
248 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Incremental Server Deployment for
Software-Defined NFV-Enabled

Networks
Jianchun Liu , Student Member, IEEE, Hongli Xu , Member, IEEE, Gongming Zhao , Member, IEEE,

Chen Qian, Senior Member, IEEE, Member, ACM, Xingpeng Fan , Xuwei Yang ,

and He Huang , Member, IEEE, ACM

Abstract— Network Function Virtualization (NFV) is a new
paradigm to enable service innovation through virtualizing tra-
ditional network functions. To construct a new NFV-enabled
network, there are two critical requirements: minimizing server
deployment cost and satisfying switch resource constraints. How-
ever, prior work mostly focuses on the server deployment cost,
while ignoring the switch resource constraints (e.g., switch’s
flow-table size). It thus results in a large number of rules on
switches and leads to massive control overhead. To address this
challenge, we propose an incremental server deployment (INSD)
problem for construction of scalable NFV-enabled networks.
We prove that the INSD problem is NP-Hard, and there is no
polynomial-time algorithm with approximation ratio of (1− �) ·
ln m, where � is an arbitrarily small value and m is the number
of requests in the network. We then present an efficient algorithm
with an approximation ratio of 2 · H(q · p), where q is the
number of VNF’s categories and p is the maximum number of
requests through a switch. We evaluate the performance of our
algorithm with experiments on physical platform (Pica8), Open
vSwitches, and large-scale simulations. Both experimental results
and simulation results show high scalability of the proposed
algorithm. For example, our solution can reduce the control and
rule overhead by about 88% with about 5% additional server
deployment, compared with the existing solutions.

Index Terms— Software defined networks, incremental server
deployment, scalability, rules, NFV.

Manuscript received February 23, 2020; revised June 2, 2020 and July 28,
2020; accepted October 5, 2020; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor S. Mascolo. Date of publication October 22, 2020;
date of current version February 17, 2021. The work of Jianchun Liu, Hongli
Xu, Gongming Zhao, Xingpeng Fan, and Xuwei Yang was supported in part
by the National Science Foundation of China (NSFC) under Grant 61822210,
Grant 61936015, and Grant U1709217; and in part by the Anhui Initiative in
Quantum Information Technologies under Grant AHY150300. The work of
He Huang was supported by the NSFC under Grant 61873177. Some earlier
results of this article were published in the Proceedings of INFOCOM 2020.
(Corresponding authors: Hongli Xu; He Huang.)

Jianchun Liu is with the School of Data Science, University of Science and
Technology of China, Hefei 230027, China, and also with the Suzhou Institute
for Advanced Study, University of Science and Technology of China, Suzhou
215123, China (e-mail: jsen617@mail.ustc.edu.cn).

Hongli Xu, Gongming Zhao, Xingpeng Fan, and Xuwei Yang are with
the School of Computer Science and Technology, University of Science and
Technology of China, Hefei 230027, China, and also with the Suzhou Institute
for Advanced Study, University of Science and Technology of China, Suzhou
215123, China (e-mail: xuhongli@ustc.edu.cn; zgm1993@mail.ustc.edu.cn;
fx364117@mail.ustc.edu.cn; issacyxw@mail.ustc.edu.cn).

Chen Qian is with the Department of Computer Science and Engineering,
Jack Baskin School of Engineering, University of California at Santa Cruz,
Santa Cruz, CA 95064 USA (e-mail: cqian12@ucsc.edu).

He Huang is with the School of Computer Science and Technology,
Soochow University, Suzhou 215006, China (e-mail: huangh@suda.edu.cn).

Digital Object Identifier 10.1109/TNET.2020.3030298

I. INTRODUCTION

TODAY’S networks rely on a wide spectrum of spe-
cialized network functions (NFs) or middleboxes (MBs)

[1], [2] [3], such as firewalls, traffic monitors, web prox-
ies, and intrusion detection systems. They have been widely
deployed in various networking scenarios, including cam-
pus networks, backbone networks, and data center networks.
Network traffic usually needs to pass through several NFs
in a particular order, which is known as a service function
chain (SFC) [4]. For instance, in data centers, some requests
need to traverse a firewall and a proxy in sequence, while
other requests need only to traverse the firewall for security
processing.

Due to the high price and inflexibility of physical NFs
or MBs, Network Function Virtualization (NFV) [5] has
been an emerging approach in which network functions are
no longer executed by dedicated hardware but instead can
be run on general-purpose servers located in cloud nodes
[6], called Virtual Network Functions (VNFs) [7]. Com-
pared with the physical NFs, the NFV technology contributes
to reducing the price and improving the system flexibility.
With these advantages of NFV, many users, including cor-
porations, communities, and governments, are expecting to
deploy an NFV-enabled network. Since scalability has been
a core issue for large network development, there are two
critical requirements of scalability, minimizing server deploy-
ment cost and satisfying switch resource constraints for rule
configuration.

VNFs are running on the commodity general-purpose
servers. The problem of VNF placement on servers has been
widely studied in recent years for different targets, such as
link/server load balancing, resource utility maximization, and
reliability [8], [9] [10]. Furthermore, due to traffic dynamics,
different joint optimization problems have been investigated
in literatures [11], [12]. Most of these studies by default
assume that a set of servers have been deployed on given
positions. In fact, for enterprise and edge networks, a large
number of servers are unavailable, and it is also challenging
and time-consuming to find the right servers for placement.
Moreover, with the increasing of servers, the complexity of
VNF management, e.g., fault diagnosis and localization, grows
especially as the servers may be from different owners [13],
[14]. Differently from the existing work on VNF placement
or the joint optimization problem, we mainly focus on the
incremental server placement for VNFs so as to pursue the
minimum deployment cost while satisfying hardware resource
constraints.

1558-2566 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1764-9303
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0002-9504-377X
https://orcid.org/0000-0002-1720-7222
https://orcid.org/0000-0003-2768-6607

LIU et al.: INSD FOR SOFTWARE-DEFINED NFV-ENABLED NETWORKS 249

TABLE I

COMPARISON OF EXISTING SERVER DEPLOYMENT
SOLUTIONS AND OUR SCHEME

Previous work [10], [15] has studied the incremental server
deployment for network function virtualization. However,
these methods have two main disadvantages of network scala-
bility. First, almost all the previous solutions, e.g., [10], [15],
ignore the impact of the limited Ternary Content Addressable
Memory (TCAM) size on the switches. TCAMs are 400×
more expensive and consume 100× more power per Mbit
than the RAM-based storage on the switches [16]. Besides, the
lookup speed and insertion speed are highly related to the size
of TCAM. As a result, most of today’s commodity switches
only support 4-20K entries [16] (e.g., 6K entries on HP
HPE6960 switches and 4K entries on PICA8 P-5401 switches
[17]). The previous solutions implement the SFC routing with
the granularity of ingress-egress pairs, which needs a large
number of rules on switches for VNF processing. For example,
a data center network with a thousand switches [18] may
require up to millions of possible rules on a switch, which
certainly does not fit the TCAM size. Moreover, installing
more TCAM rules also leads to massive control overhead.
Second, some methods, e.g., GFT [10], only focus on one
type of network function, which can not be directly applied to
the situation of SFCs. Though the work T-SAT [15] extends
the server deployment to consider the SFC requirement, their
algorithm can not guarantee the approximation performance.
We summarize the advantages and disadvantages of the exist-
ing solutions and our scheme in Table I.

We believe it is necessary to design a new solution of incre-
mental server deployment to construct a scalable NFV-enabled
network with TCAM size constraint. Our solution is motivated
by the following considerations. An SFC request is specified
by an ingress switch, an egress switch and the SFC require-
ment. Since request-based SFC needs to install a massive
number of rules on switches, we expect to use coarse-grained
(i.e., wildcard-based) rules to effectively reduce the TCAM
cost and control overhead. To the best of our knowledge,
we are the first to propose a provably efficient algorithm for
incremental server deployment within the network while taking
the flow table size constraint into considerations. The main
contributions of this paper are:

• We propose an incremental server deployment (INSD)
problem for the construction of scalable NFV-based net-
works and analyze its NP-Hardness. We also prove that
there is no polynomial-time algorithm with an approxi-
mation ratio of (1−ε)·lnm, where ε is an arbitrarily small
value, and m is the number of requests in the network.

• We present an efficient and polynomial-time algorithm,
called KPGD, for the INSD problem, and analyze the
approximation ratio of 2·H(q ·p),1 where q is the number
of VNF’s categories, and p is the maximum number
of requests through a switch. To be more practical,

1H(n) is harmonic number defined as H(n) = 1 + 1
2

+ . . . + 1
n

≈ log n.

TABLE II

KEY NOTATIONS

we extend our algorithm to address the general case,
in which there is no pre-computed path for each request.

• We evaluate the performance of our proposed method
with experiments on both physical platform (Pica8) and
Open vSwitch (OVS), as well as large-scale simulations.
Both experimental results and simulation results show
that the proposed solution can achieve better scalability in
terms of deployment and configuration cost. For example,
our solution can reduce the control overhead by about
88% with deploying additional servers by about 5%,
compared with the existing solutions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Model

An SDN is physically separated into the control plane
and the data plane. The control plane consists of a
logically-centralized controller, which may be a cluster of
distributed controllers [19]–[21] and is responsible for man-
aging the whole network. The data plane consists of a set
of n SDN switches, V = {v1, . . . , vn}. Without loss of
generality, the first z switches are egress switches, denoted
as Ve = {v1, . . . , vz}, with z < n. The network topology can
be modeled by a connected graph G = (V, E), where E is the
set of links connecting the switches. Since we focus on the
data plane metrics (e.g., the number of deployed servers and
rules), the number of controllers will not significantly impact
these metrics. For simplicity, we assume that there is only one
controller in the control plane.

There is a set of VNFs, e.g., firewalls, IDSes and proxies,
denoted as F = {f1, f2, . . . , fq}, with q = |F|. Let θf indicate
the processing cost per packet (measured by the number of
CPU cycles) for each VNF f . Given a set of requests R =
{r1, r2, . . . , rm} with m = |R|, each request is specified by an
ingress switch, an egress switch and the SFC requirement. For
simplicity, if request ri is processed by VNF fj , we call that

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

250 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 1. Rule Installment for One VNF Instance. The left plot illustrates an
example with 4 switches and 2 servers. The right table illustrates the number of
required rules on switches v1 and v3 under different rule installment schemes.

TABLE III

INSTALLED RULES FOR VNF PROCESSING ON SWITCH v1

request ri is covered by VNF fj . Through long-term traffic
observation, the controller has full knowledge of the requests,
e.g., the number of packets N(r) of request r ∈ R. We use
Rv to represent the set of requests, whose egress switch is
v ∈ Ve.

B. Rule Installment for One VNF Instance

In this section, we will introduce the processing of rule
installment on switches in the case of one VNF instance.
To facilitate understanding, we illustrate rule installment
through an example. On the left plot of Fig. 1, there
are 4 switches and 12 ingress-egress switch pairs. Suppose
that there are 12 requests in the network and each request
between a switch pair is forwarded in a counter-clockwise
direction. For example, the forwarding path from v2 to v4 is
v2 → v1 → v4. VNF instances are deployed on two servers,
which are connected to switches v1 and v3, respectively. All
the requests should be processed by a VNF instance. Assume
that the paths of these requests are available to the controller
with the help of SDN’s centralized control. Then the controller
configures 6 requests (e.g., v2 → v1, v3 → v1, v4 → v1,
v1 → v4, v2 → v4, v3 → v4) to be processed by server s1,
and other requests are processed by s2. We focus on the rule
installment on switches v1 and v3.

There are two different schemes of rule installment. First,
the previous VNF placement solutions assume by default
that the request-based rules will be installed on switches [2],
[22]. Thus, there requires 12 rules for VNF processing in the
network, i.e., 6 rules on both switches v1 and v3. The rules
for VNF processing on switch v1 are listed in Table III. For
example, we install a rule “src = v2, dst = v1, inport =
3, actions = output : 1” for request v2 → v1.

Second, to reduce the number of required rules, we then
consider the egress switch based wildcard scheme for rule
installment. Since this scheme just needs to install wildcard
rule for each egress switch, only 4 rules are required for VNF
processing in the network. Specifically, both switches v1 and
v3 require to install two rules, as shown in Table III. Each
wildcard rule only specifies the egress switch (e.g., v1 or v4),

Fig. 2. Illustration of Rule Installment for SFC Processing on the Switches.
The controller specifies that requests from subnet 10.1.1.0/24 to subnet
10.1.2.0/24 should be traversed a service function chain: Firewall-IDS-NAT
for security benefits.

Fig. 3. Illustration of Tag Operations.

and can match all the ingress switches in the network. For
example, we need to install a rule “dst = v1, inport =
3, actions = output : 1” for the three requests with the
same egress switch v1. The egress switch based scheme can
reduce the number of required rules by 67% compared with the
request based scheme in this example. When there are more
requests in the general scenario, our proposed scheme also can
reduce the number of rules by 74% compared with the state-
of-art solutions through extensive simulations in Section IV.
Thus, we use the egress switch based scheme so as to meet
the needs of less rule cost and less control overhead in our
proposed solution.

C. Tag Operations for SFC Processing

It is worth noting that, even if the egress-based rules for
VNF processing have been installed, the request still may not
traverse the SFC properly. To this end, we adopt efficient tag
operations to support SFC [2], [22]. Specifically, to record
the SFC information, we use two fields (e.g., VLAN, MPLS
labels or other unoccupied fields) in the packet header as
tags. The controller adopts unique identities (e.g., 1, 2, . . . , n)
to distinguish these n NFs in the network. For example,
in a moderate-size network, the network may contain less
than 255 NFs [23]. Then, it only requires 8 bits to differ-
entiate 255 NFs. Moreover, the SFC’s length is usually not
more than 5 [23]. So, it will cost 5 bytes (or 40 bits) for the
SFC information in the packet header. For some programmable
switches (e.g., Open vSwitches,2 barefoot switches3), adding
two new fields into the packet header is easily implemented.

As shown in Fig. 2, we assume that a request from subnet
10.1.1.0/24 to subnet 10.1.2.0/24 should traverse a service
function chain: Firewall-IDS-NAT for security benefits. We
use 0 × 01-0 × 02-0 × 03 to denote the SFC requirement.
We adopt two fields, Network Functions Label Matching
(NFLM) and MPLS, to match the next NF to be processed
and to store the rest NFs in the SFC. There are 3 rules in
total required to be installed on the switches (2 rules on v1

and 1 rule on v2) for SFC processing.

2OVS. Available: http://openvswitch.org/
3Barefoot Switches. Available: https://www.barefootnetworks.com

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: INSD FOR SOFTWARE-DEFINED NFV-ENABLED NETWORKS 251

TABLE IV

PER-PACKET PROCESSING COST OF VNFS. [26]

We illustrate the tag operations through an example. When
a request arrives at the ingress switch, the controller configures
the SFC policy (e.g., NFLM=0 × 01, MPLS=0 × 0203),
as shown in the left plot of Fig. 3. After the request has been
processed by the VNF instance 0× 01, the switch will update
two fields in the packet header. The switch sets the NFLM
field as the first NF (i.e., 0 × 02) in the MPLS field, and
removes this NF from the MPLS field. For example, after the
request has been processed by the Firewall function, we set
the NFLM field as 0 × 02 (i.e., IDS), and update the MPLS
field as 0 × 0300, as shown in the right plot of Fig. 3. More
detailed information about tag operation and SFC routing can
refer to our previous work [24]. Thus, the SFCs of all requests
in the network can be processed properly according to the rule
matching and tag operation.

D. Problem Definition

In this section, we give the definition of the Incremental
Server Deployment (INSD) problem. The network admin-
istrators will specify the SFC processing requirement for
each request [2]. The set of VNFs in the SFC requirement
of request r is denoted as Fr. For example, if the SFC
requirement of request r is Firewall-IDS-NAT, Fr = {IDS,
NAT, Firewall}. In fact, the order of SFC requirements will
not change the processing resource cost on servers. As a result,
we do not consider the VNF processing order, which will
not impact the deployment result in this paper. Note that the
SFC requirements can be satisfied through efficient routing
algorithms [2], [25] if the VNFs have been placed on the
deployed servers. For simplicity, we suppose that each VNF
can work independently with others [8], [26].

Assume that the controllers have pre-computed the path for
each request r [27], [28], denoted by pr. We will also study
the problem without pre-computed paths in Section III-C. The
two resource constraints should be considered here. On one
hand, we consider the rule cost for VNF processing. Let yf

v,t ∈
{0, 1} denote whether a rule matching the egress switch t and
VNF f will be installed on switch v or not. For example,
as shown in Fig. 1, there is one request v4 → v2 that needs
to be processed by VNF f1 placed on server s2. Assume that
we have installed a wildcard rule matching egress switch v2

on switch v3, which means yf1
v3,v2

= 1. Then, all requests with
the same egress switch v2 will be forwarded to server s2 for
VNF processing. Due to the TCAM size constraint, we expect
that the rule cost on switch v for VNF processing should not
exceed a given threshold z(v).

On the other hand, we consider the resource consumption
for VNF processing on servers. The resources can be expressed
in terms of CPU, memory and network bandwidth. The
existing work [11] shows that CPU is usually the bottleneck
resource for most VNF instances. Moreover, different VNFs
require different numbers of CPU cycles for processing a
packet. By testing in [26], we list the number of required

CPU cycles for some typical VNFs in Table IV. According
to installed rules on a switch, we know which flows will
be processed on the connected server. As a result, we can
derive the total processing cost on a server. We require that
the total VNF processing cost on a server s should not exceed
its computing capacity c(s).

The objective of the INSD problem is to minimize the
number of deployed servers in the network. Accordingly,
we formulate the INSD problem as follows:

min
∑
v∈V

xv

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xv ≥ yf
v,t, ∀v ∈ V, t ∈ Ve, f ∈ F (1a)∑

v∈pr

yf
v,tr
≥ 1, ∀r ∈ R, f ∈ Fr (1b)

∑
t∈Ve

∑
f∈F

yf
v,t ≤ c(v), ∀v ∈ V (1c)

∑
t∈Ve

∑
r∈Rv

∑
f∈Fr

yf
v,tr

N(r)θf ≤ c(sv), ∀v ∈ V (1d)

xv ∈ {0, 1}, ∀v ∈ V (1e)

yf
v,t ∈ {0, 1}, ∀v ∈ V, t ∈ Ve, f ∈ F (1f)

We use a binary variable xv to indicate whether a server will
be deployed on switch v or not. The first set of inequalities
(1a) means that each request will be processed by a server
only if the server has been deployed on switch v. The second
set of inequalities (1b) means that each VNF f ∈ Fr should
be deployed at least once along the path of request r, where
tr denotes the egress switch of request r. The third set of
inequalities (1c) expresses the flow-table size (FTS) constraint
for VNF processing on a switch. The fourth set of constraints
(1d) tells that the total cost for VNF’s processing should not
exceed the server’s computing capacity, where sv denote the
server connected to the switch v. The objective is to deploy a
minimum number of servers for NFV-enabled networks.

Theorem 1: The INSD problem is NP-Hard.
Proof: Consider an instance of the Minimum Set

Cover (MSC) problem [29]: let E = {l1, l2, . . . , lx} be a set
of x elements, C = {Ei ⊆ E, i = 1, 2, . . . , y} is a set of
subsets of E, where y = |C|. MSC will choose a minimum
set C′ ⊆ C such that all elements l ∈ E can be covered
by the union of subsets in C′. Then, we consider a special
case of the INSD problem, in which there is only one VNF
in the network and each server is equipped with the infinite
computing capacity. Each request is abstracted as an element
in E and the request set through switch vi is abstracted as
Ei. We expect to deploy the minimum number of servers to
cover all requests in the network. Thus, the special instance
of the INSD problem becomes the traditional MSC problem,
which is NP-Hard. Accordingly, the INSD problem is NP-Hard
too. �

Theorem 2: The INSD problem cannot be solved by a
polynomial time algorithm with an approximation ratio of
(1 − ε) · ln m, for any ε > 0, where m is the number of
requests in the network, unless P = NP .

Proof: Some previous works, e.g., Raz and Safra [30],
Feige [31], have proved that the MSC problem cannot be
approximable within (1 − ε) · ln n, for any ε > 0, where
n is the number of elements in the MSC problem, unless
P = NP . Since the MSC problem is a special case of
our INSD problem, if there exists an algorithm with a better

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

252 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

approximation ratio than (1−ε) · ln m, where m is the number
of requests in the network, for INSD, this algorithm can also be
applied to solve the MSC problem, which contradicts with the
previous inapproximation results. Thus, we can conclude that
the inapproximation ratio of the INSD problem is (1−ε)·ln m,
for any ε > 0. �

III. ALGORITHM DESIGN FOR INSD

In this section, we design an approximation algorithm for
the INSD problem (Section III-A) and give the performance
analysis (Section III-B). Besides, we extend the algorithm
to solve a more general case (Section III-C). Moreover,
we give some discussions to enhance our proposed solution
(Section III-D).

A. A Knapsack-Based Algorithm for INSD

In this section, we present a knapsack-based approxima-
tion algorithm, called KPGD, to solve the INSD problem.
According to the problem definition, each request r should
traverse the specific SFC in the network. In other words,
each type of VNF f ∈ F needs to cover the request set
Γf = {γf

v1
, γf

v2
, . . . , γf

vz
}, where vj is an egress switch. The

rest number of requests that VNF f needs to cover is denoted
as gf . Let Uf

i be the set of requests that are uncovered by VNF
f on server si. The KPGD algorithm is formally described
in Alg. 1. Our proposed algorithm consists of a group of
iterations, each of which includes two main steps. In the first
step, the algorithm adopts the KP algorithm which will be
introduced in the next section to derive the set of chosen
VNFs, denoted as Pi, for each switch vi (Line 7-9). We choose
one switch with the maximum profit for server deployment
(Line 10-11). In the second step, the KPGD algorithm updates
the uncovered request set (Line 12-16). For each VNF f which
has been chosen to place on the server connected to switch
vi, the requests that need to be covered by f will be updated
(Line 13-14). Besides, some servers have not been chosen to be
deployed in the network. The rest VNFs of the SFCs need to be
placed on these servers. Thus, the requests uncovered by these
VNFs also should be updated (Line 15-16). The algorithm will
terminate until each request r has been covered by any VNF
in Fr.

We first consider a simple case, in which server si has
been deployed on switch vi. We will place feasible VNFs on
this server so as to maximize the number of requests covered
by these VNFs. When VNF f has been placed on server
si, some requests will be covered (or processed) by f under
the server’s and switch’s capacity constraints. Therefore, we
regard this case as the 0-1 knapsack problem [32]. Specifically,
the knapsack capacity is the joint consideration of the server’s
processing capacity and switch’s flow-table size constraints.
The item size is the VNF’s processing cost and the item’s profit
is the number of requests covered by this VNF. Similar to the
knapsack problem, the goal of this version is to maximize
the number of requests that can be covered by these VNFs
deployed on the server.

We adopt a greedy algorithm, called KP, to place some
VNFs on a server so that more requests can be covered
by these VNFs. We first construct a set of request subsets
Γ = {γf1

v1
, . . . , γ

fq
v1 , . . . , γf1

vz
, . . . , γ

fq
vz}, where fi ∈ F and

vj ∈ Ve. γfi

tj
denotes the set of requests with egress switch

tj that needs to be processed by VNF fi. Let Γi ⊆ Γ be

Algorithm 1 KPGD: Greedy Algorithm for INSD

1: V ′ ← φ
2: for each VNF f ∈ F do
3: gf ← |Γf |
4: for each switch vi ∈ V do
5: Uf

i ← Γf
i

6: while gf > 0, ∀f ∈ F do
7: Step 1: Choose one switch to deploy a server
8: for each switch vi ∈ V − V ′ do
9: Choose the set of VNFs according to the KP algo-

rithm, Pi ← KP (vi)
10: Select a switch vi with the maximum profit

∑
f∈Pi

δf
i

and deploy a server
11: V ′ ← V ′ ⋃{vi}
12: Step 2: Update the request set
13: for each VNF f ∈ Pi do
14: gf ← gf − |Uf

i |
15: for each switch vj ∈ V − V ′ do
16: Uf

j ← Uf
j − Uf

i

17: return V ′

Algorithm 2 KP Algorithm on Switch vi

1: P ← φ, P̃ ← F
2: ci

v ← c(vi), ci
s ← c(si)

3: for each VNF f ∈ P̃ do
4: δf

i ←
∑

t∈V i
e
|γf

t |, αf
i ← |Γf

i |
5: βf

i ← N(δf
i) · θf , ϑf

i ← (αf
i , βf

i)
6: P̃ ← P̃ − {f}
7: rearrange the VNFs f ∈ F in the decreasing order with

the unit profit value δf
i

‖ϑf
i ‖

8: while αf
i ≤ ci

v and βf
i ≤ ci

s do
9: P ← P ⋃{f}

10: ci
v ← ci

v − αf
i

11: ci
s ← ci

s − βf
i

12: F ← F − {f}
13: for each VNF f ∈ F do
14: if

∑
fj∈P δ

fj

i ≤ δf
i then

15: P ← {f}
16: return P

the set of requests through switch vi. Moreover, we use Γf
i

to denote the set of requests that need to be processed by
VNF f in Γi. We denote P (or P̃) as the set of chosen (or
unchosen) VNFs on this server. The profit value δf

i means
the number of requests that can be covered by VNF f on
server si. Besides, we use αf

i and βf
i to denote the rule cost

and VNF’s processing cost of the requests covered by VNF
f on server si, respectively. For convenience of computing,
the two cost variables are vectorized, which is denoted as
ϑf

i = (αf
i , βf

i). We use ‖ϑf
i ‖ to represent the norm of the

vector, i.e., ‖ϑf
i ‖ =

√
(αf

i)2 + (βf
i)2. The variable V i

e ⊆ Ve

indicates a set of egress switches of the requests which pass
through switch vi.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: INSD FOR SOFTWARE-DEFINED NFV-ENABLED NETWORKS 253

The KP algorithm is described in Alg. 2. At the beginning,
the KP algorithm initializes some variables, e.g., ci

v and ci
s,

to store the available rule and computing resources for VNF
placement (Line 1-2). We compute the profit of each unchosen
VNF f ∈ P̃. Moreover, we compute the rule cost and
CPU processing cost for each f , respectively (Line 3-6). The
algorithm ranks all the unchosen VNFs in the decreasing order
of the unit profit (Line 7). We then greedily choose the VNFs
with the maximum unit profit under the server processing
capacity and FTS constraints for VNF processing (Line 8-12).
At the end of each iteration, the profit δf

i of each unchosen
VNF f ∈ F will be computed. Then, the set P will be
substituted by VNF f if the profit δf

i is greater than the sum
profit of all VNFs fj ∈ P , which have been deployed on this
server (Line 13-15).

B. Performance Analysis for KPGD

In this section, we analyze the approximation performance
of the KPGD algorithm. KPGD consists of several iterations,
each of which will execute the KP algorithm. Some prior
works [32] have proved that the KP algorithm can achieve
an approximation ratio of 2 for the 0-1 knapsack problem.

Lemma 3: For each k ∈ {1, 2, . . . , ρ}, it follows
ϕi(k) ≤ 2 · δv(k)(k) (2)

Proof: In each iteration of KPGD, the knapsack problem
can be solved for each switch which has not been chosen to
deploy the server. hi(k) denotes the optimal profit of KPGD
on switch vi in the k-th iteration. So we have ϕi(k) ≤ hi(k),
where ϕi(k) is the profit achieved by KPGD on switch vi in
the k-th iteration. Since the approximation ratio of KP is 2,
and δi(k) is the approximate result of KP, we can derive
that hi(k) ≤ 2 · δi(k). Because KPGD always chooses a
switch with the maximum profit for server deployment in each
iteration, we have δi(k) ≤ δv(k)(k), where v(k) denotes the
chosen switch in the k-th iteration. Thus, we can conclude that
ϕi(k) ≤ 2 · δv(k)(k), ∀k ∈ {1, 2, . . . , ρ}. �

In the KPGD algorithm, the set of requests that need to
be covered by VNF f after the k-th iteration is denoted as
λf (k). λ(k) is the total number of the requests that need
to covered by all VNFs, i.e., λ(k) =

∑
f∈F λf (k). Note

that λ(0) =
∑η

i=1

∑
f∈P∗

i
|Af

i |. Then we prove that the total
profit of the chosen switch in the k-th iteration is more than
a given value as follows. The request set will be covered x
times, if it is covered by x types of VNFs. We define the
possible times the requests are covered as an integer variable
τi ∈ {1, 2, . . . ,

∑
f∈P∗

i
|Af

i |} for ∀i ∈ {1, 2, . . . , η}. Thus,

there are possibly λ(0) =
∑η

i=1

∑
f∈P∗

i
|Af

i | integers, perhaps
including some duplicated values. Then we rearrange these
integer values into a non-decreasing sequence. For simplicity,
we use ex to denote these values and set them as e1 ≤
e2 ≤ . . . ≤ eλ(0). For example, let η = 3, τ1 = {1}, τ2 =
{1, 2, 3}, τ3 = {1, 2}, so there are 6 integers, i.e., λ(0) = 6.
We rearrange these 6 integers as 1 ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3.

Lemma 4: For each k ∈ {1, 2, . . . , ρ}, we have
eλ(k) ≤ 2 · δv(k)(k) (3)

Proof: After the k-th iteration, the KPGD algorithm will
incrementally cover the requests λ(k) times. If KPGD covers
all rest requests in the optimal sets, the cover ratio for each
VNF f ∈ F can be guaranteed. That is,

∑η
i=1 ϕi(k) ≥ λ(k).

According to the definition of ex and ϕi(k), we can derive
that ex is not more than ϕi(k), i.e., ex ∈ {1, 2, . . . , ϕi(k)},

∀i ∈ {1, 2, . . . , η}. According to Lemma 3, we have
ex ≤ 2 · δv(k)(k) (4)

Since ∑η
i=1 ϕi(k) ≥ λ(k) and

ϕi(k) ≤ max
s≤η
{∑f∈F |Af

s |}, ∀i ∈ {1, 2, . . . , η}
There are at least λ(k) indices x satisfying Eq. (4). Com-

bining e1 ≤ e2 ≤ . . . ≤ eλ(0), we can derive that eλ(k) ≤
2 · δv(k)(k), ∀k ∈ {1, 2, . . . , ρ}. �

For ease expression, we use q and p to denote the number
of VNF’s categories and the maximum number of requests
through a switch in the network, respectively.

Theorem 5: Our proposed KPGD algorithm can achieve 2 ·
H(q · p)-approximation for the INSD problem.

Proof: According to Lemma. 4, for each k ∈
{1, 2, . . . , ρ}, we have

2 · δv(k)(k) ≥ eλ(k) ≥ eλ(k)−1 ≥ . . . ≥ eλ(k+1)+1

⇒ 1
2 · δv(k)(k)

≤ 1
eλ(k)

≤ 1
eλ(k)−1

≤ . . . ≤ 1
eλ(k+1)+1

Since λ(k) − λ(k + 1) = δv(k)(k), it follows

1 ≤ 2 · (1
eλ(k)

+
1

eλ(k)−1
+ . . . +

1
eλ(k+1)+1

)

Combining the above inequalities, we can derive that

ρ ≤ 2 · (1
eλ(1)

+ . . . +
1
e1

) ≤ 2 · (1
eλ(0)

+ . . . +
1
e1

)

= 2 ·
η∑

i=1

H(
∑

f∈P∗
i

|Af
i |) ≤ 2 · η ·H(q · p) (5)

We should note that the third equation in Eq. (5) is based on
the definition of ex and the last inequality in Eq. (5) is based
on

∑
f∈P∗

i
|Af

i | ≤
∑

f∈F |Γf
i | ≤ q · p. So we have

ρ

η
≤ 2 ·H(q · p)

Thus, we can conclude that KPGD can achieve
2 ·H(q · p)-approximation for the INSD problem. �

Theorem 6: The total time complexity of the KPGD algo-
rithm is O(n2qm), where n is the number of switches in the
network, q is the number of VNF’s categories and m is the
size of the requests set.

Proof: Because there are n switches in the network,
KPGD consists of O(n) iterations at most. Our proposed
KPGD algorithm has two main steps in each iteration. In the
first step, KPGD runs the KP algorithm which has a time
complexity of O(mlogm) to compute the profit, where m is
the size of the requests set. Then, it chooses the maximum
profit value with O(n) time complexity. In the second step,
KPGD takes O(nqm) time complexity to update the requests
set, where q is the number of VNF’s categories. Thus, the total
time complexity for n iterations of KPGD is O(n2qm). �

C. Extending to the General Case

In this section, we consider the more general version of
INSD, denoted as INSD-G, in which each request has no
pre-computed path in the network. That is, we do not know
the exact path for each request before server deployment.
Different from INSD, each request r ∈ R has a feasible switch
set for server deployment and VNF processing in INSD-G.
We introduce the concept of Stretch [33] which provides the
alternative constraints for server deployment. For each request
r ∈ R, it can be represented by r = (s, d,Fr), where s, d
and Fr is the ingress switch, the egress switch and the SFC

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

254 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

requirement, respectively. Besides, we use l(va, vb) to denote
the length of the shortest path between va and vb, where va

and vb are any pair of switches in the network. We call ω is a
feasible switch of r, if and only if l(s, ω)+l(ω, d) ≤ μ·l(s, d),
where μ ≥ 1 is the stretch. Thus, the feasible switch set of
request r can be denoted as Ωr = {ω |l(s, ω) + l(ω, d) ≤
μ · l(s, d)} in INSD-G.

We use the original network topology G = (V, E) to
describe the INSD-G problem, where V is a set of SDN
switches and E is the set of links connecting these switches.
Similar to INSD, we use xv to indicate whether a server will
be deployed on switch v or not. Let zf

v ∈ {0, 1} be an indicator
variable to denote whether the VNF f will be placed on the
server which is connected to switch v or not. If zf

v = 1, the
VNF f will be placed on the server to accordingly process
the requests that pass through the switch v and need to be
processed by f . Otherwise, no VNF will be placed on the
server. We also use yf

v,t to denote whether a rule matching the
egress switch t and the VNF f will be installed on switch v or
not. The same two constraints (i.e., FTS and server computing
capacity) are considered in the INSD-G problem. According
to the above description, we formalize the INSD-G problem
as follows:

min
∑
v∈V

xv

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xv ≥ zf
v , ∀v ∈ V, f ∈ F (6a)

zf
v ≥ yf

v,t, ∀v ∈ Ωr, t ∈ Ve, f ∈ F (6b)∑
v∈Ωr

yf
v,tr
≥ 1, ∀r ∈ R, f ∈ Fr (6c)

∑
t∈Ve

∑
f∈F

yf
v,t ≤ c(v), ∀v ∈ V (6d)

∑
t∈Ve

∑
r∈Rv

∑
f∈Fr

yf
v,tr

N(r)θf ≤ c(sv), ∀v ∈ V (6e)

xv, zf
v , yf

v,t ∈ {0, 1}, ∀v ∈ V, t ∈ Ve, f ∈ F (6f)
The first set of inequalities (6a) denotes whether a server

will be deployed on switch v or not. The second set of
inequalities (6b) means that the VNF f should be placed on
the server connected to the switch v if the rule matching egress
switch t and VNF f has been installed on switch v. The third
set of inequalities (6c) means that each VNF f ∈ Fr should be
deployed at least once on the switch v ∈Mr, where tr denotes
the egress switch of request r. The fourth set of inequalities
(6d) expresses the FTS constraint for VNF processing on
the switch v. The fifth set of inequalities (6e) tells that the
processing cost on each server should not exceed its capacity.
The objective is to minimize the number of deployed servers
in the NFV-enabled networks.

In order to solve the INSD-G problem, we design the
KPGD-G algorithm which is similar to KPGD. In INSD,
each request r in INSD has a specified path for server
deployment. While in the INSD-G problem, each request r
will be processed on its feasible switches. In other words,
we regard that there is a logical path, which consists of all
feasible switches in Ωr for request r for server deployment.
Thus, the INSD-G problem can be transformed into the INSD
problem. Our proposed KPGD-G algorithm also consists of a
group of iterations, each of which includes two main steps. In
the first step, the KP algorithm is adopted to compute the total
profit of each switch which has no connected server. Then we
choose the switch with the maximum profit value to deploy a

server. In the second step, the rest requests that are uncovered
by the placed VNFs in the network should be updated. INSD-
G will terminate until each request r has been covered by any
VNF f ∈ Fr. Due to the similarity of the algorithms, we omit
the pseudo code of INSD-G.

Lemma 7: Let ρ′ and η′ be the number of servers for
the INSD-G problem by KPGD-G and the optimal solution,
respectively. Similar to Theorem 5, we can derive that

ρ′

η′ ≤ 2 ·H(q · p)

Theorem 8: By Lemma 7, we can conclude that
our proposed KPGD-G algorithm can achieve
2 ·H(q · p)-approximation for the INSD-G problem.

Theorem 9: The total time complexity of our proposed
KPGD-G algorithm is O(n2mqσ), where σ = md is the
possible networks for server deployment and d is average
feasible paths for each request.

Proof: Different from KPGD which has a specified path
for each request, KPGD-G has a feasible switches set. Assume
that there are average d feasible paths for each request. So,
there are σ possible networks for server deployment, where
σ = md and m is the size of the requests set. Then, similar to
KPGD, KPGD-G also consists of O(n) iterations at most and
execute two main steps to place servers. Thus, we can conclude
that the total time complexity of KPGD-G is O(n2mqσ) �

D. Discussion

In this section, we discuss some practical issues to enhance
the proposed solution.

1) In practice, the number of requests in the network will
vary from time to time. For example, the number of requests
may peak during the day and underestimate at night. However,
deploying servers over time is unrealistic and requires a lot
of resources (e.g., time or deployment cost), even leading to
network failure. Thus, we focus on server deployment during
the request peak, so that time-varying requests can also be
processed by the specific network functions.

2) After the server deployment problem has been solved, the
SFC requirement will be posed for request routing. Different
methods can be applied for SFC routing. In addition to our
proposed scheme of tag operations, both Network Service
Header (NSH) and Segment Routing (SR) [34] can support
SFC routing. Though NSH is a data plane transmission proto-
col, it realizes the strategy of SFC control plane and helps
users create and deploy SFC dynamically. Thus, it is also
a practical solution for SFC routing. Since SR only requires
to store forwarding rules on some selected switches (not all
switches) along the route path, it helps to reduce the usage
of forwarding rules on switches. There are two types of SR
architecture, IPv6 Segment Routing (SRv6) and Multiprotocol
Label Switching Segment Routing (SR-MPLS) [34]. In the
SRv6 architecture, an IPv6 extension headers allows includ-
ing a list of segments, where the length of each segment
is 128 bits, in the IPv6 packet header which may cause
overload with the long segment list. In SRMLPS architecture,
the list of segments is compatible with the label stack of
the MPLS data plane. Since this paper focuses on the server
deployment problem, we ignore the detailed implementation
of SFC routing here.

3) Our proposed solution incrementally places servers using
coarse-grained (i.e., wildcard-based) rules, which helps to
effectively reduce the TCAM cost and control overhead.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: INSD FOR SOFTWARE-DEFINED NFV-ENABLED NETWORKS 255

Moreover, the wildcard rules can be further compressed by
applying rule optimizations that delete overlapping rules and
install just one to cover them. Since this paper focuses on
server deployment using long-term traffic observations, and
the runtime rule installment depends on the traffic dynamics,
we do not consider the rule optimization in our problem.

IV. PERFORMANCE EVALUATION

This section first introduces the metrics and benchmarks for
performance comparison (Section IV-A). Then, we evaluate
our proposed algorithm by comparing with the previous meth-
ods through large-scale simulations (Section IV-B). Finally,
we implement our algorithm on the SDN platform with
physical Pica8 switches4 and Open vSwitches (OVSes), and
give the testing results (Section IV-C). All our code is publicly
available at github5

A. Performance Metrics and Benchmarks

For server deployment and VNF placement, we design the
efficient algorithms and extend it to the general case. We adopt
the following metrics to evaluate scalability and efficiency of
our proposed algorithm.

1) The number of deployed servers. To satisfy the SFC
requirements of all the requests, more servers will be
deployed in the network with the increasing number
of requests. We count the number of deployed servers
in the network. Besides, the utilization of a server is
the CPU computing load on this server divided by
its computing capacity. Then, we calculate the average
utilization of all servers, as the server utilization. Low
server utilization indicates a huge waste of computing
resources on servers. We focus on the CPU resource
consumption for VNF processing of all servers in the
network.

2) The maximum (or Max.) and average (or Avg.) number
of rules on any switch at any time during the simulation.
When the servers have been deployed in the network,
rules should be installed for VNF processing on the
switches. Thus, we measure the number of installed rules
on each switch and determine the maximum and average
number of rules among all switches.

3) Considering traffic dynamics (e.g., traffic rate fluctua-
tion), if all requests follow the wildcard rules for VNF
processing, it may lead to processing congestion on
some server(s). Thus, we need to install some extra
request-based rules in the test-bed evaluation so that
some requests will be processed on different servers.
How to install extra rules for congestion avoidance is
similar to the solution for link congestion avoidance in
[35]. Due to space limitations, we omit the detailed
description here. During the update process, update
delay and control overhead is important for scalability.
Specifically, for update delay, we measure the during
time of update procedure. Moreover, for control over-
head, the total amount of traffic was measured between
the conrtoller and the switches during the update proce-
dure. We use a tool Cbench6 to test the performance of
OpenFlow controllers.

4Pica8. Available: https://www.pica8.com
5The code is available at https://github.com/lyl617/VNF_INSD.
6Cbench. Available: https://github.com/mininet/oflops/tree/master/cbench

4) Network failure is a common scenario in today’s net-
works. Thus, we measure the duration from failure
occurrence to failure recovery as failure response time.
In this case, we deal with the various failures, e.g., single
or multiple server/link/switch failures. The tag operation
in our proposed solution may exert negative effect on the
packet forwarding rate. Therefore, we adopt vnStat7 tool
to measure the network throughput. Besides, the server
and link load of each server and link on the network are
measured.

B. Simulation Evaluation

1) Benchmarks: To evaluate how well our proposed algo-
rithm performs, we compare with the other two benchmarks.
Sang et al. [10] study the VNF placement problem, which
minimizes the total number of VNF instances, subject to the
constraint that all the requests need to be fully processed. The
proposed algorithm, called GFT, considers the joint placement
and allocation of VNF instances in a new NFV-enabled
networking paradigm. Not only does the algorithm need to
decide how many VNF instances to place on each server, but
also need to determine how to allocate the computing resource
for each VNF instance to process the requests through each
switch. The second benchmark is called T-SAT [15], which
addresses the VNF placement problem. The proposed solution
first accomplishes the mapping of the SFCs or VNFs, then
determines the placement of the related VNFs and allocates
resources for VNFs based on the mapping results and the
workloads of VNFs. Both two benchmarks process packets
according to the request granularity.

2) Simulation Settings: In the simulations, as running exam-
ples, we select two typical and practical topologies, one for
data center networks and the other for campus networks. The
first topology, denoted as (a), is the fat-tree topology [36],
which has been widely used in many data center networks.
The fat-tree topology contains in total 320 switches (including
128 edge switches, 128 aggregation switches, and 64 core
switches) and 1024 terminals. The second one, denoted as (b),
is a campus network topology [37]. The topology (b) con-
tains 100 switches and 200 terminals. We generate requests
following DCTCP (data center TCP) and CPTCP (campus
TCP) patterns for two topologies [38]. Since the topologies
do not provide VNF information, we assume that there have
deployed 5 types of VNFs (e.g., IDS, Proxy, Monitor, Firewall
and IPSec) on servers. We randomly generate an SFC require-
ment for each request with a subset of 5 types of VNFs. For
example, the SFC requirement for request 1 is IDS-Monitor-
Firewall, and that for request 2 may be Proxy-Monitor-
Firewall-IPSec. We execute each simulation 100 times, and
take the average of the numerical results.

3) Simulation Results: We run five groups of simulations
on two different topologies to check the effectiveness of the
proposed algorithms. The first set of two simulations shows
the deployment cost (e.g., the number of servers) and server
utilization without the FTS constraint on switches. Fig. 4
shows the number of deployed servers by changing the number
of requests in both two topologies. With more requests from
12K to 60K, the number of deployed servers in the network
is almost linearly increasing in topology (a). Given a fixed
number of requests, the number of deployed servers by four
solutions is very close. However, KPGD and KPGD-G may

7vnStat. Available: https://humdi.net/vnstat/

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

256 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 4. No. of Servers vs. No. of Requests without FTS Constraint. Left
plot: Topology (a); right plot: Topology (b).

Fig. 5. Server Utilization vs. No. of Requests without FTS Constraint. Left
plot: Topology (a); right plot: Topology (b).

Fig. 6. No. of Servers vs. No. of Requests with the FTS Constraint. Left
plot: Topology (a); right plot: Topology (b).

deploy a little more servers than GFT and T-SAT on both
two topologies. For example, when there are 60K requests in
the network, KPGD needs to deploy 63 servers, while GFT
and T-SAT need to deploy 60 and 58 servers in topology (a),
respectively. In conclusion, our KPGD algorithm will increase
the server deployment cost by about 5-9% compared with
GFT and T-SAT. That’s because both GFT and T-SAT control
the requests in a fine-grained manner. However, two solutions
require a massive number of rules on switches compared with
our solution, which will be illustrated in Fig. 11.

Fig. 5 shows the server utilization of four algorithms. The
figure demonstrates that server utilization is increasing linearly
with more requests in both two topologies. In topology (a),
when there are 36K requests, the server utilization of GFT is
less than that of both KPGD, KPGD-G and T-SAT. That is,
KPGD can improve server utilization by about 10% compared
to GFT. However, KPGD and KPGD-G may achieve slightly
(< 5% on average) worse performance in terms of server
deployment cost without the FTS constraint compared with
T-SAT and GFT.

The second set of simulations shows the number of deployed
servers and server utilization with the FTS constraint (e.g., 4K)
for VNF processing by changing the number of requests from
12K to 60K in the network. By the left plot of Fig. 6,
our proposed solution can reduce the number of deployed
servers compared with the other two solutions. For example,
when there are 60K requests in the network, the number of
deployed servers for KPGD is 76, while T-SAT and GFT need
to deploy 112 and 128 servers. So KPGD can reduce the
number of deployed servers by about 32% and 41% compared
with T-SAT and GFT, respectively. That’s because GFT and
T-SAT install rules on the switches for VNF processing with
the request granularity, which may require a massive number

Fig. 7. Server Utilization vs. No. of Requests with the FTS Constraint. Left
plot: Topology (a); right plot: Topology (b).

Fig. 8. CDF vs. Server Utilization. Left plot: Topology (a); right plot:
Topology (b).

Fig. 9. No. of Servers vs. Ratio of CPC without FTS Constraint. Left plot:
Topology (a); right plot: Topology (b).

of rules and violate the FTS constraint. Both KPGD and
KPGD-G can effectively reduce the number of installed rule
by using the wildcard. Besides, Fig. 7 shows that KPGD can
improve server utilization by about 47% and 45%, respectively,
compared with GFT and T-SAT in topology (b). Thus, our
proposed solution can deploy fewer servers and achieve better
server utilization than the other two solutions with the FTS
constraint.

Fig. 8 shows the CDF of server utilization for four solutions
when there are 60K requests in the network. We observe that
KPGD can achieve the best performance in terms of server
utilization among four solutions in both two topologies. For
example, in topology (b), nearly 50% of servers will achieve
utilization more than 0.45 by KPGD, while only about 5%
and 15% of servers achieve the same utilization by GFT and
T-SAT, respectively.

The third set of simulations shows the number of deployed
servers with (or without) the FTS constraint by changing the
ratio of CPU processing capacity (CPC) from 0.5 to 1 on
servers. By Figs. 9-10, given a fixed number of requests (e.g.,
36K), the number of required servers in the network decreases
for all four solutions with the increasing ratio of CPC. Our
proposed KPGD and KPGD-G algorithms may deploy a little
more number of servers compared with the other two solutions
GFT and KPGD without the FTS constraint. For example,
as shown in Fig. 9, when the ratio of CPC is 0.7 in the
topology (a), KPGD needs to deploy 52 servers and KPGD-G
needs to deploy 54 servers, while GFT and T-SAT need to
deploy 49 and 46 servers, respectively. However, Fig. 10
shows that KPGD and KPGD-G can reduce the number of
required servers compared with GFT and T-SAT with the FTS
constraint. For example, given the same ratio (0.7) of CPC in

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: INSD FOR SOFTWARE-DEFINED NFV-ENABLED NETWORKS 257

Fig. 10. No. of Servers vs. Ratio of CPC with FTS Constraint. Left plot:
Topology (a); right plot: Topology (b).

Fig. 11. Max. Rules vs. No. of Requests. Left plot: Topology (a); right plot:
Topology (b).

Fig. 12. Avg. Rules vs. No. of Requests. Left plot: Topology (a); right plot:
Topology (b).

the topology (a), the number of deployed servers for KPGD is
61, while KPGD-G, GFT and T-SAT need to deploy 69, 102
and 84 servers, respectively.

The fourth set of two simulations shows the TCAM con-
sumption (e.g., the maximum and average number of rules) of
four solutions. As shown in Fig. 11, the maximum number of
required rules increases for all solutions with the increasing
number of requests. However, the increasing ratio of KPGD
and KPGD-G is much slower than that of the other two
benchmarks. In comparison, KPGD and KPGD-G require
fewer rules than GFT and T-SAT. For example, given 36K
requests in topology (a), KPGD uses a maximum number
of 1.4K rules, while T-SAT and GFT need about 12.1K and
17.9K rules, respectively. In other words, KPGD can reduce
the maximum number of required rules by about 88% and 92%
compared with T-SAT and GFT, respectively. Besides, we also
observe the average number of required rules for the requests
in the network. As shown in the topology (b) of Fig. 12, when
there are 36K requests in the network, the average number
of required rules of KPGD is about 1K, while T-SAT and
GFT need about 4.6K and 5.9K rules, respectively. That is
to say, our proposed KPGD solution can reduce the average
number of required rules by about 77% and 82% compared
with T-SAT and GFT, respectively. Fig. 13 shows the CDF of
rules under a fixed number (e.g., 60K) of requests. By this
figure, about 90% of switches need less than 4K rules, while
over 50% of switches need more than 10K rules by T-SAT
and GFT. Therefore, our proposed solution can significantly
reduce the TCAM consumption of all switches compared with
the existing solutions.

When a server can process more SFC requests, i.e., the
ratio of CPC becomes larger, the number of required rules
will decrease in the network. By Figs. 14-15, the maximum

Fig. 13. CDF vs. No. of Rules. Left plot: Topology (a); right plot:
Topology (b).

Fig. 14. Max. Rules vs. Ratio of CPC. Left plot: Topology (a); right plot:
Topology (b).

Fig. 15. Avg. Rules vs. Ratio of CPC. Left plot: Topology (a); right plot:
Topology (b).

and average numbers of required rules decrease by changing
the ratio of CPC from 0.5 to 1. KPGD and KPGD-G need to
deploy both fewer rules compared with the other two solutions.
For example, as shown in Fig. 14, KPGD needs to deploy
about 4.8K rules if the ratio of CPC is 0.7, while T-SAT and
GFT need to deploy about 20.2K and 17.6K rules, respectively,
in the topology (a). Thus, KPGD can reduce the maximum
number of rules by about 76% and 72% compared with T-SAT
and GFT, respectively.

The last set of simulations shows the performance in terms
of control traffic overhead of four solutions, including GFT,
T-SAT, KPGD and KPGD-G. As shown in Fig. 16, with the
number of requests increasing, GFT and T-SAT deploy more
rules than KPGD and KPGD-G, leading to higher control
traffic overhead. For example, when there are 36K requests
in topology (a), the control overhead of KPGD and KPGD-G
is about 40Mb and 75Mb, while that of T-SAT and GFT
increases to 150Mb and 340Mb, respectively. In other words,
KPGD can reduce control overhead by about 73% and 88%
compared with T-SAT and GFT, respectively. Besides, we test
the control overhead by changing the ratio of CPC. Fig. 17
shows that KPGD and KPGD-G also can reduce the control
overhead compared with the other two solutions because of
fewer number of required rules in the network which has been
shown in the Figs. 14-15.

From these simulation results in Figs. 4-17, we can make
the following three conclusions. First, by Figs. 4-9, our KPGD
and KPGD-G solutions may achieve a slightly worse but
comparable performance (< 5% on average) in terms of
servers deployment cost and server utilization without the FTS
constraint. However, KPGD can reduce the server deployment
cost by about 36% and improve server utilization by about

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

258 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

Fig. 16. Control Overhead vs. No. of Requests. Left plot: Topology (a); right
plot: Topology (b).

Fig. 17. Control Overhead vs. Ratio of CPC. Left plot: Topology (a); right
plot: Topology (b).

47% compared with GFT and T-SAT with the FTS constraint.
Second, by Figs. 11-15, our proposed solutions can reduce the
number of required rules by 90% compared with two bench-
marks. Third, Figs. 16-17 show that KPGD can reduce the con-
trol overhead by about 88% and 73% compared with GFT and
T-SAT, respectively. Moreover, KPGD-G achieves the similar
performance of these metrics compared with KPGD. These
results show that our KPGD and KPGD-G algorithms can
significantly improve the scalability of NFV-based networks
compared with two benchmarks.

C. Test-Bed Evaluation

1) Implementation on the Platform: We implement the GFT,
T-SAT and KPGD algorithms on a real test-bed. The topology
of our platform is a small-scale topology Telstra from the
Rocketfuel dataset [37]. The topology is composed of four
main parts: a server installed with the controller’s software,
a set of OpenFlow enabled switches, a set of servers and
some terminals. Specifically, we choose RYU8 as the controller
software running on a server with a core i7-9700k and 32GB
of RAM. We build the data plane with 2 Pica8 3297 switches
and 6 Open vSwitches (OVSes with version 2.8.5). Each OVS
is run on a single server with a core i7-8700k processor
and 32GB of RAM. Besides, there are three kinds of VNFs,
including IDS, Proxy and Monitor on servers, each of which
is equipped with a core i5-3470 processor and 8GB of RAM.
The IDS is an open source, called Snort9, which is a powerful
network instrusion detection/defense system with real-time
traffic analysis and network IP packet recording. Squid10 is a
high performance proxy cache server that supports FTP, HTTP
and GOPHER protocols. Prads11 is the shorter form of passive
real-time asset detection system, which is a kind of Monitor.

We adopt the Packet Generator (PktGen)12 to generate
network traffic, which is a powerful tool also used by [39].
Using PktGen, requests can be generated with various sizes
and patterns. Since there are 8 switches in the network, each
5-tuple flow is regarded as a request so as to generate more

8RYU. Available: https://osrg.github.io/ryu/
9Snort. Available: http://www.snort.org
10Squid.. Available: http://www.squid-cache.org/
11Prads. Available: https://pradsinc.com/

Fig. 18. No. of Rules on Each Switch in Telstra Topology.

requests in the test-bed. In the experiments, we generate
DCTCP pattern requests [38]. According to the request size
distribution, the rate of 40% requests is set as 500Kbps and
that of the rest requests is set as 800Kbps. We divide the
differentiated services code point (DSCP) into four parts,
i.e., DSCP 0-3, each of which accounts for 25%. Since we
implement our algorithm on a small-scale testbed, the server
deployment problem can be optimally solved by the integer
programming solver. Thus, we ignore the server deployment
performance comparison among three algorithms here.

2) Testing Results: In the first set of experiments, we gen-
erate 30s TCP requests in the network. As shown in Fig. 18,
we count the number of installed rules on each switch and
determine the maximum (average) number of these rules. Our
proposed KPGD solution needs to install fewer rules than other
solutions. For example, it needs to install 220 and 150 rules
on switch v4 by GFT and T-SAT, respectively, while KPGD
installs only about 35 rules on this switch. In other words,
KPGD can reduce the maximum number of rules by about
84% and 77% compared with GFT and T-SAT, respectively.

We also conduct the traffic dynamics, which require to
dynamically update rules in the second set of experiments,
on the test-bed implementation. We change the requests in the
network over time. If these rules are updated at a low speed,
the network performance will be greatly decreased. KPGD
can achieve a lower update delay compared with the other
two benchmarks by Fig. 19. Because our proposed algorithm
can significantly reduce the number of required rules compared
with other solutions. For example, when there are 600 requests
in the network, KPGD reduces the number of rules by about
75% and 80% compared with T-SAT and GFT, respectively.
Accordingly, less control overhead will be required between
the controllers and the switches during update procedure.
For example, Fig. 20 shows that KPGD can reduce control
overhead by about 76% and 77% compared with T-SAT and
GFT, respectively. Lower update delay and control traffic
overhead show the better scalability of KPGD compared with
two benchmarks.

In the second set of experiments, we observe the perfor-
mance of network (e.g., network throughput, the load of server
or link and failure response time) with the three solutions.
Fig. 21 shows that KPGD achieves the similar performance of
network throughput compared with GFT and T-SAT. Besides,
the load of some servers and links by KPGD is a little
higher than that of GFT and T-SAT in the Figs. 22-23.
That means the wildcard scheme and tag operation of KPGD
bring a little negative impact in the performance of network

12https://pktgen-dpdk.readthedocs.io/en/latest/
13I:single server failure, II:single link/switch failure, III:multi-server failures,

IV:multi-link/switch failures.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: INSD FOR SOFTWARE-DEFINED NFV-ENABLED NETWORKS 259

Fig. 19. Update Delay vs. No. of Requests in Telstra Topology.

Fig. 20. Control Overhead vs. No. of Request in Telstra Topology.

Fig. 21. Avg. Throughput vs. Time in Telstra Topology.

Fig. 22. Server Load of Each Server in Telstra Topology.

Fig. 23. Link Load of Each Link in Telstra Topology.

Fig. 24. Response Time vs. Failures in Telstra Topology13 .

throughput and load of server/link. Moreover, Fig. 24 shows
the response time of four failure scenarios:(I)single server

failure,(II)single link/switch failure,(III)multi-server failures,
and (IV)multi-link/switch failures. Some new rules need to
be deployed on the switches in the network to re-route the
requests because of failures. The time cost is mainly for the
procedure of deploying rules. KPGD needs to deploy fewer
number of rules compared with GFT and T-SAT which has
been shown in the Fig. 18. Thus, the failure response time
of KPGD is much shorter than the other two solutions. For
example, when there are multiple server failures, the response
time of KPGD is about 28ms, while GFT and T-SAT achieve
about 250ms and 145ms, respectively.

V. RELATED WORKS

Recently, with the continuous development and maturing
of NFV technology, it has gradually become a new way to
design, deploy, and manage network services. The related VNF
placement problem also have attracted plenty of attention of
researchers.

Some mechanisms based on the NFV and SDN architecture
have been proposed to improve the network performance
and guarantee the network quality of service (QoS) in [40],
[41] [42]. Guerzoni et al. [40] introduced a Mixed Integer
Programming (MIP) problem for a coordinated node and link
mapping onto the underlying network infrastructure, in which
VNFs or virtual machines (VMs) were mapped to a network of
VM containers. The objective of the problem is to maximize
the number of virtual network requests that can be optimally
embedded into a given substrate.

The authors in [41] focused on network-aware VNFs
placement, which alleviates mobile traffic load and reduce
mobile operator cost, while neglecting the consolidation pol-
icy. However, they have no explicit solutions to solve the
formulated NP-hard problems for VNFs placement. Xia et
al. [42] analyzed in detail the network traffic and its impact
on VNFs placement. They formulate the problem of optimal
VNFs placement in binary integer programming (BIP), and
propose an alternative efficient heuristic algorithm to solve
this problem.

These methods are interesting in VNFs placement problem
formulation and solving them by using according algorithms.
However, none of them considers the problem of service
function chaining (SFC) in the NFV-enabled network.

In [7], the authors defined a model for formalizing the
chaining of network functions using a context-free language.
We process deployment requests and construct virtual net-
work function graphs that can be mapped to the network. A
Mixed Integer Quadratically Constrained Program (MIQCP) is
described for finding the placement of the network functions
and chaining them together, considering the limited network
resources and requirements of the functions, such as latency,
number of allocated nodes, and link utilizations. Formalization
of the network function placement and chaining problem was
presented by Luizelli et al. [43]. They proposed an integer
linear programmingbased optimization model to solve the
placement. In this paper, they determined the locations of the
VNFs, assign instances of VNFs to flow, and create paths that
connect the VNFs.

VNF-OP [44] proposed a solution to determine the required
number and palcement of VNFs that optimizes network oper-
ational cost and utilization, without violating SLAs. This
approach includes energy cost and penalty for SLA violation
as a part of network OPEX and dynamically rearranges
VNFs to minimize the OPEX. A heuristic algorithm was also

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

260 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 1, FEBRUARY 2021

proposed in [45] and [46]. Li and Qian [45] used Simulated
Annealing (SA) to find solutions in shorter times but simplifies
the overall problem using only one type of VNF and consider-
ing rather small chains. In [46] a joint NFV resource allocation
and service function chaining was proposed. The authors used
a cost model to make a trade-off between service performance
and network costs. Besides, they formulated a mixed-integer
linear programming (MILP) to model the problem and propose
a heuristic algorithm to solve it.

In the above mentioned solutions, VNFs placement and
chaining probelms are solved in two main steps: VNFs are
placed first and second the traffic is steered through the
chains via the shortest possible path. What’s more, all of
these solutions process SFC routing according to the request
granularity, ignoring the impact of the limited TCAM size on
the switches. Our approach can combine the two steps well
without violeting limitation of TCAM size.

VI. CONCLUSION

In this paper, we study the incremental server deployment
problem for construction of NFV-based networks. Different
from the previous solutions based on request-level flows,
we adopt wildcard based scheme so as to reduce the number
of required rules and improve the system scalability. We
give the inapproximation performance of INSD with a ratio
of (1 − ε) lnm, for any ε > 0 and m is the number of
requests. We then design an efficient algorithm KPGD with
an approximation performance of 2 · H(q · p) for INSD,
where q is the number of VNF’s categories and p is the
maximum number of requests through a switch. To be more
practical, we extend our algorithm to address the general case,
in which there is no pre-computed path for each request. The
experimental results and extensive simulation results show that
KPGD can reduce the required number of rules by about
87% and the control overhead by about 82% compared with
the existing solutions, respectively. These simulation results
reveal that wildcard-based rule installment can help to achieve
high efficiency and significantly improve the scalability of
NFV-based networks.

REFERENCES

[1] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, and L. Huang, “Incremental
server deployment for scalable NFV-enabled networks,” in Proc. IEEE
Conf. Comput. Commun. (IEEE INFOCOM), Jul. 2020, pp. 2361–2370.

[2] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” ACM SIG-
COMM Comput. Commun. Rev., vol. 43, no. 4, pp. 27–38, 2013.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[4] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying
chains of virtual network functions: On the relation between link and
server usage,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562–1576,
Aug. 2018.

[5] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: State
of the art, challenges and implementation in next generation
mobile networks (vEPC),” 2014, arXiv:1409.4149. [Online]. Available:
http://arxiv.org/abs/1409.4149

[6] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. NSDI, vol. 14, 2014, pp. 203–216.

[7] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE 3rd Int. Conf. Cloud Netw.
(CloudNet), Oct. 2014, pp. 7–13.

[8] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 1346–1354.

[9] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in Proc. IEEE
4th Int. Conf. Cloud Netw. (CloudNet), Oct. 2015, pp. 255–260.

[10] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,”
in Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), May 2017,
pp. 1–9.

[11] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proc. IEEE 4th Int.
Conf. Cloud Netw. (CloudNet), Oct. 2015, pp. 171–177.

[12] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2017, pp. 731–741.

[13] N. Rasmussen, “Strategies for deploying blade servers in existing data
centers,” White Paper, 2006, vol. 125, pp. 1–14.

[14] B. Leng, L. Huang, C. Qiao, and H. Xu, “A light-weight approach to
obtaining NF state information in SDN+NFV networks,” in Proc. IEEE
Conf. Comput. Commun., Apr. 2018, pp. 971–979.

[15] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function placement
considering resource optimization and SFC requests in cloud datacenter,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7, pp. 1664–1677,
Jul. 2018.

[16] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite CacheFlow
in software-defined networks,” in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw. (HotSDN), 2014, pp. 175–180.

[17] FAST. (2016). FPGa Based SDN Swithing. [Online]. Available:
https://fast-switch.github.io/

[18] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “CountMax: A
lightweight and cooperative sketch measurement for software-defined
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2774–2786,
Dec. 2018.

[19] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, “Minimizing
controller response time through flow redirecting in SDNs,” IEEE/ACM
Trans. Netw., vol. 26, no. 1, pp. 562–575, Feb. 2018.

[20] H. Wang, H. Xu, C. Qian, J. Ge, J. Liu, and H. Huang, “PrePass: Load
balancing with data plane resource constraints using commodity SDN
switches,” Comput. Netw., vol. 178, Sep. 2020, Art. no. 107339.

[21] H. Xu, S. Chen, Q. Ma, and L. Huang, “Lightweight flow distribution
for collaborative traffic measurement in software defined networks,” in
Proc. IEEE Conf. Comput. Commun. (IEEE INFOCOM), Apr. 2019,
pp. 1108–1116.

[22] L. Guo, J. Pang, and A. Walid, “Dynamic service function chaining
in SDN-enabled networks with middleboxes,” in Proc. IEEE 24th Int.
Conf. Netw. Protocols (ICNP), Nov. 2016, pp. 1–10.

[23] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: Enabling innovation in middlebox deployment,”
in Proc. 10th ACM Workshop Hot Topics Netw., 2011, p. 21.

[24] G. Zhao, H. Xu, J. Liu, C. Qian, J. Ge, and L. Huang, “SAFE-
ME: Scalable and flexible middlebox policy enforcement with software
defined networking,” in Proc. IEEE 27th Int. Conf. Netw. Protocols
(ICNP), Oct. 2019, pp. 1–11.

[25] A. Gushchin, A. Walid, and A. Tang, “Scalable routing in SDN-enabled
networks with consolidated middleboxes,” in Proc. ACM SIGCOMM
Workshop Hot Topics Middleboxes Netw. Function Virtualization, 2015,
pp. 55–60.

[26] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and
O. C. M. B. Duarte, “Orchestrating virtualized network functions,”
IEEE Trans. Netw. Service Manage., vol. 13, no. 4, pp. 725–739,
Dec. 2016.

[27] H. Xu, J. Liu, C. Qian, H. Huang, and C. Qiao, “Reducing controller
response time with hybrid routing in software defined networks,” Com-
put. Netw., vol. 164, Dec. 2019, Art. no. 106891.

[28] J. Liu, L. Huang, C. Qiao, and S. Wang, “TOR-ME: Reducing controller
response time based on rings in software defined networks,” in Proc.
IEEE 11th Int. Conf. Commun. Softw. Netw. (ICCSN), Jun. 2019,
pp. 27–33.

[29] C. Gao, X. Yao, T. Weise, and J. Li, “An efficient local search heuristic
with row weighting for the unicost set covering problem,” Eur. J. Oper.
Res., vol. 246, no. 3, pp. 750–761, Nov. 2015.

[30] R. Raz and S. Safra, “A sub-constant error-probability low-degree
test, and a sub-constant error-probability PCP characterization of NP,”
in Proc. 29th Annu. ACM Symp. Theory Comput. (STOC), 1997,
pp. 475–484.

[31] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM,
vol. 45, no. 4, pp. 634–652, Jul. 1998.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: INSD FOR SOFTWARE-DEFINED NFV-ENABLED NETWORKS 261

[32] A. Gupta, M. Pál, R. Ravi, and A. Sinha, “What about Wednesday?
Approximation algorithms for multistage stochastic optimization,” in
Approximation, Randomization and Combinatorial Optimization. Algo-
rithms and Techniques. Berlin, Germany: Springer, 2005, pp. 86–98.

[33] T. Lukovszki, M. Rost, and S. Schmid, “It’s a Match!: Near-optimal
and incremental middlebox deployment,” ACM SIGCOMM Comput.
Commun. Rev., vol. 46, no. 1, pp. 30–36, 2016.

[34] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2014, pp. 1–6.

[35] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in Proc. IEEE INFOCOM - IEEE
Conf. Comput. Commun., May 2017, pp. 1–9.

[36] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[37] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” ACM SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, pp. 133–145, 2002.

[38] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in Proc. 13th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2016, pp. 537–549.

[39] G. Chen et al., “Fast and cautious: Leveraging multi-path diversity for
transport loss recovery in data centers,” in Proc. USENIX Annu. Tech.
Conf. (USENIX-ATC), 2016, pp. 29–42.

[40] R. Guerzoni et al., “A novel approach to virtual networks embedding
for SDN management and orchestration,” in Proc. IEEE Netw. Oper.
Manage. Symp. (NOMS), May 2014, pp. 1–7.

[41] M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network function
placement for efficient traffic handling in carrier cloud,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2014, pp. 2402–2407.

[42] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for NFV chaining in Packet/Optical datacenters,”
J. Lightw. Technol., vol. 33, no. 8, pp. 1565–1570, Apr. 15, 2015.

[43] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and
L. P. Gaspary, “Piecing together the NFV provisioning puzzle:
Efficient placement and chaining of virtual network functions,” in
Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), May 2015,
pp. 98–106.

[44] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” in Proc. 11th Int. Conf. Netw.
Service Manage. (CNSM), Nov. 2015, pp. 50–56.

[45] X. Li and C. Qian, “The virtual network function placement problem,” in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
Apr. 2015, pp. 69–70.

[46] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint optimization
of service function chaining and resource allocation in network function
virtualization,” IEEE Access, vol. 4, pp. 8084–8094, 2016.

Jianchun Liu (Student Member, IEEE) received
the B.S. degree from North China Electric Power
University in 2017. He is currently pursuing the
Ph.D. degree with the School of Data Science, Uni-
versity of Science and Technology of China (USTC).
His main research interests include software defined
networks, network function virtualization, edge com-
puting, and federated learning.

Hongli Xu (Member, IEEE) received the B.S. degree
in computer science and the Ph.D. degree in com-
puter software and theory from the University of
Science and Technology of China (USTC), China,
in 2002 and 2007, respectively. He is currently a
Professor with the School of Computer Science and
Technology, USTC. He was awarded the Outstand-
ing Youth Science Foundation of NSFC, in 2018.
He has won the Best Paper Award or the Best Paper
Candidate in several famous conferences. He has
published more than 100 articles in famous journals

and conferences, including the IEEE/ACM TRANSACTIONS ON NETWORK-
ING, IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSAC-
TIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, Infocom, and ICNP.
He has also held more than 30 patents. His main research interests include
software defined networks, edge computing, and the Internet of Thing.

Gongming Zhao (Member, IEEE) received the
Ph.D. degree in computer software and theory from
the University of Science and Technology of China
in 2020. He is currently an Associate Professor
with the University of Science and Technology
of China. His current research interests include
software-defined networks and cloud computing.

Chen Qian (Senior Member, IEEE) received the
B.S. degree from Nanjing University in 2006, the
M.Phil. degree from The Hong Kong University of
Science and Technology in 2008, and the Ph.D.
degree from The University of Texas at Austin
in 2013, all in computer science. He is currently
an Assistant Professor with the Department of
Computer Engineering, University of California at
Santa Cruz. His research interests include computer
networking, network security, and the Internet of
Things. He has authored more than 60 research

articles in highly competitive conferences and journals. He is a member of
the ACM.

Xingpeng Fan received the B.S. degree from the
University of Science and Technology of China,
in 2017, where he is currently pursuing the Ph.D.
degree in computer science. His main research inter-
ests include software defined networks, data center
network, cloud computing, and edge computing.

Xuwei Yang received the B.S. degree in network
engineering from Chang’an University in 2016.
He is currently pursuing the Ph.D. degree in com-
puter science with the University of Science and
Technology of China. His main research interests
include software defined networks, network function
virtualization, and data center network.

He Huang (Member, IEEE) received the Ph.D.
degree from the School of Computer Science and
Technology, University of Science and Technology
of China (USTC), in 2011. He is currently a Pro-
fessor with the School of Computer Science and
Technology, Soochow University, China. His current
research interests include traffic measurement, com-
puter networks, and algorithmic game theory. He is
a member of the ACM.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 01,2022 at 05:41:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

