource con-
traints. We formulate the load balancing with flow table size constraint
LB-FTS) problem as an integer linear program. A rounding-based algo-
ithm, PrePass, with bounded approximation factors is proposed to solve
he LB-FTS problem. We also propose an extended algorithm of PrePass,
.e., PrePassE, for load balancing without the traffic size knowledge of
ach flow. We implement the proposed algorithms on an SDN testbed for
xperimental studies and use simulations for large-scale evaluation. The
xperimental results and extensive simulation results show that PrePass
including PrePassE) can satisfy the different resource constraints on
witches, and only increase the link load ratio by about 5%-10% com-
ared with per-flow routing scheme under various scenarios. Our simu-
ation results also show that PrePass can well handle the traffic dynam-
cs, increasing the link load ratio by less than 10% even when the traffic
ize prediction produces error is very large.

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

D

i

t

C

t

a

s

t

G

e

A

C

b

A

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[
[
[

[

[

eclaration of Competing Interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

RediT authorship contribution statement

Haibo Wang: Conceptualization, Methodology, Software, Valida-
ion, Formal analysis, Writing - original draft. Hongli Xu: Conceptu-
lization, Methodology, Validation, Writing - review & editing, Supervi-
ion, Funding acquisition, Project administration. Chen Qian: Concep-
ualization, Writing - review & editing, Funding acquisition. Juncheng

e: Software. Jianchun Liu: Software. He Huang: Writing - review &
diting, Funding acquisition.

cknowledgement

This research is supported by the National Science Foundation of
hina (NSFC) under Grants 61822210, 61936015, and U1709217; and
y Anhui Initiative in Quantum Information Technologies under No.
HY150300.

upplementary material

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.comnet.2020.107339 .

eferences

[1] M. Al-Fares , S. Radhakrishnan , B. Raghavan , N. Huang , A. Vahdat , Hedera: dynamic
flow scheduling for data center networks., in: NSDI, 10, 2010, p. 19 .

[2] C.-Y. Hong , S. Kandula , R. Mahajan , M. Zhang , V. Gill , M. Nanduri , R. Wattenhofer ,
Achieving high utilization with software-driven wan, in: ACM SIGCOMM, 2013,
pp. 15–26 .

[3] A.R. Curtis , J.C. Mogul , J. Tourrilhes , P. Yalagandula , P. Sharma , S. Banerjee , De-
voFlow: scaling flow management for high-performance networks, in: ACM SIG-
COMM Computer Communication Review, 2011, pp. 254–265 .

[4] J. Liu , Y. Li , D. Jin , SDN-based live VM migration across datacenters, in: ACM SIG-
COMM Computer Communication Review, ACM, 2014, pp. 583–584 .

[5] H. Owens II , A. Durresi , Video over software-defined networking (VSDN), COMNET
92 (2015) 341–356 .

[6] B. Pfaff, et al., OpenFlow switch specification v1.3.0, 2012.
[7] A. Wang , Y. Guo , F. Hao , T. Lakshman , S. Chen , Scotch: elastically scaling up SDN

control-plane using vswitch based overlay, in: Proceedings of the 10th ACM Interna-
tional on Conference on Emerging Networking Experiments and Technologies, ACM,
2014, pp. 403–414 .

[8] A. Greenberg , J.R. Hamilton , N. Jain , S. Kandula , C. Kim , P. Lahiri , D.A. Maltz ,
P. Patel , S. Sengupta , VL2: a scalable and flexible data center network, in: ACM
SIGCOMM Computer Communication Review, 2009, pp. 51–62 .

[9] M. Al-Fares , A. Loukissas , A. Vahdat , A scalable, commodity data center network
architecture, in: ACM SIGCOMM Computer Communication Review, ACM, 2008,
pp. 63–74 .

10] J. Zhou , M. Tewari , M. Zhu , A. Kabbani , L. Poutievski , A. Singh , A. Vahdat , WCMP:
weighted cost multipathing for improved fairness in data centers, in: Proceedings of
the Ninth European Conference on Computer Systems, ACM, 2014, p. 5 .

11] M. Alizadeh , T. Edsall , S. Dharmapurikar , R. Vaidyanathan , K. Chu , A. Fingerhut ,
F. Matus , R. Pan , N. Yadav , G. Varghese , et al. , CONGA: distributed congestion-aware
load balancing for datacenters, in: ACM SIGCOMM Computer Communication Re-
view, ACM, 2014, pp. 503–514 .

12] J. Cao , R. Xia , P. Yang , C. Guo , G. Lu , L. Yuan , Y. Zheng , H. Wu , Y. Xiong , D. Maltz ,
Per-packet load-balanced, low-latency routing for clos-based data center networks,
in: Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies, ACM, 2013, pp. 49–60 .

13] J. Rasley , B. Stephens , C. Dixon , E. Rozner , W. Felter , K. Agarwal , J. Carter , R. Fon-
seca , Planck: millisecond-scale monitoring and control for commodity networks,
ACM SIGCOMM Comput. Commun. Rev. 44 (4) (2015) 407–418 .

14] H. Xu , H. Huang , S. Chen , G. Zhao , Scalable software-defined networking through
hybrid switching, in: Proc. IEEE INFOCOM, 2017 .

15] K. He , E. Rozner , K. Agarwal , W. Felter , J. Carter , A. Akella , Presto: edge-based load
balancing for fast datacenter networks, ACM SIGCOMM Comput. Commun. Rev. 45
(4) (2015) 465–478 .

16] G. Zhao , H. Xu , S. Chen , L. Huang , P. Wang , Deploying default paths by joint opti-
mization of flow table and group table in sdns, in: Proc. IEEE ICNP, 2017 .
17] R. Cohen , L. Lewin-Eytan , J.S. Naor , D. Raz , On the effect of forwarding table size
on SDN network utilization, in: INFOCOM, 2014 Proceedings IEEE, IEEE, 2014,
pp. 1734–1742 .

18] S. Ghorbani , B. Godfrey , Y. Ganjali , A. Firoozshahian , Micro load balancing in data
centers with drill, in: Proceedings of the 14th ACM Workshop on Hot Topics in
Networks, ACM, 2015, p. 17 .

19] S. Sen , D. Shue , S. Ihm , M.J. Freedman , Scalable, optimal flow routing in datacenters
via local link balancing, in: Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, 2013, pp. 151–162 .

20] N. Katta , M. Hira , C. Kim , A. Sivaraman , J. Rexford , HULA: Scalable load balanc-
ing using programmable data planes, in: Proceedings of the Symposium on SDN
Research, ACM, 2016, p. 10 .

21] E. Vanini , R. Pan , M. Alizadeh , P. Taheri , T. Edsall , Let it flow: resilient asymmetric
load balancing with flowlet switching., in: NSDI, 2017, pp. 407–420 .

22] G. Zhao , L. Huang , Z. Yu , H. Xu , P. Wang , On the effect of flow table size and
controller capacity on SDN network throughput, in: ICC, 2017 IEEE International
Conference on, 2017, pp. 1–6 .

23] S. Banerjee , K. Kannan , Tag-in-tag: efficient flow table management in SDN switches,
in: Network and Service Management (CNSM), 2014 10th International Conference
on, IEEE, 2014, pp. 109–117 .

24] P. Gill , N. Jain , N. Nagappan , Understanding network failures in data centers: mea-
surement, analysis, and implications, in: ACM SIGCOMM Computer Communication
Review, ACM, 2011, pp. 350–361 .

25] H. Zhang , J. Zhang , W. Bai , K. Chen , M. Chowdhury , Resilient datacenter load bal-
ancing in the wild, in: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 253–266 .

26] H. Xu , H. Huang , S. Chen , G. Zhao , L. Huang , Achieving high scalability through
hybrid switching in software-defined networking, IEEE/ACM Trans. Netw. 26 (1)
(2018) 618–632 .

27] O. Rottenstreich , I. Keslassy , Worst-case TCAM rule expansion, in: 2010 Proceedings
IEEE INFOCOM, IEEE, 2010, pp. 1–5 .

28] Z. Liu , A. Manousis , G. Vorsanger , V. Sekar , V. Braverman , One sketch to rule them
all: rethinking network flow monitoring with UnivMon, in: Proceedings of the 2016
ACM SIGCOMM Conference, ACM, 2016, pp. 101–114 .

29] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,
S. Shenker , J. Turner , OpenFlow: enabling innovation in campus networks, ACM
Comput. Commun. Rev. 38 (2) (2008) 69–74 .

30] R. Narayanan , S. Kotha , G. Lin , A. Khan , S. Rizvi , W. Javed , H. Khan , S.A. Khayam ,
Macroflows and microflows: enabling rapid network innovation through a split SDN
data plane, in: Software Defined Networking, 2012 European Workshop on, IEEE,
2012, pp. 79–84 .

31] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, L. Gu, HadoopWatch: a first step towards
comprehensive traffic forecasting in cloud computing, in: INFOCOM, 2014 Proceed-
ings IEEE, pp. 19–27.

32] S. Even , A. Itai , A. Shamir , On the complexity of time table and multi-commodity
flow problems, in: Foundations of Computer Science, 1975., 16th Annual Symposium
on, IEEE, 1975, pp. 184–193 .

33] P. Raghavan , C.D. Tompson , Randomized rounding: a technique for provably good
algorithms and algorithmic proofs, Combinatorica 7 (4) (1987) 365–374 .

34] P. L. balancing with data plane resource constraints using commod-
ity SDN switches (extended version), (https://github.com/haiporwang/
super- disco/blob/haiporwang- patch- 1/LB- SDN(5).pdf).

35] M.Y.O. Network, Ospf network design solutions(2003).
36] S. Sahni , Approximate algorithms for the 0/1 knapsack problem, J. ACM (JACM) 22

(1) (1975) 115–124 .
37] N. Dukkipati , N. McKeown , Why flow-completion time is the right metric for con-

gestion control, ACM SIGCOMM Comput. Commun. Rev. 36 (1) (2006) 59–62 .
38] D. Zats , T. Das , P. Mohan , D. Borthakur , R. Katz , DeTail: reducing the flow comple-

tion time tail in datacenter networks, in: Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication, ACM, 2012, pp. 139–150 .

39] O. vSwitch: open virtual switch., (http://openvswitch.org/).
40] R.S. Framework, (http://osrg.github.io/ryu/).
41] W. Bai , L. Chen , K. Chen , H. Wu , Enabling {ECN} in multi-service multi-queue data

centers, in: 13th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 16), 2016, pp. 537–549 .

42] W. Bai , L. Chen , K. Chen , D. Han , C. Tian , H. Wang , Information-agnostic flow
scheduling for commodity data centers, in: 12th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 15), 2015, pp. 455–468 .

43] T. N. T. from the Monash University, (http://www.ecse.monash.edu.au/twiki/bin/
view/InFocus/LargePacket-switchingNetworkTopologies).

Haibo Wang received B.E. degree in nuclear science in 2016
and Masters degree in computer science 2019, both from the
University of Science and Technology of China. He is currently
a Ph.D. student in Computer and Information Science and En-
gineering, University of Florida. His main research interest is
Internet traffic measurement, software defined networks, and
optical circuit scheduling. He is a student member of IEEE.

https://doi.org/10.1016/j.comnet.2020.107339
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0001
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0002
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0003
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0004
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0005
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0005
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0005
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0006
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0007
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0008
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0009
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0010
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0011
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0012
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0013
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0014
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0015
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0016
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0017
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0018
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0019
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0020
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0021
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0022
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0023
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0023
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0023
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0023
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0024
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0025
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0026
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0026
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0026
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0027
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0028
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0029
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0030
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0031
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0031
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0031
https://github.com/haiporwang/super-disco/blob/haiporwang-patch-1/LB-SDN(5).pdf
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0032
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0033
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0033
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0033
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0034
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0034
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0034
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0034
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0034
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0034
http://openvswitch.org/
http://osrg.github.io/ryu/
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0035
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0035
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0035
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0035
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0035
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0036
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0036
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0036
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0036
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0036
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0036
http://refhub.elsevier.com/S1389-1286(20)30527-2/sbref0036
http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies

H. Wang, H. Xu and C. Qian et al. Computer Networks 178 (2020) 107339

C

d

d

r

o

s

p

J

o

d

J

o

a

Hongli Xu is a professor in the School of Computer Science
and Technology at the University of Science and Technol-
ogy of China (USTC). He received his B.S. degree in Com-
puter Science from USTC in 2002. He received Ph.D degree in
Computer Software and Theory from USTC in 2007. He was
awarded the outstanding Youth Science Foundation of NSFC in
2018. He has won the best paper award or the best paper can-
didate in several famous conferences. He has published more
than 100 papers in famous journals and conferences, including
ToN, JSAC, TMC, TPDS, Infocom and ICNP, etc. He has also
held more than 30 patents. His main research interest is soft-
ware defined networks, edge computing and Internet ofThing.
He is a member of the IEEE.

hen Qian (M08) received the B.S. degree from Nanjing University in 2006, the M.Phil.
egree from The Hong Kong University of Science and Technology in 2008, and the Ph.D.
egree from The University of Texas at Austin in 2013, all in computer science. He is cur-
ently an Assistant Professor with the Department of Computer Engineering, University
f California at Santa Cruz. His research interests include computer networking, network
ecurity, and Internet of Things. He has authored over 60 research papers in highly com-
etitive conferences and journals. He is a member of the ACM.
uncheng Ge is a master student in the School of Software Engineering at the University
f Science and Technology of China. His research interests are in the areas of software
efined networking.

ianchun Liu is currently a Ph.D. student in the School of Computer Science and Technol-
gy at the University of Science and Technology of China. His research interests are in the
reas of software defined networking, network function virtualiztion and edge computing.

He Huang is a professor in the School of Computer Science
and Technology at Soochow University, Soochow, China. He
received the Ph.D. degree in Department of Computer Science
and Technology from University of Science and Technology
of China in 2011. His current research interests include spec-
trum auction, privacy preserving in auction, wireless sensor
networks, and algorithmic game theory. He is a member of
IEEE computer society, and a member of ACM.

	PrePass: Load balancing with data plane resource constraints using commodity SDN switches
	1 Introduction
	2 Background and motivation
	2.1 Load balancing with FTS constraint
	2.2 Switch computing capacity constraint
	2.3 Network uncertainties
	2.4 Load balancing with different flow granularities
	2.5 Let partial flows balance the load
	2.6 System workflow of PrePass

	3 Problem formulation
	3.1 Network model
	3.2 Definition of load-balancing with flow table size constraint (LB-FTS)

	4 Algorithm description
	4.1 Algorithm description
	4.2 Performance analysis
	4.3 Discussion
	4.3.1 Port statistics collection
	4.3.2 Dynamic flow routing
	4.3.3 Dealing with flow estimation deviation

	5 Algorithm description for the extended case
	5.1 Definition of load-balancing with maximum adjustable flows (LB-MDF)
	5.2 Algorithm description
	5.3 Performance analysis

	6 Performance evaluation
	6.1 Performance metrics and benchmarks
	6.2 System implementation and testing
	6.2.1 Implementation on the platform
	6.2.2 Experimental results

	6.3 Simulations
	6.3.1 Simulation setting
	6.3.2 Routing performance and the number of occupied flow entries
	6.3.3 Performance under traffic dynamics
	6.3.4 Running time of PrePass
	6.3.5 Performance for PrePassE

	7 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	Supplementary material
	References

