
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Adaptive Block-Wise Regularization and Knowledge
Distillation for Enhancing Federated Learning

Jianchun Liu , Member, IEEE, ACM, Qingmin Zeng, Hongli Xu , Member, IEEE, Yang Xu , Member, IEEE,
Zhiyuan Wang , and He Huang , Senior Member, IEEE, Member, ACM

Abstract— Federated Learning (FL) is a distributed model
training framework that allows multiple clients to collaborate on
training a global model without disclosing their local data in edge
computing (EC) environments. However, FL usually faces statis-
tical heterogeneity (e.g., non-IID data) and system heterogeneity
(e.g., computing and communication capabilities), resulting in
poor model training performance. To deal with the above
two challenges, we propose an efficient FL framework, named
FedBR, which integrates the idea of block-wise regularization and
knowledge distillation (KD) into the pioneering FL algorithm
FedAvg, for resource-constrained edge computing. Specifically,
we first divide the model into multiple blocks according to the
layer order of deep neural network (DNN). The server only sends
some consecutive model blocks instead of an entire model to
clients for communication efficiency. Then, the clients make use
of knowledge distillation to absorb the knowledge of global model
blocks to alleviate statistical heterogeneity during local training.
We provide a theoretical convergence guarantee for FedBR and
show that the convergence bound will decrease as the increasing
number of model blocks sent by the server. Besides, since the
increasing number of model blocks brings more computing and
communication costs, we design a heuristic algorithm (GMBS)
to determine the appropriate number of model blocks for clients
according to their varied data distributions, computing, and
communication capabilities. Extensive experimental results show
that FedBR can reduce the bandwidth consumption by about
31%, and achieve an average accuracy improvement of around
5.6% compared with the baselines under heterogeneous settings.

Index Terms— Federated learning, edge computing, hetero-
geneity, regularization, knowledge distillation.

I. INTRODUCTION

AS THE Internet of Things (IoT) continues to grow
rapidly, the amount of data generated on IoT devices

Manuscript received 18 April 2023; revised 9 June 2023; accepted 29 July
2023; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
G. Fanti. This work was supported in part by the National Key Research and
Development Program of China under Grant 2021YFB3301501; in part by the
National Science Foundation of China (NSFC) under Grant 61936015, Grant
62132019, and Grant 62102391; in part by the Jiangsu Province Science Foun-
dation for Youths under Grant BK20210122; and in part by the Xiaomi Young
Talents Program. Some preliminary results of this paper have been accepted
by IEEE/ACM IWQoS 2023 [DOI: 10.1109/IWQoS57198.2023.10188770].
(Corresponding author: Hongli Xu.)

Jianchun Liu, Qingmin Zeng, Hongli Xu, Yang Xu, and Zhiyuan Wang
are with the School of Computer Science and Technology, University of
Science and Technology of China, Hefei, Anhui 230027, China, and also
with the Suzhou Institute for Advanced Research, University of Science
and Technology of China, Suzhou, Jiangsu 215123, China (e-mail: jcliu17@
ustc.edu.cn; zqmin@mail.ustc.edu.cn; xuhongli@ustc.edu.cn; xuyangcs@
ustc.edu.cn; cswangzy@mail.ustc.edu.cn).

He Huang is with the School of Computer Science and Technology,
Soochow University, Suzhou 215006, China (e-mail: huangh@suda.edu.cn).

Digital Object Identifier 10.1109/TNET.2023.3301972

such as mobile phones, wearable devices, and monitors is
increasing [2]. Since data needs to be transferred to cloud
servers in traditional cloud computing, dealing with these
increasing amounts of data will lead to higher latency and a
worse user experience [3]. Hence, a new computing paradigm
has emerged, edge computing (EC) [4], which puts the pro-
cessing and storage of data at the network edge, to reduce the
bandwidth and processing pressure on cloud servers.

As the computing power of edge devices (or clients)
becomes more and more powerful, a distributed model training
framework, federated learning (FL) [5], [6], is applied to han-
dle more complex tasks for edge computing. In the pioneering
FL algorithm FedAvg [5], multiple clients use their local data
to train a model and then only upload their local models to
a parameter server for global aggregation. The server then
distributes the aggregated model back to clients for further
local training. The model transmission process will continue
until the model converges. In this way, FL will reduce latency
since model transmission consumes less time compared to
data transmission. Moreover, clients’ privacy is well protected
because the server will not directly access clients’ local data.

Despite the above benefits, performing efficient federated
learning still faces three main challenges in EC. (1) Statistical
Heterogeneity. The local data of the clients are usually
generated according to the preference and the location of
clients [7]. For example, most of the images that are taken
by the monitors located in the community are of residents,
while monitors located at the crossroad will mostly take
images of vehicles. Therefore, the data distribution among
different clients is significantly varied. Data samples from
different clients are usually not independent and identically
distributed (non-IID) and cannot represent the samples of the
overall data distribution (i.e., the distribution of total data
from all clients). This characteristic of non-IID data will
seriously hurt the model training performance and reduce the
convergence rate [8]. (2) System Heterogeneity. The clients
participating in the model training have different computing
and communication capabilities [9], [10], which are closely
related to the time of model updating and transmission,
respectively. Typically, the completion time increases as their
computing and communication capabilities weaken. The slow-
est client takes the longest completion time due to its weakest
computing or communication capabilities. In synchronous
FL [11], the most commonly used federated learning architec-
ture, the training time of each global round always depends
on the slowest client, resulting in a longer completion time.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1764-9303
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-0839-3892
https://orcid.org/0000-0002-5368-1132
https://orcid.org/0000-0003-2768-6607

2 IEEE/ACM TRANSACTIONS ON NETWORKING

(3) Communication Limitation. It takes a lot of bandwidth
to deliver models between the server and clients during the
training. Therefore, the limited communication bandwidth on
the server is also a bottleneck in FL [12], [13]. For example,
in FL with hundreds of clients jointly training one VGG16 [14]
(size is about 500MB), each global round needs to consume
more than 50GB of bandwidth, which may cause network
congestion on the server.

To mitigate the impact of statistical heterogeneity, some
technologies such as data augmentation [15], client sam-
pling [16], and regularization [17] have been applied to
FedAvg. The data augmentation is a technique that can enhance
the diversity of training data by employing random trans-
formations or knowledge transfer [18]. However, the server
needs to collect the label distribution information of clients
(e.g., the number of samples in each class), thus leaking the
privacy of clients. The client sampling combined with FedAvg
alleviates the statistical heterogeneity by selecting clients
with independent and identically distributed (IID) data [19].
However, some clients are always not selected resulting in
reduced amounts of data for training such that the performance
of model training will degrade. Applying regularization to
FedAvg effectively alleviates the impact of statistical hetero-
geneity by making the local model more similar to the global
model [20]. Compared to data augmentation and client sam-
pling, regularization obtains more global information and thus
improves the generalization performance of the global model.
FedMLB [21] is a new regularization method combined with
knowledge distillation (KD) technology [22], which blocks
the model hierarchically based on FedAvg and constructs
multiple auxiliary branches. It puts the output obtained by
each auxiliary branch and the output obtained by the local
model into the loss function as a regularization item through
knowledge distillation to obtain more global information.
Although this method can effectively alleviate the non-IID data
issue, the introduction of auxiliary branches greatly increases
the computing cost [23]. Besides, since all clients use the same
number of auxiliary branches and receive the entire global
model, FedMLB performs poorly under system heterogeneity
and limited communication resource according to the results
of experiments in Section V.

Motivated by FedMLB, we design an efficient feder-
ated learning framework FedBR, which integrates the idea
of block-wise regularization and knowledge distillation into
FedAvg, to solve the above three challenges simultaneously.
Specifically, we first divide the model into multiple blocks
according to the layer order of DNN, where each block
consists of multiple consecutive layers in the neural network.
Then, we utilize the global model blocks sent by the server
to construct multiple paths (i.e., from input to output) for
the local models of clients. To alleviate the impact of non-
IID data, we introduce a new regularization technique to
absorb the knowledge of the global model blocks via KD,
where KD is adopted to reduce the discrepancy between the
outputs of different paths. Since the different number of global
model blocks can construct a varied number of paths for
regularization, we call it block-wise regularization. The later
layers of the neural network are more important to the model

training performance than the previous layers [24]. As a result,
the server only distributes the last several consecutive blocks
of the global model in FedBR, thus significantly reducing
the communication cost compared with FedAvg. Although
more number of global model blocks allow clients to learn
more global information, it will lead to more computing and
communication cost. Therefore, how to dynamically determine
the proper number of global model blocks sent by the server
for each client is a key challenge. In summary, the main
contributions of our work are as follows:
• We propose an efficient federated learning framework,

FedBR, which reduces the communication cost by only
distributing the partial global model and alleviates the
heterogeneous challenges by introducing block-wise reg-
ularization and knowledge distillation to absorb knowl-
edge of the global model blocks.

• We provide a theoretical convergence guarantee for
FedBR and show that the convergence bound will
decrease as the number of model blocks sent by the server
increases.

• We propose a heuristic algorithm (termed as GMBS) that
adaptively determines the number of global model blocks
for clients according to their varied data distributions,
computing, and communication capabilities.

• We build a simulation environment and evaluate the
performance of FedBR through extensive experiments.
The experimental results show that FedBR can reduce
the bandwidth consumption by about 31%, and achieve an
average accuracy improvement of around 5.6% compared
with the baselines under heterogeneous settings.

To present our research on the efficient federated learn-
ing framework FedBR, this paper is organized as follows:
Section II firstly gives some preliminaries of FL, then system-
atically introduces our proposed FedBR framework, illustrates
the block-wise regularization, and finally gives the formal def-
inition of the problem. The convergence analysis is discussed
in Section III, while the designed algorithm for the problem
is presented in Section IV. We also show our experimental
results in Section V. Finally, Sections VI and VII provide an
overview of related work and a conclusion, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Federated Learning

In FL, multiple clients can collaboratively train an efficient
global model under the arrangement of the server. The goal of
federated learning with N clients is to minimize the average
loss function:

min
x

f(x) =
1
N

N∑
n=1

fn(x), (1)

where x is the model parameters and fn(x) is the local loss
function of client n ∈ {1, · · · , N}. The local loss function
of client n is defined as fn(x) ≜ Eφn∼Dn

[Fn(x; φn)], where
φn is a sample of the local dataset Dn and Fn(x; φn) is the
corresponding loss to the sample for client n.

In FL, enabling the model to reach target accuracy requires
several rounds of global training. To decrease the computing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ADAPTIVE BLOCK-WISE REGULARIZATION AND KD FOR ENHANCING FL 3

TABLE I
SUMMARY OF IMPORTANT SYMBOLS

and communication overhead, FL usually performs multiple
local model updating (i.e., local iteration) between two adja-
cent global rounds and only selects a part of clients to perform
model training. That is, each global round consists of several
local iterations. Note that we use round or epoch to represent
global updates and iteration to denote local updates in this
paper. We adopt e to represent the number of local iterations
between two adjacent global rounds. Besides, K (K ≤ N)
represents the number of clients participating in the model
training. At each global round, FL (e.g., FedAvg) usually is
divided into the following three steps [20]:

(1) Model Broadcast: At the beginning of global round
t ∈ {0, 1, · · · , T}, the server distributes the current global
model to K clients, where T is the total number of global
rounds.

(2) Local Updating: Each client k ∈ {1, 2, · · · , K} per-
forms e local iterations on its own local dataset Dk using the
received global model. Then, client k sends its updated local
model to the server.

(3) Model Aggregation: After the server collected all local
models from K clients, the server uses specific aggregation
rule [25] (e.g., model parameter averaging) to update the global
model.

Note, some important symbols used in this paper are listed
in Table I.

B. Overview of FedBR

The model training performance of traditional FL methods
(e.g., FedAvg) will decrease dramatically when data distribu-
tion among clients is non-IID [20]. To this end, we propose

Fig. 1. The workflow of FedBR. Multiple consecutive layers in the neural
network constitute a model block (e.g., the two layers form a model block in
the figure). G∗ and L′∗ represent the global model blocks (black blocks) and
the local model blocks (blue blocks) saved by clients at the previous global
round, respectively, where ∗ denote the indexes of the model block.

an efficient federated learning framework with block-wise
regularization (FedBR) in this section. By adopting block-wise
regularization and knowledge distillation techniques, FedBR
can enable the clients to absorb more global knowledge during
the Local Updating, thereby mitigating the impact of non-IID
data on training performance. Besides, FedBR makes full use
of network resources by distributing different numbers of
global model blocks according to the varied computing and
communication capabilities of the clients.

Specifically, we divide the model into M blocks, where M
is determined by the server according to the layer structure of
the model. For example, the model with the twelve layers is
divided into six blocks and each block consists of two consecu-
tive layers in Fig. 1. Since current deep learning models tend to
have a hierarchical structure, the method of partitioning model
blocks can be easily extended to most deep learning models.
The main difference between FedBR and FedAvg is reflected in
the Model Broadcast and the Local Updating. Besides, FedBR
adds the Model Combination between the Model Broadcast
and the Local Updating to describe the process of forming
the combined model. Concretely, the workflow of FedBR is
divided into the following four steps as shown in Fig. 1:

(1) Model Broadcast: At the beginning of global round t,
the server sends different numbers of consecutive global model
blocks to the clients according to the varied data distributions,
computing, and communication capabilities of clients. We use
xt and αt

k to denote the global model and the number of
global model blocks which are sent to client k at global
round t, respectively. To prevent client k from forgetting the
information belonging to the first several blocks of the global
model (e.g., G1, G2, G3 in Fig. 1), the server will distribute
an entire global model to all clients every τ +1 rounds, where
τ ≥ 1. That is, when global round t is a multiple of τ +1, the
server sends the entire global model xt to client k; otherwise,
the server sends the last αt

k consecutive global model blocks
to client k.

(2) Model Combination: If client k receives the last αt
k

blocks of the global model at global round t, it will combine

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. The block-wise regularization in FedBR. Given global round t, the
local network of client k consists of αt

k hybrid paths and one local path. The
blue arrow indicates the forward propagation path of the input and q denotes
the output of each path. y and ζ represent the truth label of the input and
loss term, respectively. Double-headed arrows indicate different loss terms in
the loss function.

the first M − αt
k blocks of the local model xt

k(te) with the
last αt

k blocks of the global model to form the combined
model. We adopt xt

k(i) to represent the local model of client k
after i local iterations, where i is equal to the total number of
local iterations from the beginning of model training. If client
k receives an entire global model at global round t, it will
directly take the received model as the combined model. For
example, as shown in Fig 1, Client 1 receives the global model
blocks {G5, G6} and combines them with the local model
blocks {L′1, L′2, L′3, L′4} of the previous global round to form
the combined model.

(3) Local Updating: At global round t, client k uses the
combined model as the new local model xt

k(te). Then, client
k performs e local iterations based on its own local dataset
Dk using the block-wise regularization in Fig. 2 to obtain
updated local model xt+1

k ((t + 1)e). When e local iterations
are completed, client k returns the entire local model xt+1

k ((t+
1)e) to the server. Meanwhile, client k saves the local model
xt+1

k ((t + 1)e) to form the new combined model at the next
global round t + 1.
(4) Model Aggregation: After collecting all local models from
K clients, the server aggregates them to derive an up-to-date
global model xt+1 according to the following equation:

xt+1 =
1
K

K∑
k=1

xt+1
k ((t + 1)e). (2)

Then, FedBR continues to perform the Model Broadcast at
the next global round t + 1 until the global model reaches
convergence or network resources are exhausted.

C. Illustration of Block-Wise Regularization

To better illustrate how the local models of clients are
updated by using block-wise regularization and knowledge
distillation in FedBR, we give an example in Fig. 2. We assume
that the model is divided into six blocks and the server
distributes the last three model blocks to client k at a cer-
tain global round t (i.e., αt

k = 3). After client k receives
these three blocks (i.e., {G4, G5, G6}), it will combine them

with the first three blocks of the local model stored by
client k at global round t − 1 to form the combined
model (e.g., {L′1, L′2, L′3, G4, G5, G6} for Client 2 in Fig. 1).
Client k uses this combined model to cover the local model
({L1, L2, L3, L4, L5, L6}) and performs e local iterations on
it. In the forward propagation, the path containing only local
model blocks is called local path, and the path consisting
of local model blocks and global model blocks is called
hybrid path. Each input of client k goes through αt

k hybrid
paths (e.g., {L1, L2, L3, L4, G5, G6}) and one local path
(e.g., {L1, L2, L3, L4, L5, L6}). Consequently, each input will
obtain four outputs (i.e., {qL, q1

H , q2
H , q3

H}) in Fig. 2. Then,
client k puts the four outputs and the truth label y into
the loss function defined in Section IV-A, where we adopt
knowledge distillation based on the output of local path and
the outputs of hybrid paths to obtain knowledge of global
model blocks. Note that we apply the standard cross-entropy
loss to the outputs of all paths for model training. The KL-
divergence (i.e., knowledge distillation function) between the
output of the local path and the outputs of hybrid paths
are employed for regularization. During the Local Updating,
we only update the parameters of local model blocks while
keeping the parameters of global model blocks unchanged,
i.e., we only update blocks {L1, L2, L3, L4, L5, L6} and keep
blocks {G4, G5, G6} unchanged.

The primary goal of our work is to enhance the training
performance of the global model in a resource-efficient man-
ner, particularly in heterogeneous settings, through the use of
FedBR. The adoption of block-wise regularization as illus-
trated in Fig. 2 will improve the performance as more global
information is learned via KD when the clients perform the
Local Updating. Meanwhile, the server takes heterogeneous
data distributions, computing, and communication capacities
among clients into consideration when it selects proper αk

for client k. Intuitively, when the data distribution of client
k deviates from the overall data distribution, more global
model blocks are needed to acquire more global information.
However, the computing and communication costs become
larger as the number of transmitted model blocks increases.
Therefore, how to determine the appropriate αk for client k
while ensuring the generalization performance of the global
model is a key challenge for FedBR.

D. Problem Definition

In this section, we provide the formalized definition of fed-
erated learning with the model blocks transmission (FLMBT)
problem. Let there be N clients in the network, with only
K clients participating in model training (K ≤ N). This
work takes into account two major types of resources, namely
computing and communication resources. The total budgets for
computing and communication resources in the network are
denoted as Bc and Bb, respectively. Besides, the computing
cost of one batch and the consumption of transferring the
entire model are denoted as c and b, respectively. In FedBR,
we ignore the computing cost caused by the Model Aggrega-
tion because it is trivial compared to the computing cost of
the Local Updating [26]. Let ct

k represent the computing cost

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ADAPTIVE BLOCK-WISE REGULARIZATION AND KD FOR ENHANCING FL 5

of client k at each local iteration of global round t. Then, the
computing cost of client k at global round t can be expressed
as e·ct

k. Because there are αt
k hybrid paths in the local network

of client k, the computing cost of one local iteration at global
round t can be expressed as:

ct
k = (1 +

αt
k(αt

k + 1)
2M

) · nk

B
· c, (3)

where nk denotes the number of local samples in client k,
B represents the size of batch, and the coefficient (i.e., 1 +
αt

k(αt
k +1)/2M) is related to the multiplexing of intermediate

results between the local path and hybrid paths. We use bt
k to

denote the average communication cost of client k at global
round t. While t is a multiple of τ , client k uploads and
downloads the whole model. Thus, the communication cost
of client k can be expressed as 2 · b. Otherwise, client k needs
to upload the entire local model and download several global
model blocks. Consequently, the communication cost of client
k can be expressed as (1 + αt

k/M) · b. Combining the above
two cases, the average communication cost of client k in each
global ground can be expressed as:

bt
k = (1 +

1
τ

+ (1− 1
τ

)
αt

k

M
) · b, (4)

We aim to minimize the completion time while finding the
proper αt

k for each client k at round t in FedBR. Accordingly,
the FLMBT problem can be formulated as follows:

min
∑T

t=1
Ht

s.t.

f(xT) ≤ F ,
T∑

t=1

K∑
k=1

e · ct
k ≤ Bc, ∀k, t

T∑
t=1

K∑
k=1

bt
k ≤ Bb, ∀k, t

αt
k ∈ {1, . · · · , M − 1} , ∀k, t,

(5)

where Ht represents the completion time of global round t,
i.e., the time required by K clients to complete their local
training after the last global round. The first inequality reflects
the convergence condition, where F indicates the convergence
threshold of the loss value after T global rounds. The second
set of inequalities specifies that the total computing cost during
T global rounds should not exceed the computing budget of
the network. The third set of inequalities ensures that the
communication cost during T global rounds should not exceed
the communication budget of the network. The fourth group
of formulas denotes that the number of blocks downloaded by
client k should be an integer and not exceed the number of
total model blocks.

In reality, directly solving the FLMBT problem in Eq. (5)
is a challenging task. This is due to the fact that the decision
variable of FLMBT is an integer, which is a typical charac-
teristic of integer programming problems. Finding an optimal
solution for an integer programming problem is usually an
NP-hard task [27]. Consequently, solving problem in Eq. (5)
at each global round can be time-consuming. Additionally,
the dynamic network conditions make the problem even

more complex. However, we believe that with feedback on
the computing and communication time during the training
process, a greedy-based approach can be an effective way
to efficiently solve the FLMBT problem while meeting the
resource constraints at each global round. Thus, we propose
to develop a greedy-based algorithm to solve the FLMBT
problem.

III. CONVERGENCE ANALYSIS

In this section, we propose a reliable convergence guarantee
for FedBR based on the non-convex optimization assumption
that is solved using distributed SGD [28]. To analyze the
convergence, we begin by making some common assumptions
that have been widely used in previous works [29], [30].

Assumption 1: (Smoothness:) Each function fn(x) is
smooth with modulus L, i.e.,

fn(y)− fn(x) ≤ ∇fn(y − x) +
L

2
||y − x||2, ∀n, ∀x, ∀y,

||∇fn(x)−∇fn(y)|| ≤ L2||x− y||2, ∀n, ∀x, ∀y.

Assumption 2: (Bounded variances and second moments:)
There exist constants σ > 0 and G > 0 such that

Eφn∼Dn
||∇Fn(x; φn)−∇fn(x)||2 ≤ σ2, ∀x,∀n,

Eφn∼Dn
||∇Fn(x; φn)||2 ≤ G2, ∀x,∀n.

For the convenience of analysis, we assume that all clients
participate in the training process (i.e., K = N). Meanwhile,
suppose that there are I local iterations totally during the
model training (i.e., I = T ·e). Fix the index of local iteration
i, we define the average of the model as

xt(i) =
1
N

N∑
n=1

xt
n(i), (6)

where xt
n(i) represents the local model of client n with i ∈

[te, (t+1)e). When i is a multiple of e (i.e., i = t·e), the server
performs the Model Aggregation to update the global model
(i.e., xt ≜ xt−1(i−1)), where the (i−1)-th local iteration is the
last iteration of the global round t−1 and the i-th local iteration
is the first iteration of global round t. After client n receives
the global model blocks or the whole global model, it will form
a combined model according to the previous rule in Section II-
B and use this combined model to cover its local model at
i − 1 iteration (i.e., xt−1

n (i − 1) ≜ xt
n, where xt

n represents
the combined model of client n after the Model Combination).
Then, client n continues for the i-th local iteration based on
SGD to obtain xt

n(i). To express the relationship between the
combined model of client n and the global model, we adopt
an upper bound β2, where ||xt − xt

n||2 ≤ β2. Moreover,
every client can locally observe independent and unbiased
stochastic gradients denoted by Gi

n = ∇Fn(xt′

n (i − 1); φi
n)

with Eφi
n∼Dn

[Gi
n|φ[i−1]] = ∇fn(xt′

n (i− 1)), where φ[i−1] ≜
[φτ

n]n∈{1,2,··· ,N},τ∈{1,2,··· ,i−1} represents all the randomness
up to iteration i− 1 and t′ = ⌊ i−1

e ⌋. As a result, we have

xt
n(i) = xt′

n (i− 1)− γGi
n, i ∈ [1, I], (7)

where γ denotes the learning rate. The following lemma
provides a bound on the difference between xt(i) and xt

n(i).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Lemma 1: Under Assumption 1, the proposed framework
can ensure

E[||xt(i)− xt
n(i)||2] ≤ 2β2 + 8γ2e2G2, ∀n, ∀i,

where G is a constant defined in Assumption 2.
Proof of Lemma 1. Fix i ≥ 1 and n ∈ {1, 2, · · · , N}.

Considering the largest i0 ≤ i such that xt = xt−1(i0)
(Note that such i0 always exists and i− i0 ≤ e.), we have

xt
n(i) = xt

n − γ
i∑

τ=i0+1

Gτ
n (8)

where γ is the learning rate. By (6) and (8), we have

xt(i) = xt − γ
i∑

τ=i0+1

1
N

N∑
n=1

Gτ
n (9)

Thus, we have

E[||xt(i)− xt
n(i)||2]

= E[||xt − γ
i∑

τ=i0+1

1
N

N∑
n=1

Gτ
n − (xt

n − γ
i∑

τ=i0+1

Gτ
n)||2]

= E[||(xt − xt
n) + γ(

i∑
τ=i0+1

Gτ
n −

i∑
τ=i0+1

1
N

N∑
n=1

Gτ
n)||2]

(a)

≤ 2E[||xt − xt
n||2 + ||γ(

i∑
τ=i0+1

Gτ
n −

i∑
τ=i0+1

1
N

N∑
n=1

Gτ
n)||2]

= 2E[||xt − xt
n||2]+2γ2E[||

i∑
τ=i0+1

Gτ
n−

i∑
τ=i0+1

1
N

N∑
n=1

Gτ
n||2]

(b)

≤ 2β2 + 2γ2(i− i0)E[
i∑

τ=i0+1

||Gτ
n −

1
N

N∑
n=1

Gτ
n||2]

(c)

≤ 2β2+4γ2(i− i0)E[
i∑

τ=i0+1

||Gτ
n||2+

i∑
τ=i0+1

|| 1
N

N∑
n=1

Gτ
n||2]

(d)

≤ 2β2 + 8γ2(i− i0)2G2

≤ 2β2 + 8γ2e2G2

where (a)-(c) are obtained by utilizing the inequality
||

∑n
i=1 zi||2 ≤ n

∑n
i=1 ||zi||2 for any vectors zi and any

positive integer n (using n = 2 in (a), n = i − i0 in (b),
n = 2 in (c)); and (d) follows from Assumption 2.

Theorem 1: If 0 < γ ≤ 1
L , the convergence bound for our

proposed framework is as follows:

1
I

I∑
i=1

E[||∇f(xt′(i− 1))||2] ≤ 2
γI

(f(x0)− f(x∗)) +
L

N
γσ2

+ 2β2L2 + 8γ2e2G2L2,

where t′ = ⌊ i−1
e ⌋ and x∗ represents the optimal model which

minimizes the global loss function f .
Proof of Theorem 1. Fix i ≥ 1 . By (6) and (7), we have

xt(i) = xt′(i− 1)− γ
1
N

N∑
n=1

Gi
n (10)

By the smoothness of f , we have

E[f(xt(i))] ≤ E[f(xt′(i− 1))]

+ E[⟨∇f(xt′(i− 1)), xt(i)− xt′(i− 1)⟩]

+
L

2
E[||xt(i)− xt′(i− 1)||2] (11)

Not that

E[||xt(i)− xt′(i− 1)||2]

(a)
= γ2E[|| 1

N

N∑
n=1

Gi
n||2]

(b)
= γ2E[|| 1

N

N∑
n=1

(Gi
n −∇fn(xt′

n (i− 1))||2]

+ γ2E[|| 1
N

N∑
n=1

∇fn(xt′

n (i− 1))||2]

(c)
= γ2 1

N2

N∑
n=1

E[||Gi
n −∇fn(xt′

n (i− 1))||2]

+ γ2E[|| 1
N

N∑
n=1

∇fn(xt′

n (i− 1))||2]

(d)

≤ 1
N

γ2σ2 + γ2E[|| 1
N

N∑
n=1

∇fn(xt′

n (i− 1))||2] (12)

where (a) follows from (10); (b) holds by the fact that
E[||Z||2] = E[||Z−E[Z]||2]+ ||E[Z]||2 for any random vector
Z and using E[Gi

n] = ∇fn(xt′

n (i− 1)); (c) is tenable because
each Gi

n −∇fn(xi−1
n) has mean 0 and is independent for all

clients; and (d) follows from Assumption 2.
In addition, note that

E[⟨∇f(xt′(i− 1)), xt(i)− xt′(i− 1)⟩]

(a)
= −γE[⟨∇f(xt′(i− 1)),

1
N

N∑
n=1

Gi
n⟩]

(b)
= −γE[⟨∇f(xt′(i− 1)),

1
N

N∑
n=1

∇fn(xt′

n (i− 1))⟩]

(c)
= −γ

2
E[||∇f(xt′(i− 1))||2 + || 1

N

N∑
n=1

∇fn(xt′

n (i− 1))||2

− ||∇f(xt′(i− 1))− 1
N

N∑
n=1

∇fn(xt′

n (i− 1))||2] (13)

where (a) follows from (10); (c) follows from the fact that
⟨z1, z2⟩ = 1

2 (||z1||2 + ||z2||2−||z1− z2||2) for any two vector
z1, z2 of the same dimension; (b) follows because

E[⟨∇f(xt′(i− 1)),
1
N

N∑
n=1

Gi
n⟩]

= E[E[⟨∇f(xt′(i− 1)),
1
N

N∑
n=1

Gi
n⟩|φ[i−1]]]

= E[⟨∇f(xt′(i− 1)),
1
N

N∑
n=1

E[Gi
n|φ[i−1]]⟩]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ADAPTIVE BLOCK-WISE REGULARIZATION AND KD FOR ENHANCING FL 7

= E[⟨∇f(xt′(i− 1)),
1
N

N∑
n=1

∇fn(xt′

n (i− 1))⟩]

where the first equation follows by the iterated law of expec-
tations, the second equation follows because xt′(i − 1) is
determined by φ[i−1].

Substituting (12) and (13) into (11), we have

E[f(xt(i))]

≤ E[f(xt′(i− 1))]− γ − γ2L

2
E[|| 1

N

N∑
n=1

∇fn(xt′

n (i− 1))||2]

− γ

2
E[||∇f(xt′(i− 1))||2] +

L

2N
γ2σ2

+
γ

2
E[||∇f(xt′(i− 1))− 1

N

N∑
n=1

∇fn(xt′

n (i− 1))||2]

(a)

≤ E[f(xt′(i− 1))]− γ−γ2L

2
E[|| 1

N

N∑
n=1

∇fn(xt′

n (i−1))||2]

− γ

2
E[||∇f(xt′(i− 1))||2] +

L

2N
γ2σ2

+ γβ2L2 + 4γ3e2G2L2

(b)

≤ E[f(xt′(i− 1))]− γ

2
E[||∇f(xt′(i− 1))||2]

+
L

2N
γ2σ2 + γβ2L2 + 4γ3e2G2L2 (14)

where (b) follows 0 < γ ≤ 1
L ; (a) follows because

E[||∇f(xt′(i− 1))− 1
N

N∑
n=1

∇fn(xt′

n (i− 1))||2]

=
1

N2
E[||

N∑
n=1

∇fn(xt′(i− 1))−
N∑

n=1

∇fn(xt′

n (i− 1))||2]

≤ 1
N

E[
N∑

n=1

||∇fn(xt′(i− 1))−∇fn(xt′

n (i− 1))||2]

≤ L2

2
E[

N∑
n=1

||xt′(i− 1)− xt′

n (i− 1)||2]

≤ 2β2L2 + 8γ2e2G2L2

where the first equation follows f(x) ≜ 1
N

N∑
n=1

fn(x), the

first inequality follows by using the inequality ||
∑n

i=1 zi||2 ≤
n

∑n
i=1 ||zi||2 for any vectors zi and any positive integer n

(using n = N), the second inequality can be obtained by
applying the smoothness property of Assumption 1, and the
third inequality is obtained by utilizing Lemma 1.

Dividing (14) both sides by γ
2 and rearranging terms yields

E[||∇f(xt′(i− 1))||2]

≤ 2
γ

(E[f(xt′(i− 1))]− E[f(xt(i))])

+
L

N
γσ2 + 2β2L2 + 8γ2e2G2L2

Summing over i ∈ {1, 2, · · · , I} and dividing both sides by I
yields

1
I

I∑
i=1

E[||∇f(xt′(i− 1))||2]

≤ 2
γI

(E[f(x0(0))− f(xt(i))])

+
L

N
γσ2 + 2β2L2 + 8γ2e2G2L2

≤ 2
γI

(f(x0)− f(x∗))

+
L

N
γσ2 + 2β2L2 + 8γ2e2G2L2

where t′ = ⌊ i−1
e ⌋ and x∗ denotes the optimal model which

minimizes the global loss function f .
We utilize the expected squared gradient norm in Theorem 1

to analyze the convergence in non-convex settings, as in
previous work [31]. It is observed that the convergence bound
is positively correlated with the upper bound of the distance
between the global model and the combined model of client
n. As more global model blocks are sent by the server, the
upper bound of the distance becomes smaller, which in turn
results in a tighter convergence bound.

IV. ALGORITHM DESIGN

In this section, we propose a heuristic algorithm to solve
the FLMBT problem in Eq. (5). First, we give the local
loss function for each client according to the block-wise
regularization shown in Fig. 2 and design a feedback variable
to determine the number of blocks for each client according
to the returned information of clients during the training
process. Then, we design a decision variable and introduce
the proposed algorithm in detail.

A. Preliminaries for Algorithm Design

(1) Local Loss Function: Because we adopt knowledge
distillation to enable clients to learn more global information
from global model blocks, the knowledge distillation term
needs to be included in the loss function. As a result, the local
loss function of client k mainly consists of two kinds of forms,
where one is the cross-entropy loss (a common loss function
in deep learning) and the other is the knowledge distillation
term. We use CrossEntropy(a, b) to represent the cross-entropy
loss between two same size vectors a and b. The cross-entropy
loss of the local path can be expressed:

ζL = CrossEntropy(qL, y), (15)

where y denotes the label of the sample. The overall
cross-entropy loss of the hybrid paths is defined as:

ζH =
1
m

m∑
j=1

CrossEntropy(qj
H , y), (16)

where m represents the number of hybrid paths for client k at
global round t (i.e., m = αt

k). Besides, we use the knowledge
distillation term for regularization to enable the local path to
absorb knowledge on hybrid paths. The following equation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

gives the overall knowledge distillation term between the local
path and hybrid paths:

ζKL =
1
m

m∑
j=1

KL(q̂j
H , q̂L), (17)

where KL(a, b) denotes the Kullback-Leibler (KL) divergence
between two same size vectors a and b, and q̂ indicates the
output using hyperparameter temperature δ [32]. Temperature
δ affects the smooth level of softmax output. Then, the total
loss function of client k is defined as:

ζ = ζL + λ1 · ζH + λ2 · ζKL, (18)

where λ1 (λ1 ≥ 0) and λ2 (λ2 ≥ 0) are hyperparameters that
determine the weights of ζH and ζKL in the loss function. The
local model of client k is updated based on the loss function
in Eq. (18) and its own dataset Dk. Note, we only update the
parameters of local model blocks and keep the parameters of
global model blocks unchanged.

(2) Feedback Variable: The key challenge to solve problem
in Eq. (5) is to find the appropriate αt

k for each client k at the
start of any global round t while minimizing the completion
time. The number of blocks αt

k should depend on the data
distribution as well as the communication and computing time
of client k. For data distribution, we use the bias between
local models sent by clients and the global model after the
Model Aggregation to simulate the bias between local data
distributions on clients and the overall data distribution. The
difference between the local model and the global model is
proportional to the bias between the local data distribution
and the overall data distribution [33]. We use dk to denote
the deviation between the data distribution of client k and the
overall data distribution. Therefore, dk is quantified by the
following equation:

dk =
||xt − xt

k(te)||2
K∑

k=1

||xt − xt
k(te)||2

. (19)

Obviously, when the data distribution of client k deviates
from the overall data distribution seriously, client k needs
to receive more global model blocks to learn more global
knowledge. Therefore, αt

k should be positively correlated with
dk. Let tk,b and tk,c represent the communication time and
the computing time of client k, respectively. To facilitate
comparison, we employ the following normalizations for the
communication and computing time of client k:

t′k,b =
tk,b

K∑
k′=1

tk′,b

,

t′k,c =
tk,c

K∑
k′=1

tk′,c

. (20)

Apparently, the communication time of client k will increase
as the increasing number of global model blocks (i.e., αk)
is sent by the server. Moreover, client k totally has (αt

k +
1) computing paths at global round t according to Fig. 2
during the Local Updating. Thus, the computing time of client

k is positively correlated with αt
k. In summary, when t′k,b

and t′k,c are relatively small, it means that client k takes
shorter communication and computing time than other clients,
so the server needs to send more global model blocks to
client k in order to avoid resource idleness on client k.
That is, αt

k is inversely proportional to t′k,b and t′k,c for
client k.

Based on the above analysis, we design a feedback variable
rt
k,m:

rt
k,m ≜

dk ·∆ζL

et′k,c+t′k,b

, (21)

where the exponential function is applied to enhance the
effect of time cost on the feedback variable, ζL is defined in
Section IV-A, and ∆ζL indicates the accuracy improvement of
client k. ∆ζL is the ζL at global round t− 1 minus the ζL at
global round t. The server will calculate rt

k,m for each client
k according to the feedback information returned by client k
at global round t− 1. Then, the server makes use of rt

k,m to
decide the value of αt

k for client k, which will be described
in detail in Section IV-B.

B. Detailed Description of the Proposed Algorithm

To determine the proper αt
k for client k, we design a

greedy-based model block selection (GMBS) algorithm. The
server holds one vector pk for each client k to remember the
feedback information of the previous global round. We define
pk as follows:

pk = {pk,1, pk,2, · · · , pk,M−1}, (22)

where pk,m corresponds to the feedback information of send-
ing m global model blocks to client k. We need to remember
previous feedback information to decrease the interference
of error feedback information caused by a certain round.
Therefore, pk,m is updated by the following equation:

pk,m = λrt
k,m + (1− λ)pk,m, (23)

where λ (0 ≤ λ ≤ 1) is a hyperparameter that reflects the
weight of real-time feedback information. Since the number
of global model blocks is randomly selected at the beginning
of training and the states of clients are variable, we cannot
always adopt m corresponding to the highest value of feedback
information as αk for the decision of client k. Therefore,
we add a penalty item for feedback information pk,m. Finally,
we use the following decision variable Vk,m to select the
number of global model blocks:

Vk,m = pk,m +

√
ln (t + 1)

nk,m + 1
, (24)

where nk,m represents the frequency that the server selects
m global model blocks to send to client k. We choose m
corresponding to the largest decision variable as the number of
global model blocks received by client k at round t (i.e., m =
arg max

m
Vk,m). In the second term of Eq. (24), the denom-

inator indicates the priority of m that is frequently selected
by the server will decrease and the numerator indicates the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ADAPTIVE BLOCK-WISE REGULARIZATION AND KD FOR ENHANCING FL 9

Algorithm 1 Greedy-Based Model Blocks Selection (GMBS)
Require: The number of clients participating in training K;

the local batch size B; the number of local iterations e;
hyperparameters λ, λ1, λ2, δ.

Ensure: The global model xT

Initialize x0, x0
k(0), pk, nk,m, α1

k.
1: for each global round t = {1, 2, · · · , T} do
2: for each client k ∈ {1, 2, · · · , K}, the server do
3: Update pk,m by Eqs. (19), (20), (21), and (23).
4: for each pk,m ∈ pk do
5: Calculate Vk,m according to Eq. (24).
6: end for
7: Make decision αt

k, m = arg max
m

Vk,m.
8: Update frequency nk,m = nk,m + 1.
9: end for

10: The server distributes αt
k global model blocks to each

client k ∈ {1, · · · , K}.
11: for each client k ∈ {1, · · · , K} do
12: Perform e local iterations according to Eq. (18).
13: Record time tk,b and tk,c.
14: Return tk,b, tk,c and xt

k(t · e) to the server.
15: end for
16: The server aggregates models to obtain xt by Eq. (2).
17: end for

influence of the second term will weaken as the training
goes on.

The GMBS algorithm is introduced in detail in Alg. 1.
At the beginning of training, we initialize pk = 0, nk,m =
0 for ∀k ∈ {1, · · · , K}, m ∈ {1, · · · , M − 1} and randomly
initialize global model x0, local model x0

k(0), α1
k for each

client k (Line 1). At the start of global round t, the server
selects proper αt

k for each client k (Lines 3-8). First, the
server updates feedback information pk,m according to the
return value sent by client k at global round t − 1 (Line 4).
Then, the server makes use of pk to calculate the decision
variable Vk for each m (Lines 5-6). Finally, the server chooses
m corresponding to the largest Vk,m as the number of global
model blocks sent to client k and updates frequency nk,m cor-
responding to m (Lines 7-8). Note, since there is no feedback
information when t = 1, the decision process (Lines 4-7) is
not needed and α1

k is randomly initialized. After the server
selects all αt

k for each client k, the server will distribute αt
k

global model blocks to each client according to the Model
Broadcast rule described in Section II-B (Line 9). Client k will
perform e local iterations according to the loss function defined
in Section IV-A after client k receives the global model blocks
(Line 11). At the last local iteration of client k, the client k
needs to record the communication and computing time tk,b

and tk,c to calculate pk,m used to make the decision at the
next global round (Line 12). Then, client k returns tk,b, tk,c,
and the updated local model xt

k(te) to the server (Line 13).
The server will perform the Model Aggregation so as to form
an up-to-state global model after it receives all local models
sent by clients (Line 14). Finally, we obtain the global model
xT after T global rounds of training.

V. PERFORMANCE EVALUATION

In this section, we conduct nine sets of experiments to prove
the effectiveness of FedBR. We first introduce the experimental
setup in detail and then show the experimental results.

A. Experimental Setup

Environment Setup: All the experiments are conducted on
an AMAX deep learning workstation with an Intel(R) Xeon(R)
Gold 5218R CPU, 4 NVIDIA GeForce RTX 3090 GPUs,
and 256 GB RAM. We build an FL simulation environment
and implement all methods under the PyTorch framework [34].
As represented in [35], we generate a total of 100 clients in the
simulation and randomly activate 10 of them to participate in
the model training so that we efficiently simulate the training
process of FedBR and the baselines. It is worth noting that our
method can be easily scaled up to include more edge nodes.

Datasets and Model: We evaluate the performance
of FedBR and the baselines on two commonly used
real-world datasets in federated learning, namely CIFAR10
and CIFAR100 [36]. Both CIFAR10 and CIFAR100 con-
tain 60,000 RGB color images with the size of 32 × 32 ,
where the training set and the testing set contain 50,000
and 10,000 images, respectively. CIFAR10 and CIFAR100
are composed of 10 classes and 100 classes, respectively.
During the experiments, we evenly divide the number of
training samples to each client, that is to say, each client
has 5,000 training images. Besides, we train a ResNet18 [37]
model, which is often adopted for image recognition tasks,
with a size of 42.65MB on both CIFAR10 and CIFAR100.
ResNet18 consists of seventeen convolutional layers and one
fully connected layer. Due to the existence of residual blocks
in ResNet18, we divide the model into six model blocks
during the experiments. The first convolutional layer forms the
first block, every four subsequent convolutional layers form a
block, and the last fully connected layer forms the sixth block.
Since current deep learning models tend to have a hierarchical
structure, our approach to partitioning model blocks can also
be easily extended to other deep learning models.

Data Division: Different data distributions, i.e., IID and
non-IID data, among clients have a significant influence on
the model training performance. We use ϵ to represent the
non-IID level, which ranges from {0, 1, · · · , 9}. When ϵ = 0,
it represents the data distribution is IID. For CIFAR10, when
ϵ ∈ {1, · · · , 9}, it denotes that the ϵ × 10% local data of the
client belongs to the same class and the rest of the local data is
evenly divided into the remaining nine classes. For CIFAR100,
when ϵ ∈ {1, · · · , 9}, it denotes that the local dataset of each
client lacks ϵ×10 kinds of images and the local data is evenly
distributed among the remaining 100− ϵ× 10 classes. In our
experiments, we mainly consider four data distributions (i.e.,
ϵ ∈ {0, 5, 7, 9}) to verify the impact of data distribution on
model training performance, including IID data and the three
different non-IID levels.

Baselines and Metrics: We compare the performance of
FedBR together with the four baselines, i.e., FedAvg [5],
FedProx [20], MOON [38], and FedMLB [21]. FedAvg is
the first proposed method of federated learning, using model

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. Testing accuracy and loss of different methods under the non-IID level ϵ = 7.

averaging to aggregate models. Compared with FedAvg, Fed-
Prox adds a proximal term between the global model and the
local model to the loss function, making the local training
more stable. MOON combines comparative learning at the
model level with FedAvg to correct the local model training
of the clients by exploiting the similarity between model
representations. In FedMLB, multiple hybrid pathways are
introduced to absorb more knowledge of the global model to
mitigate the negative impact of non-IID data. In this paper, we
evaluate the performance of our proposed framework using the
following three metrics: (1) Testing accuracy. In each global
round, we evaluate the training performance (i.e., accuracy) of
the global model on the testing set. (2) Time cost. We record
the completion time (i.e., computing and communication time)
when the model training achieves the given target accuracy.
In each global round, the completion time of the system is
equal to the longest completion time among the clients par-
ticipating in the training. (3) Communication cost. We record
the total bandwidth consumption of all clients for uploading
and downloading models during the model training.

Heterogeneity Settings: We adopt heterogeneous commu-
nication and computing capabilities among clients to simulate
system heterogeneity. For the heterogeneous communication
capabilities among clients, we set the bandwidth between
the server and clients to range from 40Mbps to 280Mbps
and randomly change the bandwidth every 10 global rounds.
Note that according to [39], current mobile phones operate
in frequencies between 0.8 to 2.5 GHz and are capable of
average download speeds of 230 Mbps in the 5G network.
Besides, we assign different computing capabilities to each
client. Specifically, for ResNet18 on CIFAR100, the measured
computing cost on 100 devices varies between 1.3s to 6.7s,
2.0s to 10.0s, 2.3s to 11.2 s, 2.4s to 12.1s and 2.3 to 11.7s for
FedAvg, FedPorx, MOON, FedMLB and FedBR in every global
round, respectively. We randomly set the computing time with
such ranges for varied clients in the training process, and
randomly change the computing time every 10 global rounds.
It is noted that we set the bandwidth and computing time as the
average value of the above range when we are not conducting
system heterogeneity experiments.

B. Experimental Results

We conduct nine sets of simulations to evaluate the effec-
tiveness of our proposed method. The simulation results are
presented as follows:

Fig. 4. Comparison between FedRan and FedBR.

Fig. 5. Time and bandwidth consumption after the model achieves the target
accuracy on CIFAR10 (78%) and CIFAR100 (49%).

Convergence Performance: We first show the testing
performance (e.g., accuracy and loss) of the global model
trained on CIFAR10 and CIFAR100 when data distribution
across the clients is non-IID (e.g., ϵ = 7). The detailed
experimental results are shown in Fig. 3. Whether on CIFAR10
or CIFAR100, FedBR achieves the highest accuracy and the
smallest loss, which indicates that FedBR is more effective
than the baselines within non-IID data. For example, after
70 rounds of global training on CIFAR10 with non-IID level
ϵ = 7, the testing accuracy of FedBR is 77.0%, while the
testing accuracy of FedAvg, FedProx, MOON, and FedMLB
is 71.4%, 72.0%, 69.8%, and 74.0% respectively. According
to the experimental results, we can see that compared with
FedMLB using the same number of global model blocks to
obtain global knowledge, determining the appropriate number
of global model blocks for different clients in FedBR can better
improve the generalization performance of the global model
under the resource constraints.

Effectiveness of GMBS: To verify the effectiveness of
the decision algorithm GMBS, we conduct comparative
experiments between random decision-making and GMBS

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ADAPTIVE BLOCK-WISE REGULARIZATION AND KD FOR ENHANCING FL 11

Fig. 6. Testing accuracy with completion time and bandwidth constraints under the non-IID level ϵ = 7.

decision-making, which are termed as FedBR-Ran and FedBR
respectively, on CIFAR10 and CIFAR100. The experimental
results are shown in Fig. 4, where the horizontal axis repre-
sents the number of global epochs and the vertical axis denotes
the testing accuracy of the global model. The experimental
results show that the testing accuracy of the model trained
by FedBR is better than that of the model trained by FedBR-
Ran on both CIFAR10 and CIFAR100. For example, given
200 training of global epochs on CIFAR100, the testing
accuracy of FedBR is about 52.4%, while that of FedBR-
Ran is about 49.5%. In other words, FedBR improves the
accuracy performance by about 2.9% compares to FedBR-Ran.
In addition, Fig. 4 reveals that FedBR converges faster than
FedBR-Ran. Therefore, our proposed algorithm GMBS sig-
nificantly shows the effectiveness compared with the random
decision-making.

Resource Consumption: We evaluate the resource con-
sumption (e.g., time and bandwidth) of FedBR and the
baselines to achieve a target testing accuracy (e.g., 78% on
CIFAR10 and 49% on CIFAR100), as shown in Fig. 5. For
time cost, FedBR consumes the least time among all methods
to train the model either on CIFAR10 or CIFAR100 according
to the left plot of Fig. 5. This is well explained, although our
FedBR will increase the time cost because of the calculation
with the hybrid paths, it still accelerates model convergence by
using block-wise regularization and knowledge distillation to
obtain more global information of the global model. Besides,
FedBR only requires the server to send a few consecutive
global model blocks to the clients thus reducing the commu-
nication time compared to the three baselines. For example,
when CIFAR100 is trained on ResNet18 under ϵ = 7, FedBR
takes 954 seconds, which is 10.4% less than FedAvg (1,065
seconds), 35.4% less than FedProx (1,479 seconds), 19.9% less
than MOON (1,191 seconds), and 23.4% less than FedMLB
(1,245 seconds). For communication cost, as shown in the right
subplot of Fig. 5, itFedBR consumes the least communication
bandwidth to train the model either on CIFAR10 or CIFAR100
when the global model achieves a target accuracy. This is
because the four baselines transmit the entire model in one
global round, while the server only sends partial model blocks
to clients in FedBR. For instance, when CIFAR100 is trained
on ResNet18 under ϵ = 7, we obtain that the commu-
nication bandwidth consumed by FedBR is 72.5GB, which
saves 34.6%, 47.6%, 20.9%, and 22.3% of bandwidth when
FedAvg (110.8GB), FedProx (138.3GB), MOON (91.6GB),

Fig. 7. Testing accuracy and time consumption on CIFAR100 under different
non-IID levels.

and FedMLB (93.3GB) achieve the same testing accuracy,
respectively.

Effect of Different non-IID Levels: Given a fixed number
of global rounds (e.g., 200), the testing accuracy and time
consumption of the model training are shown in Fig. 7.
According to the left plot of Fig. 7, under the IID set-
ting, FedBR achieves nearly the same testing accuracy as
the other three methods. However, FedBR can achieve the
highest testing accuracy under the non-IID setting by intro-
ducing block-wise regularization and knowledge distillation
techniques. The improvement of testing accuracy for FedBR
over three baselines will increase with the increasing non-
IID level. For example, under extremely non-IID settings
(i.e., ϵ = 9), the testing accuracy of FedBR on CIFAR100
is 40.7%, while the testing accuracy of FedAvg, FedProx,
MOON, and FedMLB is 37.6%, 37.9%, 39.9%, and 37.1%,
respectively. Thus, FedBR effectively alleviates the problem of
model performance degradation caused by the non-IID issue.
For time consumption, as shown in the right subplot of Fig. 7,
we can see that as the non-IID level increases, the time cost
of FedBR relative to other methods will become smaller. The
reason for this phenomenon may be that the server will send
fewer global model blocks to clients under a higher non-IID
level.

Impact of Resource Constraints: We conduct experi-
ments to test the performance (i.e., accuracy) of FedBR and
three baselines with the resource (e.g., completion time and
bandwidth) constraints. For the completion time constraint,
Fig. 6(a) and Fig. 6(b) show that the testing accuracy will
increase with the increasing completion time budget on both
CRFAR10 and CIFAR100. Note that FedBR can achieve the
best training performance in four methods with the same
completion time budget. For example, the testing accuracy of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Testing accuracy on different datasets under system heterogeneity.

TABLE II
THE IMPACT OF THE TEMPERATURE δ WITH RESPECT TO THE

TESTING ACCURACY OF FedBR ON CIFAR10 AND CIFAR100
AFTER 200 ROUNDS OF GLOBAL TRAINING (THE NON-IID

LEVEL ϵ = 7)

FedBR is about 77.4% on CIFAR10 when given the comple-
tion time is 900s, while that of FedAvg, FedProx, MOON,
and FedMLB is about 75.3%, 74.1%, 71.5%, and 74.0%,
respectively. For bandwidth constraint, more communication
bandwidth budget will significantly improve the performance
of all methods according to Fig. 6(c) and Fig. 6(d). However,
FedBR obtains better performance than FedAvg, FedProx, and
FedMLB while consuming the same network bandwidth. For
instance, when the total network bandwidth budget is set
to 50GB, the testing accuracy of FedBR on CIFAR10 is
approximately 76.8%, while that of FedAvg, FedProx, MOON,
and FedMLB is approximately 70.8%, 70.3%, 68.3%, and
72.3%, respectively, as illustrated in the results.

Effect of System Heterogeneity: To demonstrate that our
method is still effective under system heterogeneity, we con-
duct experiments on both CIFAR10 and CIFAR100 under
the same non-IID level ϵ = 7 as the homogeneous systems.
Compared with the previous situation without system hetero-
geneity shown in Fig. 6(a) and Fig. 6(b), no matter whether
on CIFAR10 or CIFAR100, all methods will consume more
completion time when achieving a target test accuracy as
shown in Fig. 8. For instance, given the target accuracy of
78%, FedAvg, FedProx, MOON, FedMLB, and FedBR needs
to consume 1,516s, 1,668s, 2,120s, 1,698s, and 1,034s in
the case of homogeneous system, respectively; while FedAvg,
FedProx, MOON, FedMLB, and FedBR needs to consume
2,534s, 3,091s, 3,653s, 3,552s, and 1,782s in the case of
heterogeneous systems, respectively. As a result, the existence
of system heterogeneity will significantly degrade the model
training performance. Besides, according to Fig. 8, our FedBR
achieves the highest testing accuracy on different datasets
while consuming the same completion time compared to the
baselines. Therefore, FedBR still can obtain the best training
performance compared to the baselines even under heteroge-
neous settings.

TABLE III
THE IMPACT OF THE WEIGHTS OF THE REGULARIZATION TERM IN THE

LOSS FUNCTION EQ. (18) WITH RESPECT TO THE TESTING ACCURACY
OF FedBR ON CIFAR100 AFTER 200 ROUNDS OF GLOBAL

TRAINING (THE NON-IID LEVEL ϵ = 7)

TABLE IV
THE IMPACT OF THE INTERVAL τ WITH RESPECT TO THE

TESTING ACCURACY OF FedBR ON CIFAR10 AND
CIFAR100 AFTER 200 ROUNDS OF GLOBAL

TRAINING (THE NON-IID LEVEL ϵ = 7)

TABLE V
THE IMPACT OF THE INTERVAL τ WITH RESPECT TO THE BANDWIDTH

COST OF FedBR ON CIFAR100 AFTER 200 ROUNDS OF GLOBAL
TRAINING (THE NON-IID LEVEL ϵ = 7)

Effect of Temperature δ: The hyperparameter temperature
δ in the KL divergence (i.e., knowledge distillation function)
in Eq. (17) will affect the KL term in the loss function
Eq. (18). We test the performance of FedBR by using different
temperature values. Table II shows the impact of different
temperature values on the testing accuracy of the FedBR on
two different datasets, i.e., CIFAR10 and CIFAR100. We can
see that the performance of the model will be improved if
we raise the temperature a little. However, if we increase the
temperature too large, the performance of the model will be
decreased. Therefore, we set the default temperature value δ
to 1 according to the results of the experiments.

Impact of Weights λ1 and λ2: To prove the effectiveness
of the two regularization terms that we add to the loss
function in Eq. (18), we conduct experiments to record the
testing accuracy under different weight combinations of λ1

and λ2. According to Table III, it can be illustrated that
both loss function terms ζH and ζKL in Eq. (18) improve
the performance of the global model compared to directly
using only the cross entropy term ζL in the loss function. For
example, if we do not add ζH and ζKL to the loss function
(i.e., λ1 = 0 and λ2 = 0), the testing accuracy of the model
is 49.6%. When we set the weights λ1 = 1 and λ2 = 1, the
testing accuracy of the model is 51.5%. Note that we set the
two default regularization term weights to 1 in the experiments
(i.e., λ1 = 1 and λ2 = 1).

Effect of Interval τ : The interval τ indicates that the
server distributes the entire global model to the clients every
τ global rounds. We explore the effect of different interval

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ADAPTIVE BLOCK-WISE REGULARIZATION AND KD FOR ENHANCING FL 13

values τ with respect to the training performance of model on
CIFAR100 as shown in Table IV. It can be seen that if we set
a relatively large τ , the performance of FedBR will degrade.
Besides, according to Table V, when we set a relatively large
τ , the bandwidth consumption of FedBR will be reduced after
200 rounds of global training. For example, when we set
τ to 1 on CIFAR100 under the non-IID level ϵ = 7, the
testing accuracy of the model is 0.515 and the bandwidth
consumption is about 145.1 GB. When we set τ to 5, the
testing accuracy of the model is 0.484 and the bandwidth
consumption is about 131.8 GB. Therefore, we can adjust τ
according to whether the performance of the model is strict or
the bandwidth requirement is strict in the network. It is noted
that we set τ to 1 in the rest of the experiments.

To summarize, FedBR substantially outperforms the three
baselines. Firstly, our FedBR significantly alleviates the
non-IID issue under resource constraints and system het-
erogeneity, especially in extreme non-IID cases. Secondly,
FedBR outperforms the baselines in terms of the generalization
performance of the global model, such as testing accuracy,
while requiring less resource consumption, including network
bandwidth and completion time. According to the experimen-
tal results, FedBR achieves the highest accuracy under the
same network bandwidth consumption and completion time
compared to the three baselines.

VI. RELATED WORKS

Federated learning (FL) [5] has gained significant attention
and has been extensively studied as a promising approach to
train machine learning models in edge computing.

One main area of research is the most common non-IID
data issue in federated learning. Shen et al. [40] propose an
agnostic constrained learning formulation to deal with the
class imbalance problem in FL. Collins et al. [41] propose
that the server only aggregates the representation layer of the
model and the clients learn their own heads for personalization
to better fit their local data. Oh et al. [42] advocate that
clients only update the parameters of the model body during
the model training with a fixed random model head. The
head will be fine-tuned for personalization after the model
training. Chen et al. [43] enable the global model to obtain
good generalization ability and fit the non-IID local data of
clients well by adjusting the local loss function of the clients.
Shamsian et al. [44] design a hypernetwork for the server,
which generates a personalized subnetwork (local model) for
the client to better fit its local data distribution. Li et al. [20]
apply regularization to FedAvg effectively alleviates the impact
of non-IID data by making the local model close to the
global model. Karimireddy et al. [45] propose SCAFFOLD,
which continuously corrects the model update direction by
adding a correction item in each local iteration to prevent the
update direction from being biased. Acar et al. [46] dynami-
cally change the local objective in each global epoch, called
FedDyn, to ensure that the local optimum is consistent with the
stagnation point of the global objective. Li et al. [38] propose
MOON, which exploits the similarity between model repre-
sentations to correct individual local training. Although these
methods can alleviate the impact of non-IID data, most of them

will introduce huge computing costs when performing Local
Updating. Meanwhile, the entire model is still transmitted
between the server and the clients in these methods, leading to
massive communication costs. As a result, they perform poorly
in resource-constrained (e.g., computing and communication
resources) networks.

To alleviate the impact of different computing and commu-
nication capabilities among the clients (i.e. system heterogene-
ity) on the model training performance, some related works
has been proposed by researchers. Ma et al. [47] design an
adaptive method to select different learning rates and batch
sizes for clients according to their varied computing and
communication capabilities. Xu et al. [48] propose to support
running different numbers of local iterations according to
clients’ heterogeneous capabilities. Nishio et al. [49] apply
the client selection mechanism to heterogeneous federated
learning scenarios based on clients’ properties. Although these
methods can alleviate the negative impact of system hetero-
geneity to some extent, the whole model is still communicated
between the server and the clients. As a result, these methods
cannot effectively improve communication efficiency and can-
not be applied to scenarios with limited resources.

Asynchronous federated learning [50], [51], [52] aims to
reduce communication costs by allowing the server to per-
form global aggregation only after receiving a local model
uploaded by a specified client. However, this asynchronous
method prevents the server from aggregating local models of
all clients, so the global model cannot fit the overall data
distribution well [10]. Furthermore, another commonly used
technique in distributed machine learning or FL is model
compression, which can further reduce communication cost
during model training [53]. Model or gradient compression
techniques reduces the communication data volume during
training by transmitting a compact model update instead of a
whole model between the server and the clients, which can
be achieved through the use of sparsification schema [54]
or quantization operator [55]. For the sparsification schema,
Stich et al. [54] introduce error compensation to improve
training performance with model compression by keeping
track of accumulated errors in memory. For the quantization
technique, Basu et al. [55] proposed to use a quantizer (either
stochastic or deterministic 1-bit sign) in combination with
sparsification and error compensation to achieve further model
compression and reduce communication resources. However,
model compression will damage the model accuracy and
cause more computing overhead to achieve the target testing
accuracy.

Applying knowledge distillation technology to federated
learning can effectively reduce network bandwidth and deal
with system heterogeneity by switching logit outputs instead
of models between server and clients [56], [57]. Besides,
providing a public unlabeled dataset as a proxy dataset,
knowledge distillation alleviates the negative effect under
the non-IID setting by enriching the global model with the
integrated knowledge of local models, which is more effective
than simple parameter averaging. However, the clients need
to access public unlabeled proxy data, which is often difficult
to achieve in real-world scenarios [58]. Data-free knowledge

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

distillation is proposed to avoid the use of public unlabeled
proxy datasets via a small data generator [59], [60]. Unfortu-
nately, the generation of the data generator requires the label
information of the clients, which maybe leak the privacy of the
clients. Although FedBR we proposed also adopts knowledge
distillation, it avoids the use of additional data since the
block-wise regularization method enables one input to gener-
ate multiple outputs. FedBR combines knowledge distillation
and regularization so that it deals with the heterogeneous
issues effectively while significantly saving network resources.
Therefore, the model trained by FedBR also obtains good
performance even under heterogeneous settings and resource
constraints.

VII. CONCLUSION

In this work, we have proposed the FedBR framework,
which integrates the idea of block-wise regularization and
knowledge distillation into FedAvg, to deal with statistical
heterogeneity and system heterogeneity for resource-constraint
edge computing. We have designed a heuristic algorithm
(GMBS) to adaptively determines the number of global model
blocks for each client. We have built a simulation environment
and evaluated the performance of FedBR. The experimental
results indicate that FedBR is effective in enhancing model
accuracy while reducing resource consumption (e.g., network
bandwidth and completion time).

REFERENCES

[1] Q. Zeng, J. Liu, H. Xu, Z. Wang, Y. Xu, and Y. Zhao, “Enhanced
federated learning with adaptive block-wise regularization and knowl-
edge distillation,” in Proc. IEEE/ACM 31st Int. Symp. Quality Service
(IWQoS), Jun. 2023, pp. 1–4.

[2] K. L. Lueth et al., “State of the IoT 2018: Number of IoT devices
now at 7B—Market accelerating,” IoT Analytics, vol. 8, pp. 135–139,
Jan. 2018.

[3] G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, and G. Chen, “Auction-
based VM allocation for deadline-sensitive tasks in distributed edge
cloud,” IEEE Trans. Services Comput., vol. 14, no. 6, pp. 1702–1716,
Nov. 2021.

[4] W. Huang, M. Ye, Z. Shi, H. Li, and B. Du, “Rethinking federated
learning with domain shift: A prototype view,” in Proc. CVPR, 2023,
pp. 1–10.

[5] B. M. Mahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist. (PMLR), 2017,
pp. 1273–1282.

[6] Y. Liao, Y. Xu, H. Xu, L. Wang, and C. Qian, “Adaptive configuration for
heterogeneous participants in decentralized federated learning,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), 2023, pp. 13903–13905.

[7] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and
D. S. Nikolopoulos, “Challenges and opportunities in edge computing,”
in Proc. IEEE Int. Conf. Smart Cloud (SmartCloud), Nov. 2016,
pp. 20–26.

[8] J. Liu, Y. Xu, H. Xu, Y. Liao, Z. Wang, and H. Huang, “Enhancing
federated learning with intelligent model migration in heterogeneous
edge computing,” in Proc. IEEE 38th Int. Conf. Data Eng. (ICDE),
May 2022, pp. 1586–1597.

[9] W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in
heterogeneous federated learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 10133–10143.

[10] Z. Wang, H. Xu, J. Liu, Y. Xu, H. Huang, and Y. Zhao, “Accelerating
federated learning with cluster construction and hierarchical aggrega-
tion,” IEEE Trans. Mobile Comput., vol. 22, no. 7, pp. 3805–3822,
Jul. 2023.

[11] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[12] X. Fang and M. Ye, “Robust federated learning with noisy and heteroge-
neous clients,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 10062–10071.

[13] K. Bonawitz et al., “Towards federated learning at scale: System design,”
in Proc. Mach. Learn. Syst., vol. 1, 2019, pp. 374–388.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[15] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 7,
2020, pp. 13001–13008.

[16] W. Chen, S. Horvath, and P. Richtarik, “Optimal client sampling for
federated learning,” 2020, arXiv:2010.13723.

[17] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Comput., vol. 7, no. 2, pp. 219–269,
Mar. 1995.

[18] M. Duan et al., “Astraea: Self-balancing federated learning for improving
classification accuracy of mobile deep learning applications,” in Proc.
IEEE 37th Int. Conf. Comput. Design (ICCD), Nov. 2019, pp. 246–254.

[19] B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, “Tackling
system and statistical heterogeneity for federated learning with adaptive
client sampling,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2022, pp. 1739–1748.

[20] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., vol. 2, 2020, pp. 429–450.

[21] J. Kim, G. Kim, and B. Han, “Multi-level branched regularization for
federated learning,” in Proc. Int. Conf. Mach. Learn. (PMLR), 2022,
pp. 11058–11073.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

[23] A. Mora, I. Tenison, P. Bellavista, and I. Rish, “Knowledge distillation
for federated learning: A practical guide,” 2022, arXiv:2211.04742.

[24] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear
of heterogeneity: Classifier calibration for federated learning with non-
IID data,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 5972–5984.

[25] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggrega-
tion for federated learning,” IEEE Trans. Signal Process., vol. 70,
pp. 1142–1154, 2022.

[26] W. Huang, G. Wan, M. Ye, and B. Du, “Federated graph semantic
and structural learning,” in Proc. Int. Joint Conf. Artif. Intell., 2023,
pp. 139–143.

[27] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, and L. Huang, “Incremental
server deployment for scalable NFV-enabled networks,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Jul. 2020, pp. 2361–2370.

[28] N. Ivkin et al., “Communication-efficient distributed SGD with sketch-
ing,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1930–1935.

[29] J. Liu et al., “Adaptive asynchronous federated learning in resource-
constrained edge computing,” IEEE Trans. Mobile Comput., vol. 22,
no. 2, pp. 674–690, Feb. 2023.

[30] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge
computing,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2021, pp. 1–10.

[31] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu,
“Can decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017, pp. 1839–1843.

[32] J. M. Joyce, “Kullback-leibler divergence,” in International Ency-
clopedia of Statistical Science. Cham, Switzerland: Springer, 2011,
pp. 720–722.

[33] D. A. E. Acar et al., “Debiasing model updates for improving personal-
ized federated training,” in Proc. Int. Conf. Mach. Learn. (PMLR), 2021,
pp. 21–31.

[34] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. neural Inf. Process. Syst., vol. 32, 2019,
pp. 103–105.

[35] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-IID data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Jul. 2020, pp. 1698–1707.

[36] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” M.S. thesis, Univ. Toronto, Toronto, ON, Canada, 2009.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ADAPTIVE BLOCK-WISE REGULARIZATION AND KD FOR ENHANCING FL 15

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[38] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2021, pp. 10708–10717.

[39] N. Al-Falahy and O. Y. Alani, “Technologies for 5G networks: Chal-
lenges and opportunities,” IT Prof., vol. 19, no. 1, pp. 12–20, Jan. 2017.

[40] Z. Shen, J. Cervino, H. Hassani, and A. Ribeiro, “An agnostic approach
to federated learning with class imbalance,” in Proc. Int. Conf. Learn.
Represent., 2021, pp. 1038–1042.

[41] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Proc. Int.
Conf. Mach. Learn. (PMLR), 2021, pp. 2089–2099.

[42] J. Oh, S. Kim, and S.-Y. Yun, “Fedbabu: Toward enhanced representation
for federated image classification,” in Proc. Int. Conf. Learn. Represent.,
2021, pp. 294–296.

[43] H.-Y. Chen and W.-L. Chao, “On bridging generic and personalized
federated learning for image classification,” in Proc. Int. Conf. Learn.
Represent., 2021, pp. 392–397.

[44] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik, “Personalized
federated learning using hypernetworks,” in Proc. Int. Conf. Mach.
Learn. (PMLR), 2021, pp. 9489–9502.

[45] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for feder-
ated learning,” in Proc. Int. Conf. Mach. Learn. (PMLR), 2020,
pp. 5132–5143.

[46] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough,
and V. Saligrama, “Federated learning based on dynamic regularization,”
2021, arXiv:2111.04263.

[47] Z. Ma, Y. Xu, H. Xu, Z. Meng, L. Huang, and Y. Xue, “Adaptive batch
size for federated learning in resource-constrained edge computing,”
IEEE Trans. Mobile Comput., vol. 22, no. 1, pp. 37–53, Jan. 2023.

[48] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive
control of local updating and model compression for efficient federated
learning,” IEEE Trans. Mobile Comput., early access, Jun. 28, 2022, doi:
10.1109/TMC.2022.3186936.

[49] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2019, pp. 1–7.

[50] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
2019, arXiv:1903.03934.

[51] M. R. Sprague et al., “Asynchronous federated learning for geospatial
applications,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Cham, Switzerland: Springer, 2018, pp. 21–28.

[52] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-IID data,” in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2020, pp. 15–24.

[53] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and
S. Wright, “Atomo: Communication-efficient learning via atomic spar-
sification,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,
pp. 1394–1398.

[54] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,
pp. 123–128.

[55] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD: Dis-
tributed SGD with quantization, sparsification and local computations,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 145–150.

[56] K. Ozkara, N. Singh, D. Data, and S. Diggavi, “Quped: Quan-
tized personalization via distillation with applications to federated
learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 3622–3634.

[57] D. Yao et al., “Local-global knowledge distillation in heterogeneous
federated learning with non-IID data,” 2021, arXiv:2107.00051.

[58] M. Chen et al., “Distributed learning in wireless networks: Recent
progress and future challenges,” IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3579–3605, Dec. 2021.

[59] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for
heterogeneous federated learning,” in Proc. Int. Conf. Mach. Learn.
(PMLR), 2021, pp. 12878–12889.

[60] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan, “Fine-tuning
global model via data-free knowledge distillation for non-iid federated
learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
May 2022, pp. 10174–10183.

Jianchun Liu (Member, IEEE) received the Ph.D.
degree from the School of Data Science, University
of Science and Technology of China, in 2022. He is
currently an Associate Researcher with the School
of Computer Science and Technology, University
of Science and Technology of China. His main
research interests are software defined networks,
network function virtualization, edge computing, and
federated learning. He is a member of ACM.

Qingmin Zeng received the B.S. degree from
Zhejiang Gongshang University in 2021. He is cur-
rently pursuing the master’s degree with the School
of Computer Science and Technology, University of
Science and Technology of China (USTC). His main
research interests are edge computing and federated
learning.

Hongli Xu (Member, IEEE) received the B.S.
degree in computer science and the Ph.D. degree
in computer software and theory from the Univer-
sity of Science and Technology of China (USTC),
China, in 2002 and 2007, respectively. He is cur-
rently a Professor with the School of Computer
Science and Technology, USTC. He has published
more than 100 papers in famous journals and
conferences, including the IEEE/ACM TRANSAC-
TIONS ON NETWORKING, IEEE TRANSACTIONS
ON MOBILE COMPUTING, IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, Infocom, and ICNP. He has
also held more than 30 patents. His main research interests are software
defined networks, edge computing, and the Internet of Things. He was
awarded the Outstanding Youth Science Foundation of NSFC in 2018. He has
won the best paper award or the best paper candidate in several famous
conferences.

Yang Xu (Member, IEEE) received the B.S. degree
from the Wuhan University of Technology in
2014 and the Ph.D. degree in computer science
and technology from the University of Science and
Technology of China in 2019. He is currently an
Associate Researcher with the School of Computer
Science and Technology, University of Science and
Technology of China. His research interests include
ubiquitous computing, deep learning, and mobile
edge computing.

Zhiyuan Wang received the B.S. degree from
Jilin University in 2019. He is currently pursuing
the master’s degree with the School of Computer
Science, University of Science and Technology of
China (USTC). His main research interests are edge
computing, deep learning, and federated learning.

He Huang (Senior Member, IEEE) received the
Ph.D. degree from the School of Computer Science
and Technology, University of Science and Technol-
ogy of China (USTC), in 2011. He is currently a
Professor with the School of Computer Science and
Technology, Soochow University, China. His current
research interests include traffic measurement, com-
puter networks, and algorithmic game theory. He is
a member of ACM.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2022.3186936

