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A B S T R A C T

Federated learning (FL) has been widely used to train machine learning models over massive data in edge
computing. However, the existing FL solutions may cause long training time and/or high resource (e.g.,
bandwidth) cost, and thus cannot be directly applied for resource-constrained edge nodes, such as base stations
and access points. In this paper, we propose a novel communication-efficient asynchronous federated learning
(CE-AFL) mechanism, in which the parameter server will aggregate the local model updates only from a certain
fraction 𝛼, with 0 < 𝛼 < 1, of all edge nodes by their arrival order in each epoch. As a case study, we design
efficient algorithms to determine the optimal value of 𝛼 for two cases of CE-AFL, single learning task and
multiple learning tasks, under bandwidth constraints. We formally prove the convergence of the proposed
algorithm. We evaluate the performance of our algorithm with experiments on Jetson TX2, deep learning
workstation and extensive simulations. Both experimental results and simulation results on the classical models
and datasets show the effectiveness of our proposed mechanism and algorithms. For example, CE-AFL can
reduce the training time by about 69% while achieving similar accuracy, and improve the accuracy of the
trained models by about 18% under resource constraints, compared with the state-of-the-art solutions.
1. Introduction

With the rapid development of Internet of Things, a massive amount
of data are generated from physical worlds each day [1,2]. Under
traditional solutions, these data will be forwarded to the remote cloud
through core networks for training or processing, which will lead to
massive bandwidth consumption. As a result, it is increasingly attrac-
tive to encourage local data processing and push more computation
to the edge, also called edge computing [3]. It motivates the applica-
tion of federated learning (FL), which implements distributed machine
learning at the network edges [4–6].

As shown in Fig. 1, a federated learning system is usually composed
of one or more parameter servers (a server group) and a large number
of workers (e.g., edge nodes), following the typical parameter server
architecture [7]. Each parameter server is controlled by a manager and
maintains a partition of the globally shared parameters. For simplicity,
we assume one single parameter server, and the solution can be easily
extended to the case of multiple parameter servers. Each worker is re-
sponsible for computing local statistics such as gradients by training the
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local data, and communicates only with the parameter server. Specifi-
cally, workers will send the local updates to the parameter server, and
receive the global updated model from the parameter server. Since the
workers will expose not their training data but the trained model to
the parameter server, federated learning can efficiently protect users’
privacy.

To implement highly efficient federated learning in edge computing,
we should take into account the following constraints and factors.

• Resource Constraints: The bandwidth between edge nodes and
remote parameter servers is usually constrained [8]. However,
edge nodes may frequently forward and receive the updated mod-
els, which requires an enormous bandwidth cost [9]. For example,
the size of parameters in the AlexNet model is about 60M [10].
Given the bandwidth of 1GB, the network is easily congested
because of frequent transmission of local and global models.
Meanwhile, compared with the cloud platform, edge nodes are
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Fig. 1. Illustration of a typical parameter server architecture.
usually resource-constrained, such as computing capacity and
memory size.

• Data Imbalance: Due to device mobility, e.g., vehicular networks,
each edge node will process data from different and varied num-
bers of devices, which leads to data imbalance among edge nodes.
For example, the authors [11] have shown that the amount of
data on different edge nodes may vary from 10GB to 1TB in a
period of one day.

• Edge Uncertainty: Since edge nodes are usually deployed out-
door, some nodes may fail to work occasionally because of a
system crash, dead battery or network disconnection [12].

There are two main schemes for federated learning in edge comput-
ing. The first way is the synchronous scheme [13–15]. Specifically, on
receiving the trained (local) models from all specified edge nodes (or
workers), the parameter server will aggregate these local models and
send the updated global model to all the edge nodes in each epoch.
This scheme can guarantee the equivalence between the distributed
algorithm and the stand-alone algorithm [16]. However, it brings two
main disadvantages. (1) The training time of each epoch mainly de-
pends on the maximum training time among all edge nodes. Due to
data imbalance, nodes’ heterogeneity (e.g., CPU capacity, memory size),
and various network connections (4G, 5G or WiFi), the training time on
different edge nodes may be varied significantly, called straggler [17],
which leads to a longer even unacceptable model training time. (2) The
updated local models of all edge nodes will be frequently forwarded
to the parameter server(s) for aggregating in the synchronous scheme,
which will consume an enormous amount of network bandwidth.

The second way is asynchronous federated learning at the edge [18–
20], which allows partial (not all) workers to forward updated models
to the parameter server(s) for model aggregation in each epoch. Since
it does not require the parameter server to wait for local updates from
all edge nodes, this scheme can well deal with data imbalance and edge
dynamics compared with the synchronous scheme. However, these
works ignore the impact of limited resources on training performance,
and may require more epochs or more workers involving in each epoch,
which leads to massive bandwidth consumption or a longer training
time.

To better cope with the above constraints and factors, we propose
a communication-efficient asynchronous federated learning (CE-AFL)
mechanism, in which the parameter server will aggregate the updated
models from a certain fraction 𝛼 of all edge nodes by their arrival
order in each epoch. Note that the subset of local updates involved in
the global aggregation will be varied in different epochs, which will
be illustrated in Section 2.3. According to the theoretical analysis in
Section 2.4, the performance of training depends on the value of 𝛼.
Therefore, it is a critical challenge to determine the optimal value of 𝛼
according to resource constraints. The main contributions of this paper
are:
2

• We design a communication-efficient asynchronous federated
learning (CE-AFL) mechanism for edge computing, and formally
prove the convergence of CE-AFL.

• As a case study, we then propose efficient algorithms to determine
the optimal value of 𝛼 for two cases of CE-AFL, single learning
task and multiple learning tasks, so as to achieve less training time
under bandwidth constraints. We also prove the convergence of
the proposed algorithm.

• Extensive experiments on the classical models and datasets show
the effectiveness of our proposed mechanism and algorithms.
Specifically, our CE-AFL mechanism can reduce the training time
by about 69% and improve the accuracy of the trained models by
18% under resource constraints, compared with the state-of-the-
art solutions.

The rest of this paper is organized as follows. Section 2 introduces
some preliminaries, proposes the federated learning mechanism, gives
the convergence analysis, and formalizes the problem. Two efficient
algorithms for single learning task and multiple learning tasks are
proposed in Section 3. We report our simulation and experimental
results in Section 4. Section 5 discusses the related works. We conclude
the paper in Section 6.

2. Preliminaries

In this section, we introduce the concept of federated learning
(Section 2.1) and propose the novel federated learning mechanism
(Section 2.2). In Section 2.3, we illustrate CE-AFL through an example.
Then, we give the convergence analysis of CE-AFL (Section 2.4), and
describe the problem formulation (Section 2.5). For ease of description,
some key notations are listed in Table 1.

2.1. Federated Learning (FL)

2.1.1. The goal of FL
Federated learning enables training global models over distributed

datasets in resource-constrained edge computing. Ideally, the training
data from diverse users/devices result in improved representation and
generalization of machine learning models [6]. Each edge node, acting
as a worker, trains the model locally using its private data, while the pa-
rameter server aggregates the local updates from workers and sends the
global updated model to workers. To protect users’ privacy, the workers
do not expose their training data to the parameter server, commonly
located in a cloud [4], and instead only expose the trained local model.
Moreover, federated learning can handle non-I.I.D. (non-independently
identically distribution) training data which are massively distributed
in the edge computing [21].

For convenience, given a training sample 𝑞𝑖, its loss function is
denoted as 𝑓𝑖. Then, the loss function for  training samples is ex-
pressed as 𝑓 (𝑤) = 1 ∑ 𝑓 (𝑤), where 𝑤 denotes the parameter
 𝑖=1 𝑖
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Table 1
Key notations.

Symbol Semantics

𝑉 A set of edge nodes
𝛤𝑖 The local dataset on the edge node 𝑣𝑖
𝐷 The number of iterations in a local update
𝑇 The total number of training epochs until the training terminates
T The vector’s transposition
 The number of resource categories
𝜂 The learning rate
𝑛 The total number of edge nodes
𝑔𝑘 The consumption of resource 𝑘 for local updates on an edge node
𝑏𝑘 The consumption of resource 𝑘 for communication between a server

and a worker
𝐵𝑘 The total budget for each category of resource 𝑘
𝐿 A set of learning tasks
𝛼𝑗 A certain fraction of local updates that will be involved in the

global aggregation of learning task 𝑗 on the server
𝛷 The set of 𝛼𝑗 , with 𝑗 ∈ {1, 2,… , 𝐿}
𝑤̂𝐷 The model parameter after 𝐷 local updates
𝛽𝑡𝑖 Whether the local update of edge node 𝑣𝑖 is involved or not in the

epoch 𝑡
𝐹 (𝑤𝑇 ) The global loss function after 𝑇 epochs
𝐹 (𝑤∗) The optimal value of loss function 𝐹 (𝑤)

vector of model. As a result, the objective of federated learning can be
expressed as min𝑤∈𝑅𝑚 𝑓 (𝑤), where 𝑅𝑚 denotes the 𝑚-dimension real-
number space. We note that the problem structure can cover both the
simple models, e.g., linear or logistic regressions [22], support vector
machines (SVM) [23], and more complicated models, e.g., conditional
random fields or neural networks [10]. For  input–output pairs
{𝑥𝑖, 𝑦𝑖}𝑖=1, 𝑥𝑖 ∈ 𝑅𝑚 and 𝑦𝑖 ∈ 𝑅 or 𝑦𝑖 ∈ {−1, 1}, some typical examples
f 𝑓𝑖 include

• Linear regression: 𝑓𝑖(𝑤) = 1
2 (𝑥

T
𝑖 𝑤 − 𝑦𝑖)2, 𝑦𝑖 ∈ 𝑅

• Logistic regression: 𝑓𝑖(𝑤) = − log(1 + exp(−𝑦𝑖𝑥T𝑖 𝑤)), 𝑦𝑖 ∈ {−1, 1}
• Support vector machines: 𝑓𝑖(𝑤) = max{0, 1 − 𝑦𝑖𝑥T𝑖 𝑤}, 𝑦𝑖 ∈ {−1, 1}

where T denotes the vector’s transposition. More complicated non-
convex problems arise in the context of neural networks, in which the
network makes prediction through a non-convex function of the feature
vector 𝑥𝑖, rather than via the linear-in-the-features mapping 𝑥T𝑖 𝑤. In
fact, the resulting loss function can still be written as 𝑓𝑖(𝑤) [24].

2.1.2. Optimization algorithms for FL
There are two fundamental algorithms to optimize the loss function

of FL.
Gradient Descent (GD) [25] is the classical first-order method.

The basic idea of GD is to minimize the first-order Taylor expansion
of the objective function in the current state, so as to approximately
optimize the objective function itself. Specifically, for a loss function
𝑓 , the following problem can be solved at the current state 𝑤:

min
𝑤

𝑓 (𝑤) ≈ min
𝑤

𝑓 (𝑤𝑡) + ∇𝑓 (𝑤𝑡)𝑇 (𝑤 −𝑤𝑡) (1)

The right part of Eq. (1) is linear with respect to the independent
variable 𝑤, and minimizes ∇𝑓 (𝑤𝑡)𝑇 (𝑤), which is opposite to the direc-
tion of the gradient ∇𝑓 (𝑤𝑡). Therefore, the updating rule of gradient
descent is as follows

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑓 (𝑤𝑡) (2)

where 𝜂 is the step size, also known as the learning rate.
Stochastic Gradient Descent (SGD) [26] is used to sample the

training data randomly, and its updating formula is

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡∇𝑓𝑖𝑡
(

𝑤𝑡
)

(3)

where 𝑖𝑡 is the data label of random sampling in the 𝑡th iteration.
The gradient obtained from random sampling data with playback is
an unbiased estimation of the gradient by all data, i.e., E ∇𝑓 (𝑤 ) =
3

𝑖𝑡 𝑖𝑡 𝑡
Algorithm 1 Communication-Efficient Asynchronous FL (CE-AFL)
1: for each epoch 𝑡 ∈ {1, 2, ..., 𝑇 } do
2: Processing at the Parameter Server
3: if the resource constraints are satisfied then
4: while No. of received local updates < 𝛼 ⋅ 𝑛 do
5: Waiting for local updates from workers
6: Aggregating the local models by their arrival order
7: Compute the global loss 𝐹 (𝑤) according to Eq. (5)
8: Distribute the updated global model 𝑤 to the workers
9: Update the budgets 𝐵𝑘 for each category of resource 𝑘
0: Processing at the Edge Node 𝑣𝑖
1: while Has sent local update to server and No global model is

received do
2: Waiting for the updated global model
3: for each local update 𝑑 ∈ {1, 2, ..., 𝐷} do
4: Update the local model: 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡∇𝑓𝑖𝑡

(

𝑤𝑡
)

5: Push local update to the server
6: Return the final model 𝑤 and loss function 𝐹 (𝑤)

∇𝑓 (𝑤𝑡). What is more, since only one sample is randomly selected in
ach training epoch, the computation load will be greatly reduced.
omparing two algorithms, this paper adopts SGD, which is a natural
lternative to GD and can greatly improve learning efficiency with less
omputing time for sampling data.

.2. Communication-efficient asynchronous FL

Assume that there is a set of edge nodes  = {𝑣1, 𝑣2,… , 𝑣𝑛}, with
| = 𝑛 > 2, in the edge computing system. Each edge node trains the
odel over a local dataset 𝛤𝑖 with its size |𝛤𝑖|, 𝑖 ∈ {1, 2,… , 𝑛}. For each
ode 𝑣𝑖, the loss function on the local dataset 𝛤𝑖 is

𝑖(𝑤) = 1
|𝛤𝑖|

∑

𝑞𝑗∈𝛤𝑖

𝑓𝑗 (𝑤) (4)

In this section, we propose the communication-efficient
asynchronous federated learning (CE-AFL) mechanism, which is for-
mally described in Algorithm 1. Similar to the synchronous and asyn-
chronous schemes, CE-AFL also consists of training epochs. Let variable
𝑇 denotes the total number of training epochs until the training
terminates. One global update (model aggregation) will be performed
in each epoch. Assume that there are 𝐷(≥ 1) local updates (iterations)
between two consecutive global updates. Let 𝛼 ∈ { 1

𝑛 ,
2
𝑛 ,… , 1} be a

raction of local model updates from all edge nodes for global model
ggregation on the parameter server in each epoch 𝑡 ∈ {1,… , 𝑇 }.
n receiving local updated models from arbitrary 𝛼 ⋅ 𝑛 workers in an
poch, the parameter server will perform the model aggregation by
heir arrival order and derive the updated global model (Line 3–7).
hen, the parameter server distributes the global model to the workers
ave already sent local updates to the server (Line 8) and updates the
esource budgets (Line 9). On the edge node side (Line 11–15), on
eceiving the global model, the worker will perform several updates
or the local model, and then push the updated local model to the
arameter server for model aggregation. After 𝑇 epochs, the global loss
unction 𝐹 (𝑤𝑇 ) of the training model is

(𝑤𝑇 ) =

∑𝑛
𝑖=1

∑

𝑞𝑗∈𝛤𝑖 𝛽
𝑇
𝑖 𝑓𝑗 (𝑤

𝑇 )
∑𝑛

𝑖=1 𝛽
𝑇
𝑖 |𝛤𝑖|

=
∑𝑛

𝑖=1 𝛽
𝑇
𝑖 |𝛤𝑖|𝐹𝑖(𝑤𝑇 )

∑𝑛
𝑖=1 𝛽

𝑇
𝑖 |𝛤𝑖|

(5)

where 𝛽𝑡𝑖 is a binary variable to indicate whether the local update
of edge node 𝑣𝑖 is involved or not in the epoch 𝑡. Thus, it follows
∑𝑛

𝑖=1 𝛽
𝑡
𝑖 = 𝛼 ⋅ 𝑛,∀𝑡 ∈ {1,… , 𝑇 }. The whole training process will continue

until the resource constraints are violated or the global convergence
is reached. That is, 𝐹 (𝑤𝑇 ) − 𝐹 (𝑤∗) < 𝜀, where 𝜀 is an arbitrary small
positive value, and 𝑤∗ is the optimal solution for the loss function 𝐹 (𝑤).
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Fig. 2. Illustration of synchronous FL and CE-AFL. Different colors (light gray and dark orange) denote the local and global updates, respectively. Given a time length, there are
2 and 4 global updates for the synchronous scheme (left plot) and CE-AFL (right plot). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
2.3. Illustration of CE-AFL

We give an example in Fig. 2 for better illustration of CE-AFL.
Assume that there are one parameter server and ten workers in the
edge computing system. Due to some reasons (e.g., unavailability),
the existing works [13–15] usually selects partial workers for model
training tasks. Thus, four workers (#1-#4) are selected to participate
in the model training task here. This figure shows the local (light gray)
and global (dark orange) updates of both the synchronous scheme and
CE-AFL with a fixed-length time period. For the synchronous scheme in
the left plot, only after the parameter server receives all local updates
from four workers, it will perform model aggregation to derive the
updated global model. When the workers receive the global model, they
will continue to train with local data. By the left plot, there are only
two global model updates in the synchronous scheme.

In CE-AFL, let 𝛼 = 1
2 . In other words, on receiving local updates

from arbitrary two workers, the parameter server will perform the
global update, as shown in the right plot of Fig. 2. In practice, the
data and resources (e.g., computing capacity and bandwidth budget)
on the workers are always time-varying. Thus, the subset of local
updates involved in the global update will be varied in different epochs.
For example, the parameter server aggregates the local updates from
workers #1 and #2 in the first epoch, and from workers #2 and #4 in
the second epoch. Note that the local updated model will be aggregated
in the next global update if the server receives the update during the
current aggregation. Given a fixed time period, there are four global
updates in CE-AFL (right plot), and only two global updates in the
synchronous scheme (left plot). Thus, CE-AFL will perform more global
updates and converge faster than the synchronous scheme with the
same time budget constraint.

Note that our proposed CE-AFL mechanism may suffer from another
problem, delayed update. For example, when worker #3 sends its local
updated model to the server for the global model aggregation at the
first time, the server has aggregated the local updated models from
workers #1, #2, and #4 at time points 𝑡1 and 𝑡2. We adopt the delay
compensation mechanism [27] to alleviate this problem. In Fig. 2, we
use 𝑀𝐺 to denote the current global model and 𝑀𝑖,∀𝑖 ∈ {1,… , 4}, to
denote the latest local updated model from worker 𝑖. These models will
be recorded on the server to perform delay compensation for outdated
models. For example, considering a time point 𝑡 between 𝑡2 and 𝑡3,
worker #1 has sent the local updated model to the server only once,
while the server has performed two global model aggregations. Then,
the staleness of worker #1 is the gap between the number of global
updates and the number of local model updates, e.g., here 2 − 1 = 1.
After the server receives the local model from worker #1 twice, the
model 𝑀1 will be updated with decay coefficient 𝜍, with 0 < 𝜍 < 1, i.e.,
𝑀1 = 𝜍𝑥 ⋅𝑀1+(1−𝜍𝑥)⋅𝑀𝐺, where 𝑥 denotes the staleness of worker #1.
By this way, the impact of the outdated models can be alleviated. Note
4

that how to determine the coefficient 𝜍 is not the focus of this paper,
and we set the value of 𝜍 according to [27] in the evaluation.

Besides, we give an example to show how our proposed solution
solves the problem of edge uncertainty. As shown in Fig. 3, the pa-
rameter server cannot receive local updates from worker #4 because
of system crash or network disconnection. Thus, there is no global
model aggregation in the synchronous scheme (left plot). The param-
eter server perform global update after receiving local updates from
worker #1 and #2 (𝛼 = 1

2 ) in the first epoch, and worker #2 and
#3 in the second epoch. Even though we have not received the local
model update from the worker #4, CE-AFL (right plot) still has three
global updates. Thus, our proposed solution can effectively solve the
edge uncertainty problem.

2.4. Convergence analysis

To analyze the feasibility of the proposed mechanism for model
training, we prove that CE-AFL can achieve a constant convergence
bound. We first make the following three assumptions [20].

Assumption 1 (Smoothness). Let 𝐿 > 0. The loss function 𝑓 is 𝐿-smooth
w.r.t. the model parameter if for ∀𝑤1, 𝑤2,

𝑓 (𝑤2) − 𝑓 (𝑤1) ≤ ⟨∇𝑓 (𝑤1), 𝑤2 −𝑤1⟩ +
𝐿
2
‖𝑤2 −𝑤1‖

2 (6)

Assumption 2 (Strong Convexity). Let 𝜇 ≥ 0. The loss function 𝑓 is
𝜇-strongly convex if ∀𝑤1, 𝑤2,

𝑓 (𝑤2) − 𝑓 (𝑤1) ≥ ⟨∇𝑓 (𝑤1), 𝑤2 −𝑤1⟩ +
𝜇
2
‖𝑤2 −𝑤1‖

2 (7)

Note that if 𝜇 = 0, 𝑓 is convex, i.e.

𝑓 (𝑤2) − 𝑓 (𝑤1) ≥ ⟨∇𝑓 (𝑤1), 𝑤2 −𝑤1⟩ (8)

This assumption can be satisfied for models with convex function,
e.g., linear regression and SVM.

Assumption 3 (Bounded Gradient Variance). The variance of stochastic
gradients at each edge node is bounded: E‖∇𝑓 (𝑤; 𝑞) − ∇𝐹 (𝑤)‖2 ≤
 ,∀𝑤 ∈ 𝑚, 𝑞 ∈ 𝛤𝑖, 𝑖 ∈ {1,… , 𝑛}, where  is a positive number.

Assumption 4 (Existence of Global Optimization). Assume that there
exists at least one solution, denoted as 𝑤∗, that can achieve the global
minimum of the loss function 𝑓 (𝑤).

CE-AFL will perform 𝑇 epochs until the global convergence is
achieved. In each epoch, 𝐷 local updates will be performed on an
edge node. We first derive the convergence bound of each local update
(Theorem 5). Then, we prove the convergence of model training at each
epoch 𝑡 and the convergence bound after 𝑇 epochs (Theorem 6).
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Fig. 3. Illustration of how CE-AFL handles edge uncertainty. Left plot: synchronous scheme; right plot: CE-AFL.
Theorem 5. Assume that the global loss function 𝐹 is 𝐿-smooth and 𝜇-
strongly convex, and each worker executes 𝐷 local updates before reporting
the updated model to the parameter server. When all the following three
conditions are satisfied:

• 𝜂 < 1
𝐿

• 𝜂𝜇 > 1 − 𝐷
√

1
4𝑛

• 𝐹 (𝑤0) − 𝐹 (𝑤∗) > 𝐷𝜂
4(1−𝜂𝜇)𝐷

we have
⎧

⎪

⎨

⎪

⎩

2𝛼𝑛(1 − 𝜂𝜇)𝐷 ∈ (0, 1)

E[𝐹 (𝑤̂𝐷) − 𝐹 (𝑤∗)] ≤ (1 − 𝜂𝜇)𝐷[𝐹 (𝑤0) − 𝐹 (𝑤∗)] + 𝐷𝜂
2

where 𝑤̂𝐷 denotes the model parameter after 𝐷 local updates and 𝑤0 is the
initial model parameter.

Proof. We first consider the convergence analysis of the 𝐷 local
updates. For each local update 𝑑 ∈ {1,… , 𝐷}, by the assumptions of
smoothness and strong convexity, we have

E[𝐹 (𝑤̂𝑑 ) − 𝐹 (𝑤∗)]

≤ 𝐹 (𝑤̂𝑑−1) − 𝐹 (𝑤∗) − 𝜂E[⟨∇𝐹 (𝑤̂𝑑−1),∇𝑓 (𝑤̂𝑑−1; 𝑞𝑑 )]

+
𝐿𝜂2

2
E[‖∇𝑓 (𝑤̂𝑑−1; 𝑞𝑑 )‖

2]

≤ 𝐹 (𝑤̂𝑑−1) − 𝐹 (𝑤∗) −
𝜂
2
‖∇𝐹 (𝑤̂𝑑−1)‖2

+
𝜂
2
E[‖∇𝐹 (𝑤̂𝑑−1) − ∇𝑓 (𝑤̂𝑑−1; 𝑞𝑑 )‖

2]

≤ 𝐹 (𝑤̂𝑑−1) − 𝐹 (𝑤∗) −
𝜂
2
‖∇𝐹 (𝑤̂𝑑−1)‖2

+
𝜂
2

(⊳ E‖∇𝑓 (𝑤; 𝑞) − ∇𝐹 (𝑤)‖2 ≤ )

≤ 𝐹 (𝑤̂𝑑−1) − 𝐹 (𝑤∗) − 𝜂𝜇[𝐹 (𝑤̂𝑑−1) − 𝐹 (𝑤∗)]

+
𝜂
2

(⊳ 𝐹 (𝑤) ≤ 𝐹 (𝑤∗) + 1
2𝜇

‖∇𝐹 (𝑤)‖2,∀𝑥)

≤ (1 − 𝜂𝜇)[𝐹 (𝑤̂𝑑−1) − 𝐹 (𝑤∗)] +
𝜂
2

(9)

We have derived the convergence result of each local update 𝑑 ∈
{1,… , 𝐷}. By telescoping and taking the total expectation, after 𝐷 local
updates, we have

E[𝐹 (𝑤̂𝐷) − 𝐹 (𝑤∗)]

≤ (1 − 𝜂𝜇)[𝐹 (𝑤̂𝐷−1) − 𝐹 (𝑤∗)] +
𝜂
2

≤ (1 − 𝜂𝜇)[(1 − 𝜂𝜇)[𝐹 (𝑤̂𝐷−2) − 𝐹 (𝑤∗)] +
𝜂
2

] +
𝜂
2

...... (Telescoping by Eq.(9))

≤ (1 − 𝜂𝜇)𝐷[𝐹 (𝑤0) − 𝐹 (𝑤∗)] +
𝜂
2

𝐷
∑

𝑑=1
(1 − 𝜂𝜇)𝑑−1

≤ (1 − 𝜂𝜇)𝐷[𝐹 (𝑤0) − 𝐹 (𝑤∗)] +
𝜂 1 − (1 − 𝜂𝜇)𝐷
5

2 1 − (1 − 𝜂𝜇)
≤ (1 − 𝜂𝜇)𝐷[𝐹 (𝑤0) − 𝐹 (𝑤∗)] +
𝜂
2

𝐷𝜂𝜇
1 − (1 − 𝜂𝜇)

(⊳ 𝜂𝜇 ≤ 1, 1 − (1 − 𝜂𝜇)𝐷 ≤ 𝐷𝜂𝜇)

≤ (1 − 𝜂𝜇)𝐷[𝐹 (𝑤0) − 𝐹 (𝑤∗)] +
𝐷𝜂
2

(10)

On the parameter server side, it will perform global model aggre-
gation after receiving 𝛼 ⋅ 𝑛 updated models at the epoch 𝑡. It follows
𝑤𝑡 = 1

𝛼𝑛
∑𝛼𝑛

𝑖=1 𝑤̂
𝐷
𝑖 , where 𝑤̂𝐷

𝑖 denotes the local updated model in the
worker node 𝑣𝑖 after 𝐷 local updates.

Theorem 6. After 𝑇 epochs, the convergence bound of CE-AFL is

E[𝐹 (𝑤𝑇 ) − 𝐹 (𝑤∗)] ≤ 𝜏[𝐹 (𝑤0) − 𝐹 (𝑤∗)] + (1 − 𝜏)
𝐷𝜂
4𝜑

where 𝜑 = (1 − 𝜂𝜇)𝐷, and 𝜏 = (2𝛼𝑛𝜑)𝑇 .

Proof. According to the definition of 𝑤𝑡, for each global update at
epoch 𝑡 ∈ {1,… , 𝑇 }, we have

E[𝐹 (𝑤𝑡) − 𝐹 (𝑤∗)]

≤ 1
𝛼𝑛

𝛼𝑛
∑

𝑖=1
[𝐹 (𝑤̂𝐷

𝑖 ) − 𝐹 (𝑤∗)]

≤ 1
𝛼𝑛

𝛼𝑛
∑

𝑖=1
[(1 − 𝜂𝜇)𝐷(𝐹 (𝑤0

𝑖 ) − 𝐹 (𝑤∗)) +
𝐷𝜂
2

]

≤ 𝛼𝑛[(1 − 𝜂𝜇)𝐷(𝐹 (𝑤0) − 𝐹 (𝑤∗)) +
𝐷𝜂
2

]

≤ 𝛼𝑛[(1 − 𝜂𝜇)𝐷(𝐹 (𝑤0) − 𝐹 (𝑤𝑡−1) + 𝐹 (𝑤𝑡−1) + 𝐹 (𝑤∗)) +
𝐷𝜂
2

]

≤ 𝛼𝑛(1 − 𝜂𝜇)𝐷(𝐹 (𝑤0) − 𝐹 (𝑤𝑡−1))

+ 𝛼𝑛(1 − 𝜂𝜇)𝐷(𝐹 (𝑤𝑡−1) − 𝐹 (𝑤∗)) +
𝛼𝑛𝐷𝜂

2
≤ 𝛼𝑛(1 − 𝜂𝜇)𝐷(𝐹 (𝑤𝑡−1) − 𝐹 (𝑤∗))

+ 𝛼𝑛(1 − 𝜂𝜇)𝐷(𝐹 (𝑤𝑡−1) − 𝐹 (𝑤∗)) + 𝛼
𝑛𝐷𝜂

2

≤ (2𝛼𝑛(1 − 𝜂𝜇)𝐷)[𝐹 (𝑤𝑡−1) − 𝐹 (𝑤∗)] + 𝛼
𝑛𝐷𝜂

2
(11)

Then, the convergence bound after 𝑇 training epochs can be derived
as follows

E[𝐹 (𝑤𝑇 ) − 𝐹 (𝑤∗)]

≤ (2𝛼𝑛(1 − 𝜂𝜇)𝐷)[𝐹 (𝑤𝑇−1) − 𝐹 (𝑤∗)] + 𝛼
𝑛𝐷𝜂

2
...... (Telescoping by Eq.(11))

≤ (2𝛼𝑛(1 − 𝜂𝜇)𝐷)𝑇 [𝐹 (𝑤0) − 𝐹 (𝑤∗)] +
(1 − (2𝛼𝑛(1 − 𝜂𝜇)𝐷)𝑇 )𝛼𝑛𝐷𝜂

2(1 − (2𝛼𝑛(1 − 𝜂𝜇)𝐷))

(⊳ 𝜂𝜇 > 1 − 𝐷
√

1∕4𝑛, 2𝛼𝑛(1 − 𝜂𝜇)𝐷 < 1
2
)

≤ (2𝛼𝑛(1 − 𝜂𝜇)𝐷)𝑇 [𝐹 (𝑤0) − 𝐹 (𝑤∗)] +
(1 − (2𝛼𝑛(1 − 𝜂𝜇)𝐷)𝑇 )𝛼𝑛𝐷𝜂

4𝛼𝑛(1 − 𝜂𝜇)𝐷

≤ (2𝛼𝑛(1 − 𝜂𝜇)𝐷)𝑇 [𝐹 (𝑤0) − 𝐹 (𝑤∗)] +
𝐷𝜂

4(1 − 𝜂𝜇)𝐷
(1 − (2𝛼𝑛(1 − 𝜂𝜇)𝐷)𝑇 )
(12)
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For simplicity, let 𝜑 = (1 − 𝜂𝜇)𝐷. We write the above equation as
follows:
E[𝐹 (𝑤𝑇 ) − 𝐹 (𝑤∗)]

≤ 𝜏[𝐹 (𝑤0) − 𝐹 (𝑤∗)] + (1 − 𝜏)
𝐷𝜂
4𝜑

(13)

where 𝜏 = (2𝛼𝑛𝜑)𝑇 □

We note that the convergence bound (i.e., the optimality gap),
(𝑤𝑇 ) − 𝐹 (𝑤∗), is related to the value of 𝛼 and the number of epochs

𝑇 by Eq. (13). Furthermore, the optimality gap can be reduced when
both 𝛼 and 𝑇 become larger, which requires massive resource cost.
Thus, it is a challenge to determine the optimal values of 𝛼 and 𝑇
for the optimization of training performance (e.g., training time) under
resource constraints.

2.5. Problem formulation

We define the asynchronous federated learning with resource con-
straints (AFL-RC) problem. Specifically, we will determine the values
of 𝛼 and 𝑇 for a learning task so as to minimize the training time with
resource constraints. It needs to consume several categories of resources
(e.g., network bandwidth, CPU, etc..) during model training, including
the local updates on the workers, the model exchanging between work-
ers and parameter servers, and the global updates on the parameter
servers. Here we mainly consider the static scenario, in which the edge
nodes are fixed, such as base station or surveillance camera, etc.. We
will discuss the problem of dynamic scenario in Section 6. Assume that
there are totally  different categories of resources. Let 𝑔𝑘 denotes
the consumption of resource 𝑘 ∈ {1, 2,… ,} for local updates on an
edge node. Meanwhile, 𝑏𝑘 denotes the consumption of resource 𝑘 for
the model exchanging once between an edge node and a parameter
server. Once the global model has been updated, the server distributes
the updated model to all workers. Thus, for each resource category 𝑘,
the total resource consumption of local updates and global updates at
all nodes after 𝑇 epochs is 𝑇 ⋅𝑛 ⋅𝑔𝑘 and 𝑇 ⋅ (𝛼+1) ⋅𝑛 ⋅𝑏𝑘, respectively. Let
𝐵𝑘 denotes the total budget for each resource category 𝑘. Accordingly,
we formulate the AFL-RC problem as follows: min𝑇∈{1,2,3,…} 𝐹 (𝑤𝑇 )

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

𝑇 ⋅ 𝑛 ⋅ [𝑔𝑘 + 2𝛼 ⋅ 𝑏𝑘] ≤ 𝐵𝑘, ∀𝑘

𝛼 ∈ { 1
𝑛 ,

2
𝑛 ,… , 1}

(14)

The first set of inequalities expresses the constraints of each resource
ategory 𝑘 ∈ {1,… ,} during totally 𝑇 training epochs. The second
et of equations denotes the bound of variable 𝛼. The objective of the
FL-RC problem is to minimize the global loss function 𝐹 (𝑤𝑇 ).

By the first set of constraints in Eq. (14), we find that two pa-
ameters 𝛼 and 𝑇 are dependent. For simplicity, we consider how to
etermine the optimal value of 𝛼 for two cases in edge computing. One
s the case in which there is a single learning task. The other is the
ore general case in which there are multiple learning tasks. Then, the

alue of parameter 𝑇 can be accordingly determined.

. A case study of bandwidth optimization

In this section, we design efficient algorithms to determine the
roper value of 𝛼 so as to achieve convergence with less training time
nder the bandwidth constraint. Here, we mainly consider the band-
idth resource as the most important resource consumption, which is
lways the communication bottleneck in edge computing [8]. We first
onsider the scenario in which there is only single training task, and can
ccurately achieve the optimal value of 𝛼 for parameter aggregation
Section 3.1). Then, we consider the scenario of multiple tasks for
odel training (Section 3.2). In order to determine the value 𝛼 of each

ask, we propose an algorithm called SQP-PA to solve the problem, and
6

rove the global convergence of the algorithm.
3.1. Algorithm for a single learning task

We consider a simple case of only single learning task in edge com-
puting. The objective of Eq. (14) is equivalent to minimizing 𝐹 (𝑤𝑇 ) −
(𝑤∗). Furthermore, we use the upper bound in Eq. (13) as an approx-

mation of 𝐹 (𝑤𝑇 ) − 𝐹 (𝑤∗), yielding the new objective as follows:
min𝛼∈{ 1

𝑛 ,…,1}(2𝛼𝑛𝜑)
𝑇 [𝐹 (𝑤0) − 𝐹 (𝑤∗)] + [1 − (2𝛼𝑛𝜑)𝑇 ]𝐷𝜂

4𝜑
By Theorem 5, since 2𝛼𝑛𝜑 < 1, it is easy to see that the objective

function decreases with the increasing value of 𝑇 . According to the first
inequality in Eq. (14), the optimal solution of 𝑇 is ⌊min𝑘

𝐵𝑘
𝑛⋅[𝑔𝑘+(𝛼+1)⋅𝑏𝑘]

⌋.
o simplify the analysis, we ignore the rounding operations and sub-
titute 𝑇 ≈ min𝑘

𝐵𝑘
𝑛⋅[𝑔𝑘+(𝛼+1)⋅𝑏𝑘]

= max𝑘
𝑛⋅[𝑔𝑘+(𝛼+1)⋅𝑏𝑘]

𝐵𝑘
into the objective

function. Under this situation, the local update does not require any
bandwidth cost, that is, 𝑔𝑘 = 0, ∀𝑘 ∈ {1, 2,… , 𝐾}. Let 𝐵 denotes
the bandwidth constraint for a learning task. According to the above
approximation, we reformulate the AFL-RC problem as

min𝛼∈{ 1
𝑛 ,…,1} 𝐻(𝛼)

.𝑡.

⎧

⎪

⎨

⎪

⎩

2𝛼 ⋅ 𝑛 ⋅ 𝑏 ⋅ 𝑇 ≤ 𝐵,

𝛼 ∈ { 1
𝑛 ,

2
𝑛 ,… , 1}

(15)

where

𝐻(𝛼) = (2𝛼𝑛𝜑)
(1+𝛼)𝑛𝑏

𝐵 [𝐹 (𝑤0) − 𝐹 (𝑤∗)] + [1 − (2𝛼𝑛𝜑)
(1+𝛼)𝑛𝑏

𝐵 ]
𝐷𝜂
4𝜑

(16)

We can derive the optimal 𝛼∗ = argmin𝛼∈{ 1
𝑛 ,

2
𝑛 ,…,1} 𝐻(𝛼).

heorem 7. When there are sufficient bandwidth resource, i.e., 𝐵 → ∞,
the convergence bound can always be achieved during the model training.

Proof. If 𝐵 → ∞, it follows (1+𝛼)𝑛𝑏
𝐵 → 0. Accordingly, we can derive

hat (2𝛼𝑛𝜑)
(1+𝛼)𝑛𝑏

𝐵 ≈ 1. Combining with Eq. (16), 𝐻(𝛼) ≈ 𝐹 (𝑤0) −𝐹 (𝑤∗),
hich is a constant value. Thus, the convergence can always be reached
o matter the value of 𝛼. □

In order to determine the optimal value of 𝛼 for function 𝐻 with
bandwidth resource constraint, we consider the monotonicity of func-
tion 𝑒𝐺(𝛼) = (2𝛼𝑛𝜑)

(1+𝛼)𝑛𝑏
𝐵 = 𝑒

(1+𝛼)𝑛𝑏
𝐵 ln(2𝛼𝑛𝜑), where 𝐺(𝛼) = (1+𝛼)𝑛𝑏

𝐵 ln(2𝛼𝑛𝜑).
Since the exponential function 𝑒𝑥 is monotonically increasing, we can
easily derive the optimal value by solving the objective function 𝐺. We
onstruct an auxiliary function ℎ(𝛼) = 𝑛𝑏

𝐵 [ln(2𝛼𝑛𝜑) + 1
𝛼 + 1] according

to 𝐺′(𝛼). Then ℎ′(𝛼) = 𝑛𝑏
𝐵 ( 1𝛼 − 1

𝛼2
) < 0 with 𝛼 ∈ [ 1𝑛 , 1]. Thus ℎ(𝛼)

is monotonically decreasing with 𝛼. In the following, assume that the
two conditions in Theorem 5 are satisfied. We consider three cases of
function ℎ(𝛼).

heorem 8. Assume that ℎ(𝛼) > 0, with 𝛼 ∈ [ 1𝑛 , 1]. If 𝜑 > 𝑒−2

2𝑛 , we have
𝛼∗ = 1

𝑛 .

Proof. To complete the proof, we first relax 𝛼 to a continuous interval,
.e., 𝛼 ∈ [ 1𝑛 , 1]. Then, we obtain the value of 𝛼 ∈ { 1

𝑛 ,
2
𝑛 ,… , 1} by using

he randomized rounding method [28].
Due to 𝜑 > 𝑒−2

2𝑛 , we have

ℎ(1) = 𝑛𝑏
𝐵

[ln(2𝑛𝜑) + 2] > 0 (17)

Besides, as ℎ(𝛼) is decreasing with 𝛼 ∈ [ 1𝑛 , 1], it follows

ℎ(𝛼) = 𝑛𝑏
𝐵

[ln(2𝛼𝑛𝜑) + 1
𝛼
+ 1] > 0 ⟹ 𝐺′(𝛼) > 0 (18)

Thus, the minimum value of function 𝐺 is 𝐺( 1𝑛 ). We can conclude
that 𝛼∗ = 1

𝑛 , if 𝜑 > 𝑒−2

2𝑛 . □

Theorem 9. Assume that ℎ(𝛼) < 0, with 𝛼 ∈ [ 1𝑛 , 1]. If 𝜑 < 𝑒−(𝑛+1)

2 , we have
𝛼∗ = 1.
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Algorithm 2 SQP based Proportion Assignment (SQP-PA)
1: Step 1. Initialization.
2: Let 𝛷0 ∈ 𝛩𝑚, 𝐸0 ∈ 𝛩𝑚×𝑚, 𝐵′ = 𝐵.
3: Initialize a symmetric positive definite matrix 𝑈 .
4: Step 2. Computing the Search Direction.
5: Compute (𝜆𝑟,𝑟) by Eq. (22)
6: If (𝜆𝑟,𝑟) = (0, 0) then stop.
7: Compute 𝑗𝑟 ,𝑗,𝑗𝑟 , 𝑈 by Eq. (23).
8: If the matrix 𝑈 is of full rank, then obtain 𝑠̃𝑟 by solving 𝑈T𝑠 =

−‖𝑟
‖

𝜋𝑞 −𝑗𝑟 (𝛷
𝑟 +𝑟), where 𝑞 = (1, ..., 1)T.

9: If ‖𝑠̃𝑟‖ > ‖𝑟
‖ or the matrix 𝑈 is not of full rank,

10: then ̃𝑟 = 0; else, ̃𝑟 = 𝑠̃𝑟.
11: Step 3. Start Nonmonotone Line Search.
12: Step 4. Performing Updates.
13: Compute a new symmetric definite positive matrix 𝐸𝑟+1.
14: 𝛷𝑟+1 = 𝛷𝑟 + 𝛿𝑟𝑟 + 𝛿2𝑟 ̃

𝑟, 𝑟 = 𝑟 + 1.
15: Update resource budget 𝐵′

16: If 𝐵′ ≤ 0, then stop; else go back to Step 2.

Since the proof is similar to that of Theorem 8, we omit the detailed
roof here.

heorem 10. Assume that ℎ(𝛼) = 0,∃𝛼 ∈ ( 1𝑛 , 1). If 𝑒−(𝑛+1)

2 ≤ 𝜑 ≤ 𝑒−2

2𝑛 ,

e have 𝛼∗ ≈ 3
√

− 
2 + + 3

√

− 
2 −, where  =

√

( 2 )
2 + ( 3 )

3,  =
−27𝑛𝜑−23
54𝑛3𝜑3 , = − 13

12𝑛2𝜑2 .

roof. Since 𝛼∗ ∈ ( 1𝑛 , 1), we make Taylor approximate expansion [29]
f ln(2𝛼𝑛𝜑) at 𝛼 = 1

2𝑛𝜑 , and only focus on the former two items of
xpansion, i.e., the first and second order. Combining the two expanded

items, we have

ℎ(𝛼) = 𝑛𝑏
𝐵

[ln(2𝛼𝑛𝜑) + 1
𝛼
+ 1]

≈ 𝑛𝑏
𝐵

[−2𝑛2𝜑2𝛼2 + 4𝑛𝜑𝛼 + 1
𝛼
− 1

2
] = ℎ̃(𝛼) = 0 (19)

Then, we derive the value of 𝛼′ so that ℎ̃(𝛼′) = 0. If 1
𝑛 ≤ 𝛼 ≤ 𝛼′, ℎ̃(𝛼) ≤

and 𝛼′ ≤ 𝛼 ≤ 1, ℎ̃(𝛼) ≥ 0,∃𝛼. Thus, we derive that 𝐺(𝛼∗) = 𝐺(𝛼′)
nd 𝛼∗ = 𝛼′ ≈ 3

√

− 
2 + + 3

√

− 
2 −, where  =

√

( 2 )
2 + ( 3 )

3,
= −27𝑛𝜑−23

54𝑛3𝜑3 , and  = − 13
12𝑛2𝜑2 . □

.2. Algorithm for multiple learning tasks

In many practical scenarios, there are usually multiple simultaneous
earning tasks, e.g., machine translation, face recognition and speech
ecognition, on distributed edge nodes [30–32]. In this paper, we focus
ur attention on multiple independent learning tasks, while the case of
ultiple dependent learning tasks will be regarded as our future work.

Without loss of generality, we just consider the bandwidth resource
onstraint in the problem definition. When multiple learning tasks
= {𝑙1,… , 𝑙𝑚} are trained in edge computing, we will determine the

optimal value of parameter 𝛼𝑗 for each task 𝑙𝑗 so as to minimize the
maximum loss function of all learning tasks under resource constraints.
Intuitively, we expect to minimize the loss function of each task 𝑙𝑗
after 𝑇 epochs. That is min𝐹 (𝑤𝑇

𝑗 ). The objective function min𝐹 (𝑤𝑇
𝑗 ) for

the task 𝑙𝑗 is equivalent to minimizing the gap between the loss value
𝐹 (𝑤𝑇

𝑗 ) at 𝑇 epochs and the optimal loss value 𝐹 (𝑤∗
𝑗 ), i.e., 𝐹 (𝑤𝑇

𝑗 )−𝐹 (𝑤∗
𝑗 ).

Furthermore, we use the upper bound in Eq. (13), i.e., E[𝐹 (𝑤𝑇
𝑗 ) −

𝐹 (𝑤∗
𝑗 )] ≤ (2𝛼𝑗𝑛𝜑)

𝑇𝑗 [𝐹𝑗 (𝑤0) − 𝐹𝑗 (𝑤∗)] + (1 − (2𝛼𝑗𝑛𝜑)
𝑇𝑗 )𝐷𝑗𝜂

4𝜑 , as an ap-
proximation of 𝐹 (𝑤𝑇

𝑗 )−𝐹 (𝑤∗
𝑗 ). Thus, the new objective for the learning

task 𝑙𝑗 is 𝐅(𝑗) = (2𝛼𝑗𝑛𝜑)
𝑇𝑗 [𝐹𝑗 (𝑤0) − 𝐹𝑗 (𝑤∗)] + (1 − (2𝛼𝑗𝑛𝜑)

𝑇𝑗 )𝐷𝑗𝜂
4𝜑 . Note

that we should minimize the maximum loss function of all learning
7

tasks under resource constraints, i.e., min𝛼𝑗′∈{ 1
𝑛 ,…,1} 𝐅(𝑗

′), where 𝑗′ =
rgmax𝑗∈{1,2,…,𝑚}(𝐅(𝑗)). Accordingly, the problem can be described as
ollows:

min𝛼𝑗′∈{ 1
𝑛 ,…,1} 𝐅(𝑗

′)

.𝑡.

⎧

⎪

⎨

⎪

⎩

∑

𝑗∈{1,…,𝑚} 2𝛼𝑗 ⋅ 𝑛 ⋅ 𝑏𝑗 ⋅ 𝑇𝑗 ≤ 𝐵

𝛼𝑗 ∈ { 1
𝑛 ,… , 1} ∀𝑗

(20)

𝑏𝑗 denotes the bandwidth cost for forwarding a global update of learn-
ing task 𝑙𝑗 to an edge node, and 𝐵 is the total bandwidth budget. Let
𝛷 be the set of 𝛼𝑗 ,∀𝑗 ∈ 𝐼 = {1,… , 𝑚}. For simplicity, we use 𝑗 (𝛷)
to denote the objective function for task 𝑙𝑗 , which can be described as
min𝛷 𝜃(𝛷) = max𝑗∈𝐼 𝑗 (𝛷). Besides, we use (𝛷) to denote the left part
of the first set of inequalities in Eq. (20). Let 𝑡 denote the left part of
the second set of equations in epoch 𝑡. Eq. (20) can be transformed into
a smooth constrained optimization problem as follows

min 𝜆

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑗 (𝛷) ≤ 𝜆, ∀𝑗, 𝛷

(𝛷) ≤ 𝐵, ∀𝛷

𝑡 = 𝛷 ⋅ 𝑛, ∀𝛷, 𝑡

(21)

Due to the non-differentiability of the objective function 𝜃(𝛷), it is
difficult to solve such an optimization problem in Eq. (21) by the clas-
sical gradient methods directly. In this paper, we propose a sequence
quadratic program based proportion assignment (SQP-PA) algorithm.
For ease of description, we define 𝐼(𝛷) = {𝑗 |𝑗 (𝛷) = 𝜃(𝛷)} and
𝑗𝑟 = min{𝑗 ∶ 𝑗 ∈ 𝐼(𝛷𝑟)}, where 𝛷𝑟 denotes the proportion assignment
in the 𝑟th search round. We also use 𝛩𝑚 to denote (𝛼1,… , 𝛼𝑚)T.

The complete SQP-PA algorithm is formally described in Algorithm
2. At the beginning, SQP-PA initializes some variables (Line 2–3). The
initial value of 𝛷 is composed of 𝑚 stochastic values of 𝛼. Similar
to [33], we set 𝛾 ∈ (0, 12 ), and 𝜋 ∈ (2, 3). Let 𝑟 denote the search
direction in the round 𝑟. We first compute the search direction (Line 5–
10). The vector (𝜆𝑟,𝑟) is computed by solving the following quadratic
problem at 𝛷𝑟

min 𝜆 + 1
2
T𝐸𝑟 (22)

subject to 𝑗 (𝛷𝑟) − 𝜃(𝛷𝑟) + ∇𝑗 (𝛷𝑟)T ≤ 𝜆,∀𝑗 and (𝛷𝑟) ≤ 𝐵′,𝑡 =
𝛷𝑟 ⋅ 𝑛,∀𝑡, where 𝐸𝑟 ∈ 𝛩𝑚×𝑚 is the two-dimension matrix in the round
𝑟. We compute the auxiliary variable 𝑗,𝑗𝑟 ,𝑗𝑟 and the matrix 𝑈 as
follows
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑗,𝑗𝑟 (𝛷
𝑟) = 𝑗 (𝛷𝑟) −𝑗𝑟 (𝛷

𝑟), 𝑗 ∈ 𝐽𝑟∖
{

𝑗𝑟
}

𝑗𝑟 (𝛷
𝑟) = {𝑗,𝑗𝑟 (𝛷

𝑟), 𝑗 ∈ 𝐽𝑟∖
{

𝑗𝑟
}

}

𝑈 = ∇𝑗𝑟 (𝛷
𝑟) = (∇𝑗 (𝛷𝑟) − ∇𝑗𝑟 (𝛷

𝑟))

(23)

where 𝐽𝑟 = {𝑗 |𝑗 (𝛷𝑟) +∇𝑗 (𝛷𝑟)T𝑟 − 𝜃(𝛷𝑟) − 𝜆𝑟 = 0}. Then, we start
nonmonotone line search (Line 11) and compute the step size 𝛿𝑟 which
is the first number of sequence {1, 12 ,

1
4 ...} satisfying

(𝛷𝑟 + 𝛿𝑟 + 𝛿2̃𝑟) ≤ (𝛷𝑟) − 𝛾𝛿(𝑟)T𝐸𝑟𝑟 (24)

Finally, the parameters and resource budget will be updated (Line
12–16).

3.2.1. The globally convergence of SQP-PA
Before the convergence analysis of SQP-PA, we make the following

three assumptions [33].

Assumption 11. ∀𝑗 ∈ 𝐼,𝑗 (𝛷) is continuously differentiable.

Assumption 12. ∀𝛷 ∈ 𝛩𝑚, (∇𝑗 (𝛷),−1)T is linearly independent.
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Assumption 13. There exist two constants 0 < 𝜖 ≤ 𝜌 such that
𝜖‖‖

2 ≤ T𝐸𝑟 ≤ 𝜌‖‖

2,∀ ∈ 𝑅𝑚,∀𝑟.

emma 14. Let (𝜆𝑟,𝑟) be the solution of Eq. (22). If 𝑟 = 0, then 𝛷𝑟 is a
-T point which meets Kuhn–Tucker condition [34] of Eq. (21); Otherwise,
e have

𝑗 (𝛷𝑟)T𝑟 ≤ 𝜆𝑟 ≤ −1
2
(𝑟)T 𝐸𝑟𝑟 < 0, 𝑗 ∈ 𝐼 (𝛷𝑟) .

Lemma 15. If 𝑟 ≠ 0, there exists 𝑟 such that the line search yields a step
size 𝛿𝑟 = ( 12 )

𝑗 .

roof. According to Eq. (22), we have

𝑟 +
1
2
(𝑟)T𝐸𝑟𝑟 ≤ 0 ⟹ 𝜆𝑟 ≤ −1

2
(𝑟)T𝐸𝑟𝑟 < 0

∀𝑗 ∈ 𝐼 , we define

𝜖𝑟 = 𝑗 (𝛷𝑟 + 𝛿𝑟 + 𝛿2̃𝑟) − 𝜃(𝛷𝑟) + 𝛾𝛿(𝑟)T𝐸𝑟𝑟

≤ (𝛾 − 1
2
)𝛿(𝑟)T𝐸𝑟𝑟 + 𝑜(𝛿) (25)

Thus, there exists some 𝛿𝑗 > 0 such that 𝜖𝑟 < 0. Let 𝛿 = min{𝛿𝑗 , 𝑗 ∈
𝐼}, and the condition in Eq. (24) is satisfied for all 𝛿 ∈ [0, 𝛿]. In other

ords, the line search is always completed. □

heorem 16. SQP-PA either stops at a K-T point 𝛷𝑟 of Eq. (21) in a
inite number of rounds, or generates an infinite sequence 𝛷𝑟 in which any
ccumulation point is a K-T point of Eq. (21).

roof. Assume that the SQP-PA algorithm generates an infinite se-
uence {𝛷𝑟}, and there exists a subsequence 𝛺 such that the values
f some variables tend to be optimal, i.e., 𝛷𝑟 → 𝛷∗, 𝐸𝑟 → 𝐸∗, 𝑟 →
∗, 𝜆𝑟 → 𝜆∗,∃𝑟 ∈ 𝛺, where 𝛷∗, 𝐸∗,∗, 𝜃∗ denote their optimal values,

espectively. Then, we need to prove that ∗ = 0, i.e., 𝑟 → 0,∃𝑟 ∈ 𝛺.
ccording to Eq. (24) and Lemma 14, we can derive that {𝜃(𝛷𝑟)} is
onotonically decreasing. Hence, considering {𝛷𝑟}𝑟∈𝛺 → 𝛷∗ and the

ontinuity of 𝜃(𝛷), we have

lim
𝑟→∞

𝜃(𝛷𝑟) = 𝜃(𝛷∗) ⟹ lim
𝑟→∞

(𝜃
(

𝛷𝑟+1) − 𝜃 (𝛷𝑟)) = 0 (26)

Suppose by contradiction that ∗ ≠ 0. Then 𝜆∗ < 0. According to
he conclusion about the successful line search, the step size 𝛿𝑟 ≥ 0 on
. Combining Lemma 15, we have

lim
𝑟→∞

(𝜃
(

𝛷𝑟+1) − 𝜃 (𝛷𝑟)) ≤ −𝛾𝛿𝑟 (𝑟)T 𝐸𝑟𝑟

≤ −1
2
𝛾𝛿∗

(

∗)T 𝐸∗∗ < 0 (27)

It is obvious that Eqs. (26) and (27) contradict. It follows that
∗ = 0, and 𝑟 → 0,∃𝑟 ∈ 𝛺. Thus, QP-PA can converge globally and
chieve the optimal result. □

. Performance evaluation

This section first introduces the two benchmarks and several metrics
or performance comparison (Section 4.1). We then describe some
ettings of evaluation, and give the extensive evaluation results in
ection 4.2. Finally, we implement our algorithm on the small-scale
dge computing platform, and give the testing results in Section. 4.3.

.1. Benchmarks and performance metrics

We choose two typical algorithms as benchmarks for performance
omparison. The first one, called ADP-FL [35], belongs to the syn-
hronous FL scheme. In an epoch, the server can adaptively determine
he number of local updates via linear search to minimize the loss func-
ion under a given resource budget. The second one, called AFO [20],
8

s an asynchronous federated optimization algorithm with provable →
Fig. 4. Loss and Accuracy with Logistic-R over MNIST.

convergence, in which the parameter server will perform the global
update on receiving only one local update from an arbitrary worker.
Thus, we choose these two algorithms, the synchronous scheme (𝛼 = 1)
nd the asynchronous scheme (𝛼 = 1

𝑛 ), as benchmarks in our work.
In order to evaluate the performance of training models, we adopt

four performance metrics. (1) Loss function is the quantification dif-
ference of probability distributions between model output and obser-
vation results. The loss value reflects the quality of model learning
and whether convergence has been achieved or not as described in
Section 2.2. (2) As one of the most common performance metrics for
classification, accuracy is measured by the proportion between the
amount of the right data by the model and that of all data. (3) We
adopt the training time to estimate the training speed of a learning task.
(4) When there are multiple learning tasks in the network, we measure
the maximum loss and minimum accuracy of all tasks to evaluate the
training performance.

4.2. Simulation evaluation

4.2.1. Evaluation settings
The simulations are conducted on an AMAX deep learning work-

station1 (CPU: Intel(R) E5-2620v4, GPU:NVIDIA GeForce RTX 2080Ti),
where we build an FL simulation environment and implement all
models which are listed with PySyft [36], a Python library for privacy-
preserving deep learning including FL, under the PyTorch framework.

(I) Models and Datasets: We evaluate the training process with three
different models over five different datasets, which represent a large
variety of both small and large models and datasets. We adopt three
models, linear regression (referred to as Linear-R in short), logistic re-
gression (Logistic-R), and deep convolutional neural networks (CNN2),
espectively.

Linear-R is trained over the energy dataset [37], which contains
4,803 training data and 4,932 testing data from a wireless sensor
etwork. This model can predict the energy consumption of appli-
nces, including some environmental parameters (e.g., temperature and
umidity) and one sub-metered electrical energy consumption (e.g.,

lights).
Logistic-R is performed over the original MNIST dataset [38] (re-

ferred to as MNIST), which contains gray-scale images of 70,000 hand-
written digits (60,000 for training and 10,000 for testing). This model
outputs a binary label that corresponds to whether the digit is even or
odd.

CNN is trained over three different datasets. The first one is the
fashion MNIST dataset [39] (referred to as FMNIST), which has 70,000
images of fashion items (60,000 for training and 10,000 for testing)

1 https://www.amax.com/products/gpu-platforms/.
2 The detailed CNN network architectures in our experiments. (1) 9 layers

or MNIST: 5 × 5 × 32 Convolutional → Local Response Normalization → 2×2
axPool → 5 × 5 × 64 Convolutional → Local Response Normalization → 2 × 2
axPool → 1600×512 Fully connected → 512×10 Fully connected → Softmax.

2) 10 layers for CIFAR10 and CIFAR100: 5 × 5 × 64 Convolutional → Local
esponse Normalization → 2 × 2 MaxPool → 5 × 5 × 128 Convolutional →

ocal Response Normalization → 2 × 2 MaxPool → 3200 × 512 Fully connected

512 × 256 Fully connected → 256 × 10 Fully connected → Softmax.

https://www.amax.com/products/gpu-platforms/
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Fig. 5. Loss and accuracy with CNN over FMNIST.

Fig. 6. Loss and accuracy with CNN over CIFAR10.

Fig. 7. Loss and accuracy with CNN over CIFAR100.

ith the same format as MNIST. The second one is the CIFAR10
ateset, which includes 60,000 color images (50,000 for training and
0,000 for testing) of 10 different types. The third one is the CIFAR100
ateset, which includes 60,000 color images with 100 different types
or training and testing [40].

(II) Network Resources: In the simulations, we mainly focus on the
andwidth resource cost in edge computing. Specifically, the band-
idth consumption can be measured by the size of the model param-
ters. We train some models under a fixed amount of resource budget
e.g., network bandwidth and training time). In order to implement the
esource efficient asynchronous federated learning, we set the value of
arameters 𝜂 = 0.01, 𝜍 = 0.3 and estimate the values of parameters 𝐿, 𝜇
n real time according to [35].

The model training is quite time-consuming, even with GPU which
an speed up the training process compared with CPU [41]. As sug-
ested in [42], in order to efficiently simulate the training processing
n FL of our proposed solution and benchmarks, a total of 100 edge
odes are generated in the simulation, and 10 of them are randomly
ctivated to participate in the model training. The solution can be easily
xtended to the case of more edge nodes. Besides, we distribute the
ata among these edge nodes according to Gaussian distribution with
oth the fixed mean and the variance of 0.5. For ease of presentation
nd interpretation of results, CE-AFL performs only one local update
etween two global updates, i.e., 𝐷 = 1. We repeat each simulation 10
imes and compute the average results.
9

4.2.2. Simulation results
(I) Single Learning Task: The first set of simulations evaluates

the performance of the classification models (e.g., Logistic-R and CNN)
without resource constraints. We train each model using ADP-FL with
300 epochs. Three different values of 𝛼 (e.g., 0.3, 0.5 and 0.7) are
adopted in CE-AFL for model training. Without confusion, we denote
as CE-AFL(𝛼). As shown in Figs. 4–7, AFO will run averagely 4 times as
many epochs as ADP-FL to achieve the similar performance (e.g., loss
function values or classification accuracy). Besides, with the decreasing
value of 𝛼, the number of training epochs by CE-AFL will increase
gradually to achieve the similar performance of ADP-FL. The number of
training epochs by CE-AFL is significantly fewer than that of AFO. For
example, with CNN training over the FMNIST dataset, the number of
required epochs by CE-AFL (𝛼 = 0.3) and AFO is about 590 and 1880,
respectively.

We also test the training time of these models. Since ADP-FL should
wait for the local updates from all workers in each epoch, it takes a
longer time than CE-AFL. In Fig. 8, the training time of CE-AFL changes
with 𝛼 and is less than that of AFO (𝛼 = 0.1) and ADP-FL (𝛼 = 1).
For example, when CE-AFL adopts the optimal value of 𝛼, with CNN
training over the FMNIST dataset, the minimum training time of CE-
AFL is about 750 s. However, the training time of AFO and ADP-FL is
about 2690 s and 2580 s. Thus, CE-AFL can reduce the training time
by about 72% and 70% compared with AFO and ADP-FL, respectively.

In the second set of simulations, we run the Linear-R model over
the energy dataset. For performance evaluation, we compare the MSE
performance for different algorithms. As shown in the left plot of Fig. 9,
ADP-FL can achieve the smallest MST among all solutions. However,
from the results in the right plot of Fig. 9, we observe that the training
time of CE-AFL is less than the other two benchmarks. Specifically, CE-
AFL can reduce the training time by about 58% and 75% compared
with AFO and ADP-FL, respectively.

(II) Multiple Learning Tasks: The third set of simulations observes
the performance of multiple learning tasks without resource constraints
in the system. We run two models over the different datasets simul-
taneously, including Logistic-R over MNIST, CNN over FMNIST and
CIFAR10. Each model training task performs 300 epochs. Fig. 10 shows
that the maximum loss and minimum accuracy of the three groups of
tasks. By this figure, ADP-FL can achieve the best performance of loss
and accuracy among the three solutions. When adopting the optimal 𝛷
for each task by SQP-PA, CE-AFL achieves a little worse performance
(e.g., loss or accuracy) than ADP-FL, but better than AFO. For example,
given 300 training epochs, the loss of CE-AFL is about 1.445 and that
of ADP-FL is about 1.338. Accordingly, the accuracy of ADP-FL and
CE-AFL is about 51% and 49%, respectively.

In the last set of simulations, we test the performance of multiple
learning tasks with a limited training time budget. In practice, some
training tasks often need to be completed within the specified time.
We first consider the training time constraint for the three solutions. As
shown in Fig. 11, the maximum loss becomes smaller and the minimum
accuracy becomes higher by changing the training time constraint
from 300 s to 3000 s for all three algorithms. The proposed CE-AFL
framework can achieve less loss and higher accuracy compared with the
other two benchmarks. For example, when the time budget is 1500 s,
the minimum accuracy of CE-AFL is about 37%, while that of ADP-FL

and AFO is only about 29% and 19%, respectively. Therefore, CE-AFL
Fig. 8. Training time of different tasks, including Logistic-R over MNIST, CNN over FMNIST, CIFAR10 and CIFAR100.
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Fig. 9. MSE and training time with linear-R on the energy dataset.

Fig. 10. Max. Loss and Min. Accuracy for multi-learning tasks.

Fig. 11. Max. Loss and Min. accuracy with training time budget for multi-learning
tasks.

Fig. 12. Max. Loss and Min. accuracy with bandwidth budget for multi-learning tasks.

can improve the minimum accuracy by about 8% and 18% compared
with ADP-FL and AFO, respectively.

We further observe the performance of multiple learning tasks with
a limited bandwidth budget. The communication between the param-
eter server and the workers will emerge huge consumption of network
bandwidth. We test the three training tasks by changing the bandwidth
constraint from 100 Mbps to 1000 Mbps. As shown in Fig. 12, CE-AFL
can achieve significantly higher minimum accuracy than both AFO and
ADP-FL. For example, when the bandwidth constraint is 800Mbps, the
minimum accuracy of the three training tasks by using CE-AFL is about
81%, while that of AFO and ADP-FL is about 72% and 76%. Thus, the
proposed CE-AFL framework can improve the minimum accuracy by
about 9% and 5% compared with AFO and ADP-FL, respectively. These
results show that CE-AFL can significantly improve the classification
accuracy compared with two benchmarks under resource constraints.

In conclusion, our proposed CE-AFL can reduce the training time by
about 70% compared with the existing scheme in the single learning
task. Moreover, CE-AFL can improve the maximum loss value and
minimum accuracy compared with AFO and ADP-FL.

4.3. Test-bed evaluation

4.3.1. Implementation on the platform
We implement the AFO, ADP-FL and CE-AFL algorithms on a real

small-scale test-bed shown in Fig. 13, which is composed of two main
10
Fig. 13. The Test-bed Platform.

parts: a deep learning workstation with four NVIDIA GeForce RTX Titan
GPUs and 10 Jetson TX2 development kits3 (CPU: ARMv8 Cortex-A57,
RAM: 8GB). Specifically, the workstation acts as the parameter server
which is responsible for the model aggregation and verifying the global
model. We adopt a Jetson TX2 developer as a worker to locally train the
model and send the updates to the server for aggregation. We develop
a distributed model training framework with pytorch. The workers
and the parameter server are physically connected through wireless
network in the same router. Besides, they are logically connected
through torch.distributed package (gloo back-end). Specifically, the IP
address of the server and a designated port are combined to establish a
connection between the server and the worker through TCP protocol.
After the connection is established, the server segments the training and
testing datasets, and sends the segmentation results to each worker.
After receiving the results, the worker generates the local dataset for
training. All our code is publicly available at github.4

Two CNN models with different types and structures are imple-
mented for the CIFAR10 and FMNIST on the test-bed, respectively.
The first CNN model is used for the CIFAR10 dataset. It has two
5 × 5 convolution layers (64, 64 channels, each followed by 3 × 3
max pooling), two dense layers with 384 and 192 units and a softmax
output layer with 10 units. The second CNN model which has two
5 × 5 convolution layers (32, 64 channels, each followed by 2 × 2 max
pooling), a dense layer with 1024 units and a softmax output layer with
10 units (related to the 10 classes in FMNIST) is used for the FMNIST
dataset.

In the test-bed, we mainly consider the impact of different data
distribution, including quantity and category, among workers on the
performance of model training. First, the amount of data which varies
significantly with time and space on the workers is often imbalanced.
Thus, we adopt three different cases of data distribution to simulate the
data imbalance. (1) Case 1: We allocate the same amount of training
data (e.g., 6,000) among the ten workers; (2) Case 2: There is little
difference in the amount of data between different workers (e.g., 4000–
8000); (3) Case 3: The amount of data on these workers varies greatly
(e.g., 1000–11,000). Second, different categories of data distribution,
i.e. I.I.D. and non-I.I.D. data, among the workers also emerge different
effects on model training. For example, in the case of I.I.D., each worker
has all categories of data samples (e.g., 10 classes), but in the case
of non-I.I.D., each worker may have only part of categories (e.g., 5
classes). We adopt four different cases to verify the effects of data

3 https://developer.nvidia.com/embedded/jetson-tx2-developer-kit.
4 https://github.com/lyl617/CE-AFL.

https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://github.com/lyl617/CE-AFL
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Fig. 14. Loss and accuracy with CNN over FMNIST in Test-bed.

Fig. 15. Loss and accuracy with CNN over CIFAR10 in Test-bed.

Fig. 16. Loss vs. Epochs with Balanced Data in Test-bed.

Fig. 17. Loss vs. Epochs under Case 1–3 with I.I.D. Data in Test-bed.

Fig. 18. Training accuracy under Cases 1–3 in Test-bed.

distribution on model training, including Case (I): Each data sample
is randomly assigned to a worker, thus each worker has uniform (but
not full) information, i.e., I.I.D. data; Case (II): Each worker has 5
categories of data samples; Case (III): Each worker has 2 categories
of data samples; Case (IV): Each worker only has 1 categories of data
samples. The data samples in cases II-IV are non-I.I.D., and the degree
of nonuniformity of data distribution increases gradually.

4.3.2. Testing results
In the first set of experiments, we test the balanced and uniform data

with CNN training over FMNIST and CIFAR10, respectively. We run two
groups of experiments 2000 training epochs. As shown in the Figs. 14–
15, the training performance (i.e., loss and accuracy) of CE-AFL (𝛼 =
0.7) is very close to that of ADP-FL and much better than that of AFO.
For example, given 2000 epochs in CNN training over FMNIST dataset,
the loss value of CE-AFL is 0.3737, while that of ADP-FL and AFO is
11
Fig. 19. Training time under Cases 1–3 in Test-bed.

Fig. 20. Loss vs. Epochs under Case I-IV with balanced data in Test-bed.

Fig. 21. Loss vs. Epochs under Case II in Test-bed.

0.3382 and 0.6296, respectively. Accordingly, the training accuracy of
CE-AFL is about 86.8%, and the accuracy of ADP-FL and AFO is about
87.8% and 76.9%, respectively. Thus, our proposed mechanism can
improve the training accuracy by about 10% compared with AFO.

In the second set of experiments, we observe the performance of
model training (CNN over FMNIST) under three different amount of
data distribution cases (cases 1–3). In each case, we run the ADP-FL
algorithm with 1000 training epochs as baseline. Fig. 16 shows that
more training epochs (about 1435) are needed by CE-AFL to reach the
loss value of the baseline under case 1. That is because the server only
aggregates the updated local model from the arbitrary one worker at a
time in AFO. Moreover, AFO needs run 9328 training epochs to reach
the same performance of training loss. In other words, AFO needs 9×
training epochs compared with ADP-FL, while CE-AFL only needs 1.5×
epochs compare with the baseline. The training loss of CE-AFL under
the three different cases is shown in Fig. 17. The results show that the
experiment under case 3 needs a few more training epochs than that of
case 1 and case 2 to reach the same performance (e.g., loss).

We also observe the training accuracy and time under the cases
1–3 with the three solutions. Fig. 18 shows the training accuracy of
each case after 1000 training epochs. In CE-AFL, more updated models
from the workers are involved in the model aggregation than AFO in
each epoch. In each case, CE-AFL always achieves better performance
of accuracy compared with AFO, and achieves similar performance
with that of ADP-FL. As shown in Fig. 19, our proposed mechanism
achieves the minimum training time while reaching the same training
performance (loss and accuracy) of baseline compared with the other
two benchmarks. For example, in case 1, the training time of CE-AFL
is about 11,835 s, while that of ADP-FL and AFO is about 22,957 s
and 36,587 s, respectively. In other words, CE-AFL can reduce the
training time about 48.4% and 67.9% compared with ADP-FL and AFO,
respectively.

The last set of experiments tests the performance of model training
(CNN over FMNIST) under four different categories of data distribution
cases I-IV. We first test the training performance of CE-AFL under four
different cases of data categories distribution (cases I-IV). Fig. 20 shows
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Fig. 22. Training Accuracy under Cases I-IV in Test-bed.

Fig. 23. Training time under Cases I-IV in Test-bed.

that the distribution of data categories will emerge the effects on the
speed of model training. For example, the training loss of the exper-
iment under case IV by running 5,000 epochs is about 1.3834, while
that of case II by running 1300 epochs is about 0.5042. In other words,
the training performance with non-I.I.D. data is worse than that of I.I.D.
data. Then, we test the training performance with case II. As shown in
Fig. 21, a little more training epochs (about 1310) are run by CE-AFL
to reach the same loss value of ADP-FL (1000 epochs). However, the
loss value of AFO greatly fluctuates and gradually increases during the
training. Thus, the solution AFO cannot well handle non-I.I.D. training
data, but our proposed CE-AFL can well handle it.

Besides, the training performances (accuracy and time) of three
solutions under cases I-IV are shown in Figs. 22–23. Let the training
epochs be 1000, we test the training accuracy under cases I-IV. As
shown in Fig. 22, the training accuracy achieved by CE-AFL is always
better than AFO in each case. For example, the accuracy of CE-AFL is
about 78.8%, while the accuracy of ADP-FL and AFO is about 79.7%
and 40.1%, respectively. In other words, our proposed mechanism can
improve the training accuracy by about 39% compared with AFO. We
then test the training time of ADP-FL and CE-AFL under cases I-IV. Our
proposed solution can efficiently avoid the straggler problem caused
by ADP-FL. Fig. 23 shows that the training time required by CE-AFL is
always less than that of ADP-FL in each case. For example, the required
training time by CE-AFL is about 15,562 s in case II, while that of ADP-
FL is about 29,684 s. Thus, CE-AFL can reduce the training time by
about 47.6% compared with ADP-FL under Case II.

5. Related works

Recently, federated learning (FL) has been widely mentioned and
studied in both academia and industry fields.

One research area related to FL is distributed machine learning
(DML) through the use of worker machines and parameter servers [7].
Bao et al. [43] propose an online algorithm for scheduling the arriving
jobs and deciding the numbers of concurrent workers and parameter
servers for each job over its course, so as to maximize the overall
utility of all jobs. Ho et al. [44] design a parameter server system which
maximized the time computational workers spend doing useful work on
ML algorithms for DML, which followed a Stale Synchronous Parallel
(SSP) model of computation. The authors [41] propose a parameter
server based distributed computing framework for training large-scale
deep neural networks. Besides, the authors introduce a new learning
rate modulation strategy to counter the effect of stale gradients and
proposed a new synchronization protocol that could effectively bound
the staleness in gradients, improve runtime performance and achieve
good model accuracy.
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The above works mainly study efficient solutions of DML in data-
centers. Under this scenario, shared storage is usually adopted. But in
edge computing, no storage is shared among edge nodes. The worker
machines will not keep persistent data storage, but fetch the data from
the shared storage at the beginning of the learning process. As a result,
the data samples on different workers are usually I.I.D. in datacenters.

In federated learning, the data are collected at the edge directly and
stored persistently at edge nodes, thus the data distribution at different
edge nodes is usually non-I.I.D. and imbalanced, which is different from
DML in datacenters [24]. Smith et al. [12] show that multi-task learning
is naturally suited to handle the statistical challenges of this setting, and
propose a novel systems-aware optimization method that was robust to
practical systems issues. Our method and theory considered issues of
high communication cost, stragglers, and fault tolerance for distributed
multi-task learning. The authors [45] proposes an asynchronous dis-
tributed machine learning framework based on the emerging serverless
architecture, with which stateless functions can be executed in the
cloud without the complexity of building and maintaining virtual ma-
chine infrastructures. Shi et al. [46] merge some short communication
tasks into a single one to reduce the overall communication time and
formulated an optimization problem to minimize the training iteration
time. The authors [47] introduce a new and increasingly relevant
setting for distributed optimization in machine learning, where the
data for the optimization of training are distributed over an extremely
large number of nodes. However, most of these solutions ignore the
impact of limited resource constraints on training performance, which
may consume massive resources on edge computing systems. [20]
proposes a new asynchronous federated optimization algorithm. We
prove that the proposed approach has near-linear convergence to a
global optimum, for both strongly and non-strongly convex problems,
as well as a restricted family of non-convex problems.

Last but not least, some works [6,15] similar to our research will
be introduced. The authors [6] perform FL efficiently while actively
managing workers based on their resource conditions. Specifically, the
proposed solution solves a worker selection problem with resource
constraints, which allows the server to aggregate as many local up-
dates as possible and to accelerate performance improvement in ML
models. Wang [15] propose an experience-driven control framework
that intelligently chooses the workers to participate in each round of
federated learning to counterbalance the bias introduced by non-IID
data and to speed up convergence of model training. However, after
selecting the subset of workers to participate in the model training,
the parameter server only perform model aggregation while receiving
all local updates from these workers. In other words, the synchronous
scheme is adopted by these works for global updating on the server.
Compared with our proposed asynchronous scheme, these researches
cannot solve synchronization barrier problem which will lead to longer
training time and worse training performance under given resource
budget.

To our best knowledge, we are the first to address the problem of
determining the number of received local updates from the workers
to optimize the training performance of learning tasks, with a given
resource budget for federated learning in edge computing systems.

6. Conclusion

In this paper, we propose the communication-efficient asynchronous
federated learning (CE-AFL) mechanism for edge computing. We an-
alyze the convergence bound of CE-AFL. The asynchronous federated
learning with resource constraints (AFL-RC) problem is formulated for
minimizing the loss function of model training. We then design efficient
algorithms to determine the optimal values of parameters 𝛼 in CE-
AFL for single learning task and multiple learning tasks, respectively.
The simulation and experimental results show CE-AFL can achieve
significantly higher accuracy and less training time under resource con-
straints, compared with the existing solutions. The problem of dynamic
scenario is the focus of our next study, which can be easily solved by
experience-driven method.
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[47] J. Konečnỳ, B. McMahan, D. Ramage, Federated optimization: Distributed
optimization beyond the datacenter, 2015, arXiv preprint arXiv:1511.03575.

Jianchun Liu received B.S. degree in 2017 from the North
China Electric Power University. He is currently a Ph.D.
candidate in the School of Data Science, University of
Science and Technology of China (USTC). His main research
interests are software defined networks, network function
virtualization, edge computing and federated learning.

http://arxiv.org/abs/1809.00343
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb3
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb3
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb3
http://www.googblogs.com/federated-learning-collaborative-machine-learning-without-centralized-training-data/
http://www.googblogs.com/federated-learning-collaborative-machine-learning-without-centralized-training-data/
http://www.googblogs.com/federated-learning-collaborative-machine-learning-without-centralized-training-data/
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb6
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb6
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb6
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb6
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb6
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb10
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb10
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb10
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb10
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb10
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb13
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb13
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb13
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb13
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb13
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb15
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb15
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb15
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb15
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb15
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1911.02134
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb19
http://arxiv.org/abs/1903.03934
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb23
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb26
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb26
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb26
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb28
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb28
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb28
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb30
http://arxiv.org/abs/1203.3536
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb32
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb32
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb32
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb33
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb33
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb33
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb34
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb34
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb34
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb35
http://arxiv.org/abs/1811.04017
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb38
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb38
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb38
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb40
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb40
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb40
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb41
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb41
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb41
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb41
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb41
http://arxiv.org/abs/1610.02527
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb43
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb43
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb43
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb43
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb43
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb44
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb44
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb44
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb44
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb44
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb44
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb44
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb45
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb45
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb45
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb45
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb45
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb46
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb46
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb46
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb46
http://refhub.elsevier.com/S1389-1286(21)00392-3/sb46
http://arxiv.org/abs/1511.03575


Computer Networks 199 (2021) 108429J. Liu et al.
Hongli Xu received the B.S. degree in computer science and
the Ph.D. degree in computer software and theory from the
University of Science and Technology of China in 2002 and
2007, respectively. He is currently an Associate Professor
with the School of Computer Science and Technology,
University of Science and Technology of China. He has
authored or coauthored over 70 papers, and held about
30 patents. His main research interest is software-defined
networks, cooperative communication, and vehicular ad hoc
network.

Yang Xu is currently an associate researcher in the School of
Computer Science and Technology at University of Science
and Technology of China. He got his Ph.D. degree in
computer science and technology from University of Science
and Technology of China in 2019. He got his B.S. degree
in Wuhan University of Technology in 2014. His research
interests include Ubiquitous Computing, Deep Learning and
Mobile Edge Computing.

Zhenguo Ma received the B.S. degree in software engi-
neering from the Shandong University, China, in 2018. He
is currently pursuing his Ph.D. degree in the School of
Computer Science and Technology, University of Science
and Technology of China. His research interests include edge
computing and federated learning.
14
Zhiyuan Wang received the B.S. degree from the Jilin
University in 2019. He is currently studying for a master’s
degree in the School of Computer Science, University of
Science and Technology of China (USTC). His main research
interests are edge computing, deep learning and federated
learning.

Chen Qian received the B.S. degree from Nanjing University
in 2006, the M.Phil. degree from The Hong Kong University
of Science and Technology in 2008, and the Ph.D. degree
from The University of Texas at Austin in 2013, all in
computer science. He is currently an Assistant Professor
with the Department of Computer Engineering, University
of California at Santa Cruz. His research interests include
computer networking, network security, and Internet of
Things. He has authored over 60 research papers in highly
competitive conferences and journals. He is a member of
the ACM.

He Huang Dr. He Huang is an associate professor in the
School of Computer Science and Technology at Soochow
University, P.R. China. He received his Ph.D. degree in
Department of Computer Science and Technology from
University of Science and Technology of China (USTC), in
2011. His current research interests include traffic measure-
ment, spectrum auction, privacy preserving in auction, and
algorithmic game theory. He is a Member of both IEEE and
ACM.


	Communication-efficient asynchronous federated learning in resource-constrained edge computing
	Introduction
	Preliminaries
	Federated Learning (FL)
	The goal of FL
	Optimization algorithms for FL

	Communication-efficient asynchronous FL
	Illustration of CE-AFL
	Convergence analysis
	Problem formulation

	A case study of bandwidth optimization
	Algorithm for a single learning task
	Algorithm for multiple learning tasks
	The globally convergence of SQP-PA 


	Performance evaluation
	Benchmarks and performance metrics
	Simulation evaluation
	Evaluation settings
	Simulation results

	Test-bed evaluation
	Implementation on the platform
	Testing results


	Related works
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


