
1

FedLC: Accelerating Asynchronous Federated
Learning in Edge Computing

Yang Xu, Member, IEEE, Zhenguo Ma, Hongli Xu, Member, IEEE, Suo Chen, Jianchun Liu, Yinxing Xue

Abstract—Federated Learning (FL) has been widely adopted to process the enormous data in the application scenarios like Edge
Computing (EC). However, the commonly-used synchronous mechanism in FL may incur unacceptable waiting time for heterogeneous
devices, leading to a great strain on the devices’ constrained resources. In addition, the alternative asynchronous FL is known to suffer
from the model staleness, which will lead to performance degradation of the trained model, especially on non-i.i.d. data. In this paper,
we design a novel asynchronous FL mechanism, named FedLC, to handle the non-i.i.d. issue in EC by enabling the local collaboration
among edge devices. Specifically, apart from uploading the local model directly to the server, each device will transmit its gradient to
the other devices with different data distributions for local collaboration, which can improve the model generality. We theoretically
analyze the convergence rate of FedLC and obtain the quantitative relationship between convergence bound and local collaboration.
We design an efficient algorithm utilizing demand-list to determine the set of devices receiving gradients from each device. To handle
the model staleness, we further assign different learning rates for various devices according to their participation frequency. The
extensive experimental results demonstrate the effectiveness of our proposed mechanism.

Index Terms—Asynchronous Federated Learning, Edge Computing, Non-i.i.d., Local Collaboration.

✦

1 INTRODUCTION

With the rapid proliferation of mobile devices in Internet of
Things (IoT), more and more data are accumulated at the
network edge (e.g., gateway, switch) [1]–[3]. By preventing
from centralizing the raw data, the emerging Federated
Learning (FL) offers the potential to reduce the privacy
leakage of devices’ data in the application scenarios like
Edge Computing (EC) [4], [5]. Following the commonly-
used parameter server (PS) framework [6], there are usually
one or multiple servers and a set of edge devices. FL solves
the training tasks by the loose federation of edge devices.
Concretely, each device maintains a device-specific local
model based on its locally stored dataset. The global model
is produced and updated on the server by aggregating the
local models from edge devices.

For pursuing efficient FL in EC, we are confronted with
several critical challenges. (i) Heterogeneous devices. The par-
ticipating devices may be various types of edge devices (e.g.,
smartphones, vehicles), which are equipped with diverse
computation capacities, data size and network connections
[5], [7]–[10]. As a consequence, the time required to up-
date the local model and receive/upload models for het-
erogeneous devices may vary significantly. (ii) Constrained
resources. In EC, the computation and communication re-
sources of edge devices are always constrained [11]–[14].
Due to the periodic computation of local gradients as well
as the frequent transmission between the server and devices,

• Y. Xu, Z. Ma, H. Xu, S. Chen, J. Liu, and Y. Xue are with the
School of Computer Science and Technology, University of Science
and Technology of China, Hefei, Anhui, China, 230027, and also
with Suzhou Institute for Advanced Research, University of Science
and Technology of China, Suzhou, Jiangsu, China, 215123. E-mails:
xuyangcs@ustc.edu.cn; zgma@mail.ustc.edu.cn; xuhongli@ustc.edu.cn;
chensuo@mail.ustc.edu.cn; jcliu17@ustc.edu.cn; yxxue@ustc.edu.cn.

the FL model training will incur an enormous resource cost.
(iii) Non-i.i.d. data. The device users may come from various
communities, and pose different interests or requirements.
As a consequence, the local data produced by various
edge devices usually are not independent-and-identically-
distributed (i.e., non-i.i.d.) [4]. In other words, the local data
on each device may fail to represent the overall distribution.

Generally, the synchronous FL is developed as the most
popular mechanism for distributed model training [4], [11],
[15], [16], and it is reported to be an important factor for en-
suring system stability [17], since all the devices are required
to upload their local models to the server at each epoch.
However, regarding the heterogeneous capacities of edge
devices, the synchronous FL may cause synchronization
barrier, i.e., the fast devices with high-performance hard-
ware should wait for the slow devices (stragglers), which
will incur unacceptable waiting time for the fast devices
[9], [18]. Regarding the synchronization barrier, more time
is required for the global model to reach the convergence.
Concurrently, the synchronization barrier also makes the
computation resources in synchronous FL system under
low utilization, which leads to a great strain on devices’
constrained resources. Moreover, the server in synchronous
FL may become the system bottleneck due to the frequent
model transmission with all participating devices [19], [20].

In order to overcome the obstacles of synchronous FL,
asynchronous FL is proposed [13], [21]. To be specific, asyn-
chronous FL can be divided into two categories: traditional
asynchronous FL [21]–[23] and semi-asynchronous FL [12],
[13], [24]. In the former category, the server updates the
global model as long as it receives one local model from
an arbitrary device. For example, AFO [21], as a tradi-
tional asynchronous federated optimization algorithm, can
totally conquer the synchronization barrier, since there is
no need for the server to stall for the straggler devices.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

2

Nevertheless, the traditional mechanisms will incur signif-
icant communication resource consumption as they require
frequent transmission between edge devices and the central
server [24]. While for semi-asynchronous FL, the global
model is updated by aggregating multiple models rather
than a single model. For instance, Liu et al. proposed CE-
AFL [13], a communication-efficient semi-asynchronous FL
mechanism that controls the proportion of participating
devices at each epoch, which can reduce the communication
resource consumption. However, the semi-asynchronous FL
is not always effective to alleviate the negative effect of syn-
chronization barrier, since the selected participating devices
may be straggler devices [9]. In addition, the asynchronous
FL is known to suffer from the model staleness, which may
degrade the performance of global model [25]. Moreover,
the negative effect of staleness may be magnified with the
presence of non-i.i.d. issue [24]–[26].

The above methods focus on the global collaboration
of edge devices, i.e., the collaboration is achieved globally
on the server by aggregating the local models, without
involving the direct local collaboration among edge devices.
In synchronous FL, the global collaboration will cause the
synchronization barrier for heterogeneous devices and raise
conflicts with devices’ constrained resources. The existing
asynchronous global collaboration causes the performance
degradation of the global model in case of the non-i.i.d. data.
Instead, the local collaboration of edge devices can help
each device to learn from the other devices with different
data distributions, and the non-i.i.d. challenge can be well
addressed. To this end, Liu et al. proposed an efficient
FL framework, called FedMigr [27], which integrates local
collaboration into FedAvg by directly migrating the local
model of an edge device to another device. However, due
to the heterogeneous resource on edge devices, FedMigr
may lead to unacceptable waiting time, since it updates
the global model in a synchronous manner. Furthermore,
the migration strategy in FedMigr is generated by Deep
Reinforcement Learning (DRL), which is not feasible in
resource-constrained edge computing scenarios, since the
training of DRL models requires large amounts of computa-
tion resource and training samples [28].

Motivated by this, to accommodate the heterogeneous de-
vices, constrained resources and non-i.i.d. data simultaneously,
we design a novel asynchronous FL mechanism (named
FedLC) by enabling the local collaboration of edge devices.
Concretely, at each epoch, apart from uploading the local
model to the server, each device transmits its gradient to the
other devices for local collaboration. However, the number
of collaborating devices (denoted by k) is an important fac-
tor that affects the performance of the proposed mechanism.
Specifically, when collaborating with more devices (large
k), the model quality will be enhanced, but the resource
(computation and communication) overhead is increased.
In contrast, the resource overhead can be reduced if small
k is adopted, but the performance of the global model may
be degraded. Besides, regarding the non-i.i.d. data, it is also
challenging to determine the set of collaborating devices
for each device. Our main contributions are summarized as
follows:

• We design a novel asynchronous FL mechanism,

named FedLC, for achieving efficient FL in EC. We
theoretically analyze the convergence rate of FedLC
and obtain the convergence upper bound. The quan-
titative relationship between convergence bound and
parameter k is also present.

• We design an efficient algorithm to determine the set
of devices transmitting gradients to each device. We
utilize a demand-list to transform pulling gradients
from the transmitting devices into pushing gradients
to the receiving devices, so as to avoid the block of
pull operations.

• We conduct extensive experiments on the real-world
datasets. The experimental results demonstrate that
the proposed mechanism can accelerate the conver-
gence rate of global model on the non-i.i.d. data.

The rest of this paper is organized as follows. Section
2 provides the preliminaries of asynchronous federated
learning and the formulation of the problem. The theoretical
convergence analysis is presented in Section 3. Section 4
gives the detailed description of the proposed algorithm.
In Section 5, the experiments are conducted and the cor-
responding results are presented. The related works are
summarized in Section 6. Finally, we conclude the paper
in Section 7.

2 PRELIMINARIES AND PROBLEM FORMULATION

2.1 Asynchronous Federated Learning

In synchronous FL, the server updates the global model on
receiving all the local models, which may lead to the syn-
chronization barrier due to heterogeneous devices and make
the computation resources under low utilization. However,
in asynchronous FL (AFL), the global model is updated
as long as one local model is received, so as to get rid of
the negative effect of synchronization barrier. For sake of
simplification, we assume that an AFL system consists of N
edge devices and a central server in EC. Each device i ∈ [N]
holds a local dataset Di that follows a specific distribution
Pi, i.e.,Di ∼ Pi. Based on the local datasetDi, device i trains
a local model wi. Concurrently, a globally shared model w
is maintained and updated on the central server, so as to
minimize the global loss function F (w). Formally, F (w) is
expressed as follows [9]

F (w) =
N∑
i=1

di
D
Fi(w), (1)

where Fi(w) denotes the local loss function of device i, di
represents the size of local dataset Di, and D =

∑N
i=1 di is

the total number of training samples.
For a training task, FL aims to find an optimal model

parameter w∗ that satisfies

w∗ ≜ argmin
w

F (w). (2)

Generally, gradient descent based methods, such as [9], [13],
[24], are widely used to solve Eq. (2). For each device i, after
receiving the global model wt from the central server at the
t-th global epoch, the local model wti

i at local epoch ti is set
as wt. Herein, we define a local epoch as a gradient descent
step on the local loss function at each device, while a global

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

3

TABLE 1: Table of main notations.

Notations Semantics
N number of participating devices
D total number of training samples
η learning rate
w global model
w∗ optimal model
t global epoch index
F global loss function
wi local model of device i
Di local dataset of device i
di number of samples in dataset Di

Fi local loss function of device i
ti local epoch index of device i
∇Fi gradient of the loss function on device i
Ri in-neighbor set of device i
Vi out-neighbor set of device i
Bi communication capacity of device i
Ci computation capacity of device i

epoch is referred to as an aggregation step of local models
on the server. It is worth noting that the global epoch index
t equals the sum of all the local indices in AFL, i.e., t =∑N

i=1 ti. Subsequently, the gradient descent method is used
to update the local model wti

i at local epoch ti as follows

wti+1
i = wti

i − η∇Fi(w
ti
i), (3)

where η is the learning rate, and ∇Fi(w
ti
i) represents the

gradient of local loss function Fi(·). Then the updated local
model wti+1

i of device i at local epoch ti + 1 is transmitted
to the central server for aggregation.

Suppose the central server receives the local model wti
i

from device i at local epoch ti. The global model is updated
as follows [29]

wt+1 = wt − di
D
(wti

i − wti+1
i)

= wt − di
D
(wti

i − (wti
i − η∇Fi(w

ti
i)))

= wt − η
di
D
∇Fi(w

ti
i), (4)

where wt denotes the model at global epoch t. Afterwards,
the updated global model wt+1 is then sent back to device i
to perform local model updating. Some important notations
are listed in Table 1.

2.2 Training Process of FedLC
Unlike the traditional AFL methods focusing merely on the
global collaboration, FedLC enables the local collaboration
among edge devices, so as to accelerate the convergence
rate. The framework of FedLC is illustrated in Fig. 1, which
mainly consists of four steps, i.e., model distribution, local
updating, local collaboration and global aggregation.

Model distribution. In this step, the server distributes
the latest global model and the corresponding column of
demand-list to the device that contributes to the global
aggregation.

Local updating. After retrieving the global model from
the central server, the local updating is triggered on each

PS

Device 1 Device 3 Device N

Local Data Local Model

…

 Global Model

Distribution

Local Collaboration

Local

Updating

2

3

Global

Aggregation

4

Global Model Local Gradient

Device 2

Local Model

Collection

1 0

0 1

1 0

001

0

0

…
00

0

0

1

#2#1 #3 #N

#1

#N

…

#2

#3

… …
…
…
…
…
…
…

Demand-list

Distribution

1

Demand-list

1

0

0

…
0

#2

Fig. 1: Illustration of training process of FedLC.

device. On account of the local collaboration among devices,
apart from the global model, each device may receive
multiple local gradients from other devices. For sake of
illustration, let Rti

i denote the in-neighbor set of device i,
i.e., the set of devices transmitting local gradients to device
i at local epoch ti. Similarly, we denote Vti

i as the out-
neighbor set of device i at local epoch ti, i.e., the set of
devices receiving local gradients from device i at local epoch
ti. Once the global model is received, device i updates the
local model wti

i at local epoch ti according to Eq. (3). Unlike
the traditional AFL method, FedLC defines the aggregated
gradient ∇Fi(w

ti
i) as follows

∇Fi(w
ti
i) =

1

|Rti
i |+ 1

∇Fi(w
t) +

∑
j∈Rti

i

∇Fj(w
t)

 , (5)

where | · | denotes the number of elements in a set. By Eq.
(5), the proposed FedLC mechanism is equivalent to the
traditional AFL method if Rti

i is empty. We note that only
one local iteration is illustrated in Eq. (3) for sake of analysis.
By changing the definition of wti+1

i in Eq. (3), FedLC can
still be applied to the cases where multiple local iterations
are performed at each epoch.

Local collaboration. Different from the traditional AFL
that focuses on global collaboration, we aim to address the
statistical heterogeneity by enabling the local collaboration
among edge devices in FedLC. Concretely, after obtaining
the local gradient in local updating step, each device directly
transmits the local gradient to other devices according to the
received demand-list, without relying on the central server.
For example, by Fig. 1, device #2 receives the 2nd column
of demand-list from the server. According to the demand-
list, the second element in the first row of the list is 1,
indicating that device #1 requires the gradient of device #2
to correct the optimization direction of its local model. As a
consequence, based on the demand-list, device #2 transmits
its local gradient to device #1 for collaboration. By local
collaboration among edge devices, the non-i.i.d. data can be
well addressed, and the convergence rate of AFL can be
improved.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

4

Global aggregation. Similar to the traditional AFL
method, the proposed FedLC mechanism requires that the
central server updates the global model as long as one local
model is collected, so as to remove synchronization barrier
caused by system heterogeneity. The global aggregation is
performed according to Eq. (4). Besides, according to the
received parameters, the server will update the correspond-
ing row in demand-list. Then the updated global model
and the demand-list are distributed to the edge device that
contributes to this global aggregation.

2.3 Problem Formulation

To address the statistical heterogeneity challenge, we focus
on AFL with local collaboration among edge devices. In
EC, the communication and computation resources of edge
devices available for model training are always constrained.
For device i, we denote Bi and Ci as its communication and
computation capacity, respectively. In this paper, we seek to
minimize the global loss function F (w) under the resource
constraints. The problem can be formulated as follows

minF (wT)

s.t.

(|Vti

i |+ 1) ∗ b ≤ Bi ∀i, ti (6a)
(|Rti

i |+ 1) ∗ c ≤ Ci ∀i, ti (6b)∥∥∥wti
i − w

tj
j

∥∥∥2 ≥ δ ∀i, ti, j ∈ Vt
i , tj (6c)

where T is the total number of global epochs, and ∥·∥
represents the L2 norm. Eq. (6a) represents that the resource
consumption for transferring the local model and gradient
to the central server and other devices should be less than
Bi, where b denotes the the bandwidth consumption for
transmitting one local model (or gradient). Eq. (6b) denotes
that the required computation capacity for aggregating the
local gradients is no more than Ci. According to [30],
[31], the collaboration among devices with different data
distributions helps to improve the performance on non-i.i.d.
data. Hence, Eq. (6c) essentially promotes the collaboration
among devices with different data distributions. The goal is
to learn an optimal global model with local device collabo-
ration under the resource constraints, so as to minimize the
global loss function F (w).

According to [29], we modify the problem formulation
and present a variant of Eq. (6). By [30], the collaboration
among devices with different data distributions shows a
superior performance over the collaboration among devices
with similar distribution. To be intuitive, the benefit of
inter-cluster collaboration is to learn from the other devices
with different data distributions, which can be expressed
by restricting the gap between the local gradient ∇Fi

and the global gradient ∇F . In this way, the constraint∥∥∥wti
i − w

tj
j

∥∥∥2 ≥ δ in Eq. (6) can be replaced by [29]〈
∇F (wt),E(∇Fi(w

ti
i))

〉
≥ ϵ

∥∥∇F (wt)
∥∥2 , (7)

where ⟨·⟩ denotes the inner product of two vectors, E repre-
sents the expectation, and ϵ is a predefined factor. Therefore,
based on Eq. (7), a variant of Eq. (6) can be formulated as
follows

minF (wT)

s.t.

(|Vti

i |+ 1) ∗ b ≤ Bi ∀i, ti (8a)
(|Rti

i |+ 1) ∗ c ≤ Ci ∀i, ti (8b)〈
∇F (wt),E(∇Fi(w

ti
i))

〉
∥∇F (wt)∥2

≥ ϵ ∀i, ti, t (8c)

3 CONVERGENCE ANALYSIS

3.1 Assumptions

In order to facilitate the convergence analysis, we make the
following assumptions on the loss functions and gradients.

Assumption 1. Fi is β-smooth with β > 0, i.e., it always holds
Fi(w2)− Fi(w1) ≤ ⟨∇Fi(w1), w2 − w1⟩+ β

2 ∥w2 − w1∥2 for
any two model parameters w1 and w2.

Assumption 2. Fi is strongly convex with a constant µ > 0,
i.e., it always holds Fi(w2)−Fi(w1) ≥ ⟨∇Fi(w1), w2 − w1⟩+
µ
2 ∥w2 − w1∥2 for any two model parameters w1 and w2.

It is worth noting that Assumption 2 always holds for the
models (e.g., linear regression) with convex loss functions.
Moreover, though the convergence analysis is derived based
on Assumption 2, the experimental results in Section 5
demonstrate that the proposed mechanism can also cope
with the non-convex models (e.g., convolutional neural net-
work).

Assumption 3. ∇Fi is Vi-dissimilar, i.e., it always holds
E(∥∇Fi(w)∥2) ≤ V 2

i ∥∇F (w)∥2 for any model parameter w.

3.2 Convergence Upper Bound

Based on the assumptions, we first present several lemmas
to promote the analysis.

Lemma 1. Since Fi is β-smooth (by Assumption 1) and µ-
strongly convex (by Assumption 2), based on Eq. (1), the global
loss function F is also β-smooth and µ-strongly convex.

For the sake of saving space, we only present the proof
for the strong convexity of F , and the proof for smoothness
can be derived in the similar way.

Proof. By Eq. (1), ∀w1, w2 it always holds

F (
w1 + w2

2
) =

N∑
i=1

di
D
Fi(

w1 + w2

2
). (9)

According to the definition of strong convexity in [32], Eq.
(9) can be rewritten as

F (
w1 + w2

2
) =

N∑
i=1

di
D
Fi(

w1 + w2

2
)

≤
N∑
i=1

di
D

(
1

2
Fi(w1) +

1

2
Fi(w2)− µ ∥w1 − w2∥2

)

≤ 1

2

N∑
i=1

di
D
Fi(w1) +

1

2

N∑
i=1

di
D
Fi(w2)

− µ
N∑
i=1

di
D
∥w1 − w2∥2

=
1

2
F (w1) +

1

2
F (w2)− µ ∥w1 − w2∥2 . (10)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

5

From [32], the global loss function F satisfies the convexity
condition and is µ-strongly convex.

Therefore, according to Assumptions 1-2 and Lemma 1,
we can infer that the global loss function is β-smooth and
µ-strongly convex.

Lemma 2. According to the definition of ∇Fi(w
ti
i) in Eq. (5)

and Assumption 3, it always holds that

E
(∥∥∇Fi(w

ti
i)

∥∥2) ≤ ξi
∥∥∇F (wt)

∥∥2 , (11)

where ξi = (V 2
i +

∑
j∈Rti

i
V 2
j)/(|R

ti
i |+ 1).

Since Lemma 2 can be derived simply by extending
the Cauchy-Schwarz inequality [33], we omit the proof for
Lemma 2 here.

Lemma 3. By Lemma 1 and Assumption 2, for any t ∈ [T], we
can obtain

2µ(F (wt)− F (w∗)) ≤
∥∥∇F (wt)

∥∥2 . (12)

Lemma 3 is a simple extension of strong convexity, and
is supported by some literatures such as [34], [35]. Hence,
we only give the rough proof of Lemma 3.

Proof. According to Lemma 1, for any two model parame-
ters w1 and w2, we can get

F (w2)− F (w1) ≥ ⟨∇F (w1), w2 − w1⟩+
µ

2
∥w2 − w1∥2 .

(13)
By replacing w1 and w2 with wt and w, it is obvious that

F (w)− F (wt) ≥
〈
∇F (wt), w − wt

〉
+

µ

2

∥∥w − wt
∥∥2 , (14)

which is equivalent to

F (w) ≥ F (wt) +
〈
∇F (wt), w − wt

〉
+

µ

2

∥∥w − wt
∥∥2 . (15)

Let H(w) denote the right side of Eq. (15). We have

H(w) = F (wt) +
〈
∇F (wt), w − wt

〉
+

µ

2

∥∥w − wt
∥∥2 .

(16)

According to (16), we can infer that H(w) is a quadratic
function of w. As a consequence, H(w) is minimized when
∇H(w) = ∇F (wt) + µ(w − wt) =

−→
0 , where

−→
0 represents

the zero vector. By letting w = wt − ∇F (wt)
µ , we can get the

minimum value of H(w) (denoted as Hmin), i.e.,

Hmin = F (wt)− ∥∇F (wt)∥2

2µ
. (17)

Based on Eq. (16), it always holds that F (w∗) ≥ H(w∗).
From Eq. (17), we can further obtain

F (w∗) ≥ H(w∗) ≥ Hmin = F (wt)− ∥∇F (wt)∥2

2µ
, (18)

which is equivalent to

2µ(F (wt)− F (w∗)) ≤
∥∥∇F (wt)

∥∥2 . (19)

Hence, Lemma 3 is proved.

Based on the above results, we give the convergence
upper bound of the global model as follows.

Theorem 1. Suppose that Assumptions 1-3 always hold. Let ξ =
max
i∈[N]

ξi and η = ϵD
diβξ

. After T global epochs, the convergence

bound of the global model is given by

E(F (wT)−F (w∗)) ≤ (1− µϵ2

βξ
)TE(F (w0)−F (w∗)). (20)

According to Theorem 1, we find that the convergence
bound is closely related to the non-i.i.d. degree via some
important factors (i.e., ϵ and ξ). Concretely, when the non-
i.i.d. degree decreases, the value of ξ becomes lower, and
the value of ϵ is increased [29]. Hence, the value of (1 −
µϵ2

βξ) is decreased, leading to a tight convergence bound, and
vice versa. Notably, according to [29], when all the local
datasets follow the same distribution, the values of ϵ and
ξ are all equal to 1, and the convergence bound becomes
(1− µ

β)
TE(F (w0)− F (w∗)).

Proof. According to Lemma 1 and Assumption 1, the β-
smoothness condition guarantees

F (w2)− F (w1) ≤ ⟨∇F (w1), w2 − w1⟩+
β

2
∥w2 − w1∥2 .

(21)

Let w1 = wt and w2 = wt+1. Eq. (21) can be rewritten as

F (wt+1)− F (wt)

≤
〈
∇F (wt), wt+1 − wt

〉
+

β

2

∥∥wt+1 − wt
∥∥2 . (22)

Then, by Eq. (4), we can further get

F (wt+1)− F (wt)

≤
〈
∇F (wt), wt+1 − wt

〉
+

β

2

∥∥wt+1 − wt
∥∥2

=

〈
∇F (wt),−η di

D
∇Fi(w

ti
i)

〉
+

β

2
∥η di

D
∇Fi(w

ti
i)∥

2. (23)

By taking the expectation of F (wt+1), we can obtain

E(F (wt+1))− F (wt)

≤
〈
∇F (wt),−η di

D
E(∇Fi(w

ti
i))

〉
+

βη2d2i
2D2

E
(∥∥∇Fi(w

ti
i)

∥∥2) . (24)

According to Eq. (8c), we can infer that .〈
∇F (wt),−η di

D
E(∇Fi(w

ti
i))

〉
≤ −ϵη di

D

∥∥∇F (wt)
∥∥2 .

(25)
Besides, by Lemma 2, it always holds

βη2d2i
2D2

E
(∥∥∇Fi(w

ti
i)

∥∥2) ≤ βη2d2i
2D2

ξi
∥∥∇F (wt)

∥∥2 . (26)

Hence, by substituting Eqs. (25) and (26) in to Eq. (24), we
have

E(F (wt+1))− F (wt)

≤
(
−ϵη di

D
+

βη2d2i
2D2

ξi

)∥∥∇F (wt)
∥∥2 , (27)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

6

which is equivalent to

E(F (wt+1))− F (wt) ≤
(
−ϵη di

D
+

βη2d2i
2D2

ξi

)∥∥∇F (wt)
∥∥2

≤ −2µη
(
ϵ
di
D
− βηd2i

2D2
ξi

)
(F (wt)− F (w∗)), (28)

where the last inequality is derived from Lemma 3. Upon
rearrangement, Eq. (28) is equivalent to

E(F (wt+1))− F (w∗)

≤ (1− 2µη(ϵ
di
D
− βηd2i

2D2
ξi))(F (wt)− F (w∗)). (29)

By taking the expectation of both sides in Eq. (29), we can
obtain

E(F (wt+1)− F (w∗))

≤ (1− 2µη(ϵ
di
D
− βηd2i

2D2
ξi))E(F (wt)− F (w∗)). (30)

We can see that (1 − 2µη(ϵdi

D −
βηd2

i

2D2 ξi)) is increased with
ξi, and E(F (wt) − F (w∗)) ≥ 0. Hence, according to the
definition of ξ, Eq. (30) can be modified as

E(F (wt+1)− F (w∗))

≤ (1− 2µη(ϵ
di
D
− βηd2i

2D2
ξ))E(F (wt)− F (w∗)). (31)

Moreover, for Eq. (31), by letting t + 1 = T , we can further
get

E(F (wT)− F (w∗))

≤ (1− 2µη(ϵ
di
D
− βηd2i

2D2
ξ))TE(F (w0)− F (w∗)). (32)

We can easily infer that (1−2µη(ϵdi

D−
βηd2

i

2D2 ξ))
T is minimized

when η = ϵD
diβξ

. Hence, Theorem 1 is proved by setting η =
ϵD
diβξ

in Eq. (32).

4 ALGORITHM DESIGN

For a certain loss function F (w), its minimum value F (w∗)
can be regarded as a constant. In this way, optimizing
F (wT) in Eq. (8) can be shifted to minimizing the upper
bound of E(F (wT) − F (w∗)), which is related to some
parameters (e.g., ϵ, ξ and β) by Eq. (20). As a consequence,
we first present a method to estimate these parameters. Then
we present the proposed algorithm for the server and each
device to solve the problem. Finally, we extend the proposed
algorithm for adapting to the real EC environment.

4.1 Approximate Estimation of Parameters ϵ, ξ and β

According to Eq. (20), the upper bound of E(F (wT) −
F (w∗)) is related to the parameters µ, ϵ, β and ξ. In this
paper, we consider a practical scenario where these param-
eters are unknown in advance and may vary as training
progresses. For simplification, we ignore µ

β and minimize

(1 − µϵ2

βξ) by maximizing ϵ2

ξ , since the value of µ
β is not

affected by the local collaboration of edge devices [11].
According to Eq. (8c), we can obtain〈

∇F (wt),E(∇Fi(w
ti
i))

〉
≥ ϵ

∥∥∇F (wt)
∥∥2. (33)

By taking square of both sides, Eq. (33) can be rewritten as〈
∇F (wt),E(∇Fi(w

ti
i))

〉2 ≥ ϵ2
∥∥∇F (wt)

∥∥4. (34)

Moreover, it is obvious that〈
∇F (wt),E(∇Fi(w

ti
i))

〉
=

∥∥∇F (wt)
∥∥ ∥∥E(∇Fi(w

ti
i))

∥∥ cos(∇F (wt),E(∇Fi(w
ti
i)))

≤
∥∥∇F (wt)

∥∥ ∥∥E(∇Fi(w
ti
i))

∥∥ . (35)

By combining Eqs. (34) and (35), we can obtain∥∥∇F (wt)
∥∥2 ∥∥E(∇Fi(w

ti
i))

∥∥2 ≥ ϵ2
∥∥∇F (wt)

∥∥4, (36)

which is equivalent to∥∥E(∇Fi(w
ti
i))

∥∥2 ≥ ϵ2
∥∥∇F (wt)

∥∥2. (37)

Hence, the factor ϵ satisfies∥∥E(∇Fi(w
ti
i))

∥∥ ≥ ϵ
∥∥∇F (wt)

∥∥. (38)

For ease of notations, we let li denote the norm of gradient
for device i, i.e.,

li = ∥∇Fi(w)∥ . (39)

By Eqs. (7) and (38), ϵ can be approximately formulated as

ϵ ≜
N · (li +

∑
j∈Rti

i
lj)

k · (l1 + l2 + · · ·+ lN)
, (40)

where N denotes the number of edge devices, Rti
i repre-

sents the in-neighbor set of device i at local epoch ti, and k
is defined as k = |Rti

i |+ 1.
In terms of ξ, according to Assumption 3, V 2

i can be
approximately formulated as

V 2
i ≜

N · l2i
l21 + l22 + · · ·+ l2N

. (41)

Then, by the definition in Lemma 3, we can estimate ξ as

ξ ≜
N · (l2i +

∑
j∈Rti

i
l2j)

k · (l21 + l22 + · · ·+ l2N)
. (42)

Regarding the restriction on learning rate in Theorem 1,
apart from the parameters ϵ and ξ, β is also necessary to
calculate η. As a consequence, for estimating η in real time,
we should dynamically calculate β as follows [11],

β =
1

N

∑
i∈[N]

βi =
1

N

∑
i∈[N]

|Fi(w
ti
i)− Fi(w

ti−1
i)|∥∥∥wti

i − wti−1
i

∥∥∥ . (43)

4.2 Description of FedLC

It is worth noting that the convergence upper bound is
related to the devices from in-neighbor set R. However,
pulling gradients from other devices may lead to block
and incur non-negligible waiting time, since all the devices
perform the local training in an asynchronous manner. In
this way, we propose to maintain a demand-list M on the
server. By Fig. 1,M is a matrix with size of N × N , where
device i ∈ [N] demands the gradient of device j ∈ [N] when
Mi,j = 1. Hence, the i-th row ofM denotes the in-neighbor
set of device i, and the j-th column ofM represents the out-
neighbor set of device j. By distributing the j-th column of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

7

Algorithm 1 Procedure at the server
Require: Total number of epochs T
Ensure: wT

1: Initialize the global model w0 as a random vector;
2: Initialize the global epoch t as t← 0;
3: Initialize the demand-listM as a matrix with full zero;
4: Initialize βi and li for all device i ∈ [N];
5: Initialize the learning rate η and D;
6: for i = 1 to N do
7: Send w0, η andM:,i to device i;
8: end for
9: while t < T do

10: Receive wti+1
i and di from device i;

11: Update the global model wt+1 according to Eq. (4);
12: if ti ≥ 1 then
13: Receive βi and li from device i and replace the

old one;
14: if All the βi and li (i ∈ [N]) are received then
15: Set the row related to device i in demand-list

asMi,: = LOCALCOL(M);
16: Estimate β according to Eq. (43);
17: Update the learning rate η as η = ϵD

diβξ
;

18: end if
19: end if
20: Send wt+1, η andM:,i to device i;
21: Start the next epoch and set t← t+ 1;
22: end while
23: Send STOP flag and the global model WT to all de-

vices;

24: function LOCALCOL(M)
25: Initialize S ← [0, 0, · · · , 0], k ← 1;
26: Calculate ϵ← N ·li

l1+l2+···+lN
and ξ ← N ·l2i

l21+l22+···+l2N
;

27: for j = 1 to N do
28: if j ̸= i, k < Ci

c and
∑

h∈[N]

Mh,j <
Bj

b then

29: Calculate ϵ̂ and ξ̂ according to Eqs. (40) and
(42);

30: if ϵ̂2

ξ̂
> ϵ2

ξ
then

31: Select device j and set Sj ← 1;
32: Set k ← k + 1;
33: end if
34: end if
35: end for
36: return S
37: end function

M to device j, we can transform the in-neighbor set R into
the out-neighbor set V , and the block can be eliminated.

On the basis of the above results, we present the al-
gorithm for the server and each device in Algorithms 1
and 2, respectively. First of all, we initialize some critical
parameters for the server (Lines 1-5 of Algorithm 1) and
each device (Lines 1-4 of Algorithm 2). On the server side,
the global model w0 is initialized as a random vector.
The demand-list M is created as a matrix with full zero,
indicating that all the devices train the model locally and
collaborate with each other via the global aggregation at the
start. In addition, the other parameters, such as the learning

Algorithm 2 Procedure at device i

Ensure: wT

1: Initialize the resource budgets Bi, b, Ci and c;
2: Initialize the local epoch ti as ti ← 0;
3: Initialize the receive buffer Ri as an empty set;
4: Initialize di;
5: while The STOP flag is not received do
6: Receive the gradients from other devices and store

them in Ri;
7: Receive wt, η, andM:,i from the server;
8: Calculate the local gradient ∇Fi(w

t);
9: Compute the aggregated gradient ∇Fi(w

ti
i) accord-

ing to Eq. (5) and clear the receive buffer Ri;
10: Update the local model wti+1

i according to Eq. (3);
11: for j = 1 to N do
12: ifMj,i = 1 then
13: Send ∇Fi(w

t) to the device j;
14: end if
15: end for
16: Send wti+1

i and di to the server;
17: if ti ≥ 1 then
18: Calculate the norm li ← ∥∇Fi(w

t)∥;
19: Estimate βi as βi ← |Fi(w

ti
i)−Fi(w

ti−1
i)|∥∥∥wti

i −w
ti−1
i

∥∥∥ ;

20: Send βi and li to the server;
21: end if
22: Set ti ← ti + 1;
23: end while
24: Receive wT from the server;

rate η and total number of samples D, are also initialized on
the server. On the device side, Algorithm 2 begins with the
initialization of the resource budgets (i.e., Bi, b, Ci and c).
Besides, each device locally maintains a receive buffer that
stores the gradients received from the other devices. The
receive buffer Ri is initialized as an empty set on device
i. The other important parameters (e.g., local epoch index
ti and number of samples di on device i) are specified in
advance on each device.

After the initialization, the server sends the initialized
global model w0, learning rate η and M:,i to device i and
starts the model training (Lines 6-8 in Algorithm 1), where
M:,i represents the i-th column ofM (i.e., the devices that
request the gradient of device i). To go along with this,
each device i receives the gradients from other devices and
stores them in the receive buffer Ri (Line 6 of Algorithm 2).
Simultaneously, device i receives wt, η and M:,i from the
server (Line 7 of Algorithm 2). Afterwards, as shown by Line
8 in Algorithm 2, the local gradient ∇Fi(w

t) is computed
by device i. On the basis of ∇Fi(w

t) and the received
gradients in receive buffer Ri, device i aggregates the local
gradients according to Eq. (5). The receive buffer Ri will be
cleared after the aggregation (Line 9 of Algorithm 2). The
aggregated gradient ∇Fi(w

ti
i) and the learning rate η are

then used to update the local model wti+1
i according to Eq.

(3) (Line 10 of Algorithm 2). The local collaboration step is
performed on device i by sending its local gradient∇Fi(w

t)
to device j ifMj,i = 1 (Lines 11-15 of Algorithm 2). At the
same time, the updated local model wti+1 is transmitted to

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

8

the server. Besides, when the local epoch index ti is larger
than 0, device i will estimate the local gradient norm li and
the parameter βi. The estimated li and βi are sent to the
server (Lines 17-21 of Algorithm 2), so as to calculate the
learning rate and update the demand-list. Then device i set
ti = ti+1 and starts the next epoch, as shown by Line 22 of
Algorithm 2.

On the server side, the global aggregation step is trig-
gered by receiving the local model wti+1

i from device i (Line
10 of Algorithm 1). As depicted by Line 11 of Algorithm 1,
the server updates the global model wt+1 using the received
local model wti+1

i according to Eq. (4). Similar to Algorithm
2 on each device, the server will receive the estimated βi and
li if the received local epoch index ti is larger than 0 (Line
13 of Algorithm 1). The received βi and li will replace the
previously stored values. Furthermore, when all the βi and
li (i ∈ [N]) are received, the server updates the demand-list
Mi,: associated with device i (i.e., the i-th row ofM) using
LOCALCOL (Line 15 of Algorithm 1). The demand-list for
device i (denoted by S) is first initialized as a vector filling
with zero. Besides, the number of collaborating devices
k is specified as k ← 1 in advance. Then we calculate
ϵ ← N ·li

l1+l2+···+lN
and ξ ← N ·l2i

l21+l22+···+l2N
using the received

li (Line 26 of Algorithm 1). For each device j ̸= i, if the
computation constraint of device i and the bandwidth of
target device j are satisfied, we estimate ϵ̂ and ξ̂ according
to Eqs. (40) and (42) (Line 29 of Algorithm 1). We note that
the gradient of device j is helpful to device i if ϵ̂2

ξ̂
> ϵ2

ξ
, since

it produces lower convergence upper bound and accelerates
the convergence of the model. Hence, we claim that device
i requires the gradient of device j and set Sj = 1 when
ϵ̂2

ξ̂
> ϵ2

ξ
(Line 31 of Algorithm 1). When all devices are

checked, LOCALCOL generates the demand-list for device
i and returns it to the server (Line 36 of Algorithm 1). Then
the server replaces the i-th row ofM with S. Subsequently,
the server estimates β according to Eq. (43) and updates the
learning rate as η = ϵD

diβξ
, where ϵ and ξ can be calculated

using the updated demand-list based on Eqs. (40) and (42).
At the end of global epoch t, the server sends the updated
global model wt+1, learning rate η and demand-list M:,i

(i-th column of M) to device i (Line 20 of Algorithm 1).
Then the server starts the next epoch. The above process
is conducted iteratively until all the required T epochs are
completed. Then, the server sends the STOP flag and the
resulting global model wT to all devices, and the proposed
algorithm terminates.

4.3 Staleness-Compensated FedLC

In EC, the computation and bandwidth capacities of edge
devices are generally heterogeneous, and thus the arrival
frequency of different devices may also be diverse. In other
words, the version of some local models may be stale in
AFL. The convergence rate of the global model is degraded
when using the stale local models for global aggregation [9].
Hence, inspired by [24], we propose staleness-compensated
FedLC (SC-FedLC), which assigns different local learning
rates for each device. The local learning rate ηi for each
device i is determined by the relative frequency (denoted as
ri) it participates in the global aggregation. The participation

frequency ri for device i is defined as the local epoch index
ti divided by the global epoch index t, i.e., ri = ti

t . Recall
that the global epoch index t is defined as t =

∑
i∈[N] ti. As

a consequence, it is obvious that
∑

i∈[N] ri = 1. Afterwards,
based on the participation frequency ri, the local learning
rate ηi for device i can be calculated as

ηi =
η

N · ri
. (44)

We note that the weighted average learning rate of all
devices is equal to η:

∑
i∈[N] riηi = N · η

N = η. We can see
that the learning rate of device i is inversely proportional
to its participation frequency, which has been verified to be
effective by [24].

4.4 Discussion
In EC, the edge devices participating in FL may be various
kinds of mobile devices. In addition, edge devices always
connect to base station (BS) via unstable wireless links.
Hence, considering the device mobility in dynamic EC
environment, the communication timeout issue may occur
due to the BS handover or unstable network condition. We
note that the communication timeout may occur in both
global model distribution and local model collection. In both
two cases, edge devices cannot retrieve the global model
from the server. In addition, by Line 28 in Algorithm 1,
when the network condition becomes poor, most of the
devices are prohibited to collaborate due to the increased
communication time. The lack of collaboration may cause
the deviation of global model in AFL, and the performance
of global model is degraded. To this end, we propose to refer
to the timeout retransmission mechanism in TCP protocol,
and introduce a similar method that retransmits the local
models if no reply is received from the server within the
retransmission timeout (RTO), so as to handle the poor
network conditions. Furthermore, the network conditions
always vary with time in EC. As as consequence, the value
of RTO (denoted as TRTO) should be adjusted based on the
real-time network condition. According to [36], TRTO can be
adjusted as follows:

TRTO = T̂RTT + φ ∗ σ(TRTT), (45)

where φ is a factor indicating the network condition and is
set as 4 in general [36], T̂RTT denotes the smoothed round-
trip time and can be obtained by incorporating the history
round-trip time TRTT , and σ(TRTT) represents the round-
trip time variation.

Additionally, we aim to show the communication effi-
ciency of FedLC by comparing its communication overhead
with that of FedAvg. Concretely, for FedAvg, the server
collects all the local models and distributes the global model
to all devices at each epoch, leading to the communication
overhead of O(N · b), where b denotes the communication
overhead of transmitting one model. While for FedLC, the
communication overhead is O(k · b), where k denotes the
number of collaborating devices. Furthermore, when the
local model is independently dropped with a probability
of q for each device, the communication overhead of Fe-
dAvg becomes O(N · b · (1 + q

1−q2))
1. Similarly, the pro-

1. lim
n→∞

q + 2 · q2 + · · ·+ n · qn = q
1−q2

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

9

posed mechanism incurs the communication overhead of
O(k ·b·(1+ q

1−q2)). We note that the number of collaborating
devices k is usually smaller than the total number of devices
N . Hence, at each epoch, the communication overhead of
FedLC is lower than that of FedAvg.

Furthermore, we also compare the time complexity of
the proposed mechanism and typical FedAvg at each epoch.
For sake of analysis, let Tf , Tb and Tp denote the time
complexity of forward pass, backward pass and parameter
update, respectively. For typical FedAvg, the server updates
the global model after collecting all the local models at
each epoch, and the total time complexity is expressed as
O(N ·(Tf+Tb+Tp)+N ·Tp) [9]. Concretely, N ·(Tf+Tb+Tp)
is caused by the local update of N devices, and N · Tp
is derived from the global aggregation on the server. We
can observe that the time complexity of FedAvg increases
with N (i.e., the number of devices). In comparison, FedLC
updates the global model at each epoch as soon as one
local model from an arbitrary device is received, and the
total time complexity becomes O((Tf + Tb + 3 · Tp) + Tp).
Concretely, Tf + Tb + 3 · Tp denotes the time complexity
of local update and estimation of some parameters (i.e., li
and βi), and Tp is caused by aggregating one local model.
When the number of participating devices is increased, the
time complexity of FedLC remains stable, which shows the
efficiency of the proposed mechanism.

As for the data privacy, we note that each edge device
transmits the local model (or gradient) rather than the raw
data to the server (or the other edge devices), protecting pri-
vate data from being eavesdropped by hidden adversaries
[4], [37]. Besides, some privacy-preserving techniques (e.g.,
differential privacy [38]) can be combined to further enhance
the privacy preserving of transmitted models or gradients.

5 EXPERIMENTATION AND EVALUATION

5.1 Experimental Setup
Concretely, the heterogeneous resource on edge devices may
lead to unacceptable waiting time for synchronous FL and
model staleness for asynchronous FL, and the completion
time for model training is increased. In addition, the non-
i.i.d. challenge will cause the deviation of the global model,
and the training performance is degraded. In this way,
we compare the performance of FedLC and baselines on
different non-i.i.d. degrees and various computing capacity
levels.

We build an FL experimental environment on an AMAX
deep learning workstation (CPU: Intel 671 (R) E5-2620v4,
GPU: NVIDIA TITAN RTX), upon which the baselines are
implemented with PyTorch [39]. In the simulation environ-
ment, we create 21 virtual machines (VMs), one of which is
specified as the edge server and the remaining 20 VMs act
as the edge devices. To represent the computation hetero-
geneity of edge devices, we separately measure and record
the computation time of four different types of commercial
devices (i.e., Raspberry Pi, NVIDIA Jetson TX2, XAVIER NX,
and AGX XAVIER) in advance. Subsequently, we set the
computation capacity of each VM as the average of one
type of the commercial devices. For simulating the com-
munication heterogeneity, we measure the communication
bandwidth (denoted as B) between the server and edge

TABLE 2: Table of main performance modes (GHz) for
Jetson devices.

Device Mode Denver2 ARMA57 ARMv8.2 GPU

TX2
1 2.0×2 2.0×4 - 1.3
2 1.4×2 1.4×4 - 1.12
3 - 1.2×4 - 0.85

NX 1 - - 1.4×6 1.1
2 - - 1.2×4 0.8

AGX 1 - - 1.2×4 0.67
2 - - 1.2×8 0.9

device. Then, by taking B as the standard, the communi-
cation bandwidth between devices i and j is set as γi,j · B,
where γi,j is a factor ranging randomly from 0.1 to 10. In
practice, the devices i and j with γi,j > 1 are encouraged
to collaborate for reducing the communication cost, which
intuitively reflects the network connectivity of devices.

We also perform the testbed experiments on an AMAX
deep learning workstation and a varying number (i.e., 15,
20, 30, 40 and 50) of NVIDIA Jetson TX2, XAVIER NX, and
AGX XAVIER developer Kits, where the workstation acts as
the server and the Jetson Kits serve as the edge devices. Each
TX2 device has one GPU and one CPU cluster (i.e., a 2-core
Denver2 and a 4-core ARM CortexA57). Each NX device is
equipped with a 6-core NVIDIA Carmel ARMv8.2 CPU and
a 384-core NVIDIA Volta GPU. The AGX device carries a
512-core NVIDIA Volta GPU and an 8-core NVIDIA Carmel
ARMv8.2 CPU. The experimental network is established
via a commercial router, where the server is connected by
the Ethernet and Jetson devices are accessed via wireless
link. We empower the Jetson devices with different perfor-
mance modes2 to represent the computation heterogeneity,
as shown in Table 2. Concretely, the computation hetero-
geneity can be divided into 3 levels: level-1, level-2, and level-
3, and the maximum performance gap under 3 levels is
measured as 5×, 10×, and 30×, respectively.

Besides, we simulate the communication heterogeneity
of edge devices by varying their communication distance to
the router. Specifically, we put the Jetson devices at three
different locations that are 2m, 10m and 30m away from
the router, and their average communication bandwidth
is around 10MB/s, 3MB/s and 1MB/s, respectively. It is
worth noting that the simulation and testbed experiments
are mostly performed on 20 edge devices (i.e., VMs in
simulation and Jetson devices in tested), unless otherwise
stated.

5.1.1 Datasets and Models
We conduct extensive experiments on three real-world
datasets: (i) CIFAR-103, (ii) EMNIST [40], and (iii) ImageNet
[41]. Specifically, CIFAR-10 contains a training set with
50,000 samples and a test set with 10,000 samples. Each
sample in CIFAR-10 is a 32×32×3 RGB image from 10
categories. EMNIST is an extended version of the popular
MNIST dataset, which contains 731,668 training samples

2. The NVIDIA Jetson developer Kits can be powered by different
performance modes. The CPU and GPU frequencies can be various un-
der different modes. More details are available at https://jetsonhacks.
com/2017/03/25/nvpmodel-nvidia-jetson-tx2-development-kit/

3. http://www.cs.toronto.edu/kriz/cifar.html

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

10

TABLE 3: Table of main parameters used in experiments.

CIFAR-10 EMNIST IMAGE-100
models LeNet-5 AlexNet VGG-16

batch size 64 64 32
learning rate 0.003 0.0001 0.001

training epochs 300 500 500

and 82,587 testing samples from 62 categories (10 digits,
52 characters with lowercase and uppercase). ImageNet is
a widely used dataset for visual recognition which consists
of 1,281,167 training images, 50,000 validation images and
100,000 test images from 1,000 categories, and each sam-
ple in ImageNet is a 224×224×3 image. Considering the
constrained resource on edge devices, we create IMAGE-
100, a subset of ImageNet that consists of 100 out of 1,000
categories, and each image is downsized with the shape of
144×144×3.

In both simulation and testbed experiments, all the edge
devices are divided into 5 clusters. For simulating the non-
i.i.d. data, we split each dataset into 5 partitions, which are
allocated to 5 clusters. Concretely, each cluster generates
the partition by selecting 20% of all the labels as its main
categories, and the main categories of all clusters are dis-
joint. In addition, we introduce a factor p that represents the
percentage of samples from main categories, so as to define
different non-i.i.d. degrees. For instance, when p = 0.8, 80%
of the samples on each cluster belong to the main categories,
while the remaining samples belong to the other categories.
In this paper, four non-i.i.d. degrees are adopted: (i) degree-
1, (ii) degree-2, (iii) degree-3, and (iv) degree-4, and p is set
as 1.0, 0.8, 0.4 and 0.2, respectively. We note that degree-4
(i.e., p = 0.2) is a special case, where the datasets of all the
clusters follow the i.i.d. distribution. Then, these partitions
are further divided to serve as the local datasets of edge
devices in each cluster.

Corresponding to the above three datasets, three models
with different structures are adopted for performance eval-
uation: (i) LeNet-5 [42] on CIFAR-10, (ii) AlexNet [43] on
EMNIST, and (iii) VGG-16 [44] on IMAGE-100. Firstly, for
the simple task (i.e., CIFAR-10), the classical model LeNet-5
which has two 3×3 convolutional layers, two dense layers
and a softmax output layer is implemented. Secondly, for
classifying the images in EMNIST which contains more sam-
ples and categories, the 8-layer AlexNet model with more
complex structures is adopted. Thirdly, a famous model
VGG-16 that consists of 13 convolutional layers with the
kernel of 3×3, two dense layers and a softmax output layer
is utilized for image classification of IMAGE-100. To cope
with the downsized images and the constrained resource,
the VGG-16 model is also reshaped to an appropriate size.

5.1.2 Parameter Settings

In both simulation and testbed experiments, the batch size
and learning rate are set as 64 and 0.003, 64 and 0.0001, as
well as 32 and 0.001 for CIFAR-10, EMNIST and IMAGE-
100, respectively. In addition, for three datasets, the total
number of training epochs is specified as 300, 500 and 500
[45]. We note that the required time for completing one

epoch varies significantly for synchronous FL and asyn-
chronous FL. To this end, we compare the test accuracy
given the training time and the completion time to achieve
the target accuracy, as depicted in Section 5.1.4.

5.1.3 Baselines
In order to evaluate the effectiveness of the proposed FedLC
and SC-FedLC, we introduce the other three methods as
baselines: (i) FedAvg [4], (ii) CE-AFL [13], and (iii) AFO
[21]. Concretely, the first baseline FedAvg is the typical
parameter server based synchronous FL mechanism, where
the server updates the global model by averaging the local
models from all edge devices. The second baseline CE-AFL
is a semi-asynchronous FL mechanism, where the server
updates the global model after receiving the local models
from α ·N edge devices. According to the results in [13], α
is set as 0.5 for reducing the training time, i.e., half of the
edge devices participate in the model update on the server
at each epoch. The third baseline AFO is an asynchronous
FL algorithm with provable convergence rate, in which the
server updates the global model on receiving only one local
model from an arbitrary edge device. We implement the
adaptive weight to handle the model staleness for AFO, i.e.
wt+1 = (1− xt)w

t + xtw
ti
i , where xt ∈ [0, 1] represents the

aggregation weight at global epoch t. Moreover, the weight
xt is adjusted as xt = x × 1

s+1 , where x is set as 0.6 and
s denotes the model staleness (i.e., the difference of global
epoch and local epoch).

In order to cope with the poor network conditions, we in-
troduce an extra baseline, named FedLC-T, which combines
FedLC with timeout retransmission mechanism. To simulate
the poor network conditions, during the communication
process at each epoch, the local models on edge devices
are assumed to be dropped with a probability of 0.1. For
performance evaluation, at level-1 in testbed experiments,
we compare the test accuracy of FedLC and FedLC-T under
the simulated network conditions.

5.1.4 Metrics
In this paper, the following metrics are utilized to evaluate
the performance of the above methods: (i) test accuracy,
(ii) completion time, and (iii) traffic consumption. The test
accuracy is one of the most common performance metrics,
which measures the proportion between the number of
correct data after model inference and the total number
of data. Specifically, during the training process, at each
epoch, we evaluate the test accuracy of three models trained
with different methods on the test datasets. Training time is
an important metric for evaluating the training speed of a
method on a training task. Hence, we record the completion
time of each method when it achieves the target accuracy for
performance evaluation. In addition, in order to illustrate
that the proposed mechanisms will not incur extra commu-
nication overhead, we also record the accumulated network
traffic consumption for different methods to achieve the
same test accuracy.

5.2 Results of Simulation Experiments
5.2.1 Convergence Performance
We conduct the first set of simulation experiments to com-
pare the convergence performance of FedLC with those

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

11

0.0 1.5 3.0 4.5 6.0
0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 FedLC

 CE-AFL

 FedAvg

 AFO

(a) CIFAR-10

0.0 0.9 1.8 2.7 3.6 4.5

0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 FedLC

 CE-AFL

 FedAvg

 AFO

(b) EMNIST

0.0 0.9 1.8 2.7 3.6 4.5
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 FedLC

 CE-AFL

 FedAvg

 AFO

(c) IMAGE-100

Fig. 2: Test accuracy curves of the models trained with
different methods in simulation.

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

(a) CIFAR-10

0.0 0.4 0.8 1.2 1.6

0.1

0.3

0.5

0.7

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

(b) EMNIST

0.0 0.4 0.8 1.2 1.6
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

(c) IMAGE-100

Fig. 3: Test accuracy curves of the models trained with
FedLC and SC-FedLC in simulation.

of the existing methods (i.e., FedAvg, CE-AFL, and AFO).
Concretely, the test accuracies of the models trained with
different methods under degree-1 (i.e., the non-i.i.d. factor
p = 1) are shown in Fig. 2, where the horizontal axis repre-
sents the training time. By Fig. 2, AFO (i.e., the asynchronous
baseline) always performs the slowest convergence perfor-
mance among four methods on three datasets. For example,
in Fig. 2(c), when the training time equals 1,000s, the test
accuracy of AFO is 0.21, which is far from the convergence.
In comparison, the test accuracies of FedAvg, CE-AFL and
FedLC are 0.28, 0.29 and 0.34, which are almost converged.
Among three existing baselines, CE-AFL always shows a
superior performance to FedAvg (the synchronous baseline)
and AFO (the asynchronous baseline), since the partial de-
vice participation in CE-AFL is more resistant to the device
heterogeneity (compared with FedAvg) and can catch up
with the track of whole data distribution (compared with
AFO). Moreover, though the test accuracies increase for both
FedLC and three baselines as the training progresses, the
proposed FedLC mechanism achieves a faster convergence
performance. To obtain the test accuracies of 0.6, 0.6 and
0.4 on three datasets, the completion time of FedLC is
1,843s, 1,491s, and 1,603s, while the minimum completion
time among three baselines is 3,654s, 2,266s, and 2,445s.
Generally, to achieve the convergence on three datasets,
FedLC reduces the completion time by at least 49.6%, 34.2%
and 34.4% compared with the existing methods, which
demonstrates the effectiveness of the proposed mechanism.

From the above results, we can see that FedLC is able
to reduce the completion time for model convergence. That
is because the asynchronous mechanism can completely
remove the waiting time between devices, and the time for
finishing one epoch is decreased. In addition, the local col-
laboration between devices can help to track the global data
distribution, and the total number of epochs for convergence
is reduced.

0.0 0.9 1.8 2.7

0.1

0.3

0.5

0.7

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 CE-AFL

 FedAvg

 AFO

(a) CIFAR-10

0.0 0.9 1.8 2.7 3.6 4.5
0.0

0.2

0.4

0.6

0.8

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 CE-AFL

 AFO

 FedAvg

(b) EMNIST

0.0 1.5 3.0 4.5 6.0
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(c) IMAGE-100

Fig. 4: Test accuracy curves of the models trained with
different methods on three datasets under degree-2.

0.0 0.6 1.2 1.8 2.4

0.1

0.3

0.5

0.7

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 CE-AFL

 FedAvg

 AFO

(a) CIFAR-10

0.0 0.9 1.8 2.7 3.6
0.0

0.2

0.4

0.6

0.8

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(b) EMNIST

0.0 0.9 1.8 2.7 3.6 4.5
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(c) IMAGE-100

Fig. 5: Test accuracy curves of the models trained with
different methods on three datasets under degree-3.

0.0 0.5 1.0 1.5 2.0

0.1

0.3

0.5

0.7

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 CE-AFL

 AFO

 FedAvg

(a) CIFAR-10

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(b) EMNIST

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(c) IMAGE-100

Fig. 6: Test accuracy curves of the models trained with
different methods on three datasets under degree-4.

5.2.2 Effect of Staleness Compensation

The second set of simulation experiments is performed
on three datasets under degree-1 to evaluate the effect of
staleness compensation. The test accuracies of the models
trained with FedLC and SC-FedLC are illustrated in Fig. 3,
where the horizontal axis denotes the training time. By Fig.
3, we can see that the test accuracies of both FedLC and
SC-FedLC increase with the training time. However, SC-
FedLC achieves a faster convergence rate than the FedLC
mechanism. For example, in Fig. 3(c), when the training
time equals 891s, SC-FedLC obtains the test accuracy of
0.35 on IMAGE-100, which is close to the convergence. In
comparison, the test accuracy of FedLC is 0.32 on IMAGE-
100. Generally, in Fig. 3, to obtain the test accuracies of 0.61,
0.62 and 0.36 on three datasets, the completion time of SC-
FedLC is 1,709s, 1,252s and 1,323s, while FedLC consumes
the training time of 1,843s, 1,491s and 1,603s. In other words,
compared with FedLC, SC-FedLC reduces the completion
time by 7%, 16% and 17% on CIFAR-10, EMNIST and
IMAGE-100, respectively.

From the above results, SC-FedLC outperforms FedLC
and reduces the completion time for convergence by using
the staleness compensation mechanism. That is because
SC-FedLC assigns larger learning rates for the stale local
models, and the negative effect of staleness on convergence
can be alleviated.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

12

5.2.3 Impact of Non-i.i.d. Degrees
The third set of experiments is conducted to testify the im-
pact of different non-i.i.d. degrees. Specifically, we compare
the test accuracies of different methods on three datasets
in simulation, under degrees 2-4. The test accuracy curves
of the models trained with different methods are depicted
in Figs. 4 (degree-2), 5 (degree-3), and 6 (degree-4), where the
horizontal axis is the training time. According to Figs. 2-6,
we find that the resulting test accuracies on three datasets
increase when decreasing the factor p. For examples, under
degree-1 (p = 1.0) in Figs. 2 and 3, the optimal test accuracies
are 0.61, 0.63 and 0.37 on CIFAR-10, EMNIST and IMAGE-
100, respectively. While in Fig. 6, under degree-4 (p = 0.2),
the optimal test accuracies of different methods reach 0.7,
0.81 and 0.4 on three datasets. Besides, by Figs. 4-6, with
the degradation of factor p, it always requires less time for
all the methods to achieve the convergence. For instance,
in Fig. 4(c), it requires 5,981s for FedAvg to obtain the
test accuracy of 0.36. By Fig. 6(c), the completion time for
FedAvg to reach the test accuracy of 0.40 is 3,972s. More-
over, according to Figs. 2 and 4-6, AFO shows a increased
performance with the degradation of factor p. For example,
in Fig. 2(b), the completion time of AFO is higher than those
of other four methods. However, in Fig. 6(b), AFO consumes
less training time than FedAvg and CE-AFL to achieve
the convergence, indicating that AFO may outperform the
synchronous mechanisms under the i.i.d. setting.

According to Figs. 4-6, though the test accuracies of all
methods increase in simulation experiments, the proposed
algorithms (i.e., FedLC and SC-FedLC) still achieve faster
convergence than the existing methods. For example, in Fig.
5(b), when the training time equals 681s, the test accuracies
of FedLC and SC-FedLC reach 0.77 and 0.79, which are
close to the convergence. In comparison, the other methods
(i.e., FedAvg, CE-AFL and AFO) obtain the test accuracies
of 0.62, 0.70 and 0.70 on EMNIST, which are far from the
convergence. Besides, compared with the existing methods,
it requires less training time for the FedLC and SC-FedLC
to achieve the convergence. For instance, in Fig. 5(b), on
EMNIST, it requires 923s and 786s for FedLC and SC-FedLC
to obtain the test accuracy of 0.8. In contrast, to reach the test
accuracy of 0.8 on EMNIST, the completion time of FedAvg,
CE-AFL and AFO is 3,654s, 1,920s and 1,850s, which is much
higher than the completion time of FedLC and SC-FedLC.
Generally, according to Figs. 4-6, compared with the existing
methods, SC-FedLC reduces the completion time by 35.9%,
51% and 37.2% on average over three datasets.

5.3 Results of Testbed Experiments
5.3.1 Impact of Heterogeneity Levels
In order to evaluate the impact of different heterogeneity
levels, we conduct the fourth set of experiments by empow-
ering the participating Jetson devices with various perfor-
mance modes. Specifically, the test accuracies of the models
trained with different methods are plotted in Figs. 7 (level-1),
8 (level-2) and 9 (level-3), where the horizontal axis denotes
the training time. According to Figs. 7-9, with the increased
heterogeneity levels, it always requires more time for each
method to reach the convergence, especially for FedAvg and
CE-AFL. That is because the increased heterogeneity level

will enlarge the performance gap between edge devices.
While FedAvg and CE-AFL require that multiple devices
participate in the global update, the waiting time among de-
vices is magnified, and the epoch time is increased. Hence,
the total completion time is also multiplied. Besides, by
Figs. 7-9, we can see that AFO shows better performance
than FedAvg and CE-AFL at high heterogeneity levels.
For example, in Fig. 7(c), given the same training time of
3,000s, the resulting test accuracy of AFO is 0.28, which
is much smaller than those of FedAvg (0.30) and CE-AFL
(0.32). However, by Fig. 9, at level-3, the test accuracy of
AFO is much higher than those of FedAvg and CE-AFL on
three datasets, since AFO requires the participation of only
one device and is more resistant to heterogeneity than the
synchronous mechanisms.

Moreover, though the test accuracies of all methods in-
crease with the training time in testbed experiments, FedLC
and SC-FedLC still show faster convergence rate than the
existing methods. For instance, by Fig. 9(b), when the train-
ing time equals 2,349s, the test accuracies of FedLC and SC-
FedLC reach 0.52 and 0.57, which are almost converged. In
contrast, the test accuracies of other three methods are 0.26,
0.32 and 0.41, which are far from the convergence. Besides,
by Figs. 7-9, SC-FedLC always outperforms FedLC on three
datasets at different levels, which further demonstrates the
effectiveness of staleness compensation. Given the same
training time, FedLC and SC-FedLC obtain higher test ac-
curacies than existing methods on three datasets. Generally,
compared with the existing methods, SC-FedLC improves
the test accuracy by 6%, 6% and 5% on average over CIFAR-
10, EMNIST and IMAGE-100, respectively.

From the above results, given the same training time, the
proposed mechanisms (i.e., FedLC and SC-FedLC) obtain
higher test accuracies than those of existing methods, which
definitely illustrates the effectiveness of local collaboration
and staleness compensation.

5.3.2 Varying the Number of Jetson Devices
In testbed experiments, we also conduct the scalability ex-
periments by varying the number of participating Jetson de-
vices. At the aforementioned three heterogeneity levels, we
compare the performance of different methods on CIFAR-
10 with various quantities of Jetson devices (from 15 to
50). Note that all the methods are performed with the
same training time at each heterogeneity level. According
to Figs. 7(a)-9(a), the training time budgets are specified
as 2,500s, 3,200s and 4,500s for level-1, level-2 and level-3,
respectively. The test accuracies of the models trained with
varying number of devices at different heterogeneity levels
are depicted in Fig. 10, where the horizontal axis denotes
the number of devices. By Fig. 10, we find that the test
accuracies of all methods decrease with the number of Jetson
devices. For the asynchronous mechanisms (AFO, FedLC
and SC-FedLC), increasing the number of devices leads to
the decline of quantity of samples on each device. While the
asynchronous mechanisms require one participating device
at each epoch, which may cause the deviation of global
model. In terms of the semi-asynchronous (CE-AFL) and
synchronous (FedAvg) mechanisms that require multiple
participating devices at each epoch, increasing the number
of edge devices will increase the possibility of block. Hence,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

13

 SC-FedLC

 FedLC

 CE-AFL

 FedAvg

 AFO

0.0 0.5 1.0 1.5 2.0 2.5
0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

(a) CIFAR-10

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 CE-AFL

 FedAvg

 AFO

(b) EMNIST

0.0 0.6 1.2 1.8 2.4 3.0
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 CE-AFL

 FedAvg

 AFO

(c) IMAGE-100

Fig. 7: Test accuracy curves of the models trained with
different methods at level-1.

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

0.0 0.8 1.6 2.4 3.2
0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

(a) CIFAR-10

0 1 2 3 4
0.0

0.2

0.4

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(b) EMNIST

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 CE-AFL

 AFO

 FedAvg

(c) IMAGE-100

Fig. 8: Test accuracy curves of the models trained with
different methods at level-2.

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

0.0 0.9 1.8 2.7 3.6 4.5
0.0

0.2

0.4

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

(a) CIFAR-10

0.0 1.5 3.0 4.5 6.0
0.0

0.2

0.4

0.6

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(b) EMNIST

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

T
e
s
t
a
c
c
u
ra

c
y

Time(103s)

 SC-FedLC

 FedLC

 AFO

 CE-AFL

 FedAvg

(c) IMAGE-100

Fig. 9: Test accuracy curves of the models trained with
different methods at level-3.

15 20 30 40 50
0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

No. of devices

 SC-FedLC

 FedLC

 CE-AFL

 FedAvg

 AFO

(a) level-1

 SC-FedLC

 FedLC AFO

 CE-AFL FedAvg

15 20 30 40 50
0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

No. of devices

(b) level-2

 SC-FedLC

 FedLC CE-AFL

 AFO FedAvg

15 20 30 40 50

0.3

0.4

0.5

0.6

T
e
s
t
a
c
c
u
ra

c
y

No. of devices

(c) level-3

Fig. 10: Test accuracy curves of the models trained with
varying number of devices at different heterogeneity levels.

the training time for each epoch is increased, and the total
completion time is also multiplied. Moreover, AFO shows a
superior performance than FedAvg and CE-AFL at level-3,
which is consistent with the result in Fig. 9.

According to Fig. 10, as the heterogeneity level increases,
FedLC and SC-FedLC achieve higher gain on test accuracy
compared with the existing methods. For instance, at level-
1, the optimal test accuracies of SC-FedLC and CE-AFL are
0.60 and 0.59, and their gap is 0.01. While under level-3, SC-
FedLC and CE-AFL obtain the test accuracies of 0.62 and
0.53, and their gap becomes 0.09. Moreover, no matter how
many participating devices, FedLC and SC-FedLC achieve
higher test accuracies than the existing methods at different
heterogeneity levels. To be precise, at three heterogeneity
levels, SC-FedLC improves the test accuracy over the ex-
isting methods by at most 19%, 21% and 25%, which fully
proves the effectiveness of the proposed mechanisms.

0.3 0.4 0.5
0

7

14

21

28

35

T
ra

ff
ic

 c
o
n
s
u
m

p
ti
o
n
(G

B
)

Test accuracy

 FedAvg

 CE-AFL

 AFO

 FedLC

 SC-FedLC

(a) CIFAR-10

0.3 0.4 0.5
0

10

20

30

40

50

T
ra

ff
ic

 c
o
n
s
u
m

p
ti
o
n
(G

B
)

Test accuracy

 FedAvg

 CE-AFL

 AFO

 FedLC

 SC-FedLC

(b) EMNIST

0.3 0.4 0.5
0

19

38

57

76

95

T
ra

ff
ic

 c
o
n
s
u
m

p
ti
o
n
(G

B
)

Test accuracy

 FedAvg

 CE-AFL

 AFO

 FedLC

 SC-FedLC

(c) IMAGE-100

Fig. 11: Traffic consumption of five methods when achieving
the same test accuracy in testbed.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 50 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Te
st

ac
cu

rac
y

T i m e (1 0 3 s)

 F e d L C - T
 F e d L C

(a) CIFAR-10

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5
0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Te
st

ac
cu

rac
y

T i m e (1 0 3 s)

 F e d L C - T
 F e d L C

(b) EMNIST

0 . 0 0 . 6 1 . 2 1 . 8 2 . 4 3 . 00 . 0

0 . 1

0 . 2

0 . 3

Te
st

ac
cu

rac
y

T i m e (1 0 3 s)

 F e d L C - T
 F e d L C

(c) IMAGE-100

Fig. 12: Test accuracy curves of the models trained with
FedLC and FedLC-T on three datasets.

5.3.3 Comparison of Traffic Consumption

To testify the communication efficiency of the proposed
mechanisms, we conduct the sixth set of experiments by
comparing the accumulated network traffic when different
methods achieve the same test accuracy. The results are
presented in Fig. 11, where the horizontal axis represents
the target test accuracy. By Fig. 11, though the traditional
FedAvg method shows a degraded performance in comple-
tion time, it outperforms the other four mechanisms (i.e., CE-
AFL, AFO, FedLC and SC-FedLC) in reducing the network
traffic consumption. For instance, in Fig. 11(b), to obtain
the test accuracy of 0.3 on EMNIST, the consumed traffic
is 9.5GB, 12.5GB, 18.9GB, 15.7GB and 13.8GB for FedAvg,
CE-AFL, AFO, FedLC and SC-FedLC, respectively. Though
all the devices are required to participate in the training at
each epoch, the total number of training epochs for FedAvg
to reach the convergence can be decreased, and the com-
munication overhead is naturally reduced. In comparison,
AFO always consumes more network traffic for achieving
the target test accuracy, since it requires much more commu-
nication epochs to reach the convergence. Besides, by Figs.
7-9 and 11, the semi-asynchronous mechanism (i.e., CE-AFL)
can always achieve a trade-off between completion time and
traffic consumption. Similarly, the proposed mechanisms
(i.e., FedLC, SC-FedLC) consume the similar (or even less)
amount of network traffic as that of CE-AFL for achieving
the target test accuracies on three datasets. For example, by
Fig. 11(c), it requires 87.3GB, 81.4GB and 71.7GB for CE-
AFL, FedLC and SC-FedLC to obtain the test accuracy of 0.3
on IMAGE-100, which shows the communication efficiency
of the proposed mechanisms.

From the above results, we find that the proposed
mechanisms can improve the test accuracy while reducing
the completion time, without dramatically increasing the
communication overhead, which definitely illustrates the
effectiveness of the proposed mechanisms.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

14

5.3.4 Effect of Timeout Retransmission
We aim to evaluate the effect of timeout restransmission
mechanism by comparing the performance of FedLC and
FedLC-T under poor network conditions. The training time
is specified as 2,500s, 2,500s and 3,000s for CIFAR-10,
EMNIST and IMAGE-100, respectively. The test accuracy
of FedLC and FedLC-T is compared, and the results are
illustrated in Fig. 12. According to Fig. 12, we find that
the test accuracy increases for both FedLC and FedLC-
T. In addition, the test accuracy curves of FedLC and
FedLC-T are fluctuating on three models. That is, FedLC
and FedLC-T are performed under poor network condition
where communication timeout occurs, leading to deviation
of the global model, and the convergence curves become
unstable. However, FedLC-T always achieves higher test
accuracy than FedLC given the same training time. For
example, by Fig. 12(a), when the training time equals 1,700s,
FedLC obtains the test accuracy of 0.51 on CIFAR-10, which
is 10% higher than the test accuracy of FedLC. With timeout
retransmission, FedLC-T is expected to obtain more knowl-
edge from the retransmitted models than FedLC, since
FedLC will directly ignore the timeout models and just
progress to further training. Generally, FedLC-T obtains the
test accuracy of 0.53, 0.52 and 0.29 on three datasets, which
is approximately 7% higher than that of FedLC, indicating
the effectiveness of timeout retransmission mechanism.

6 RELATED WORKS

In recent years, Federated Learning (FL) has been widely
adopted in both academia and industry fields [12], [13]. The
existing FL approaches are mostly based on the parameter
server (PS) framework [6]. In what follows, we mainly
introduce three categories of PS-based FL, i.e., synchronous
FL [4], [16], [46], traditional asynchronous FL [21], [47],
semi-asynchronous FL [12], [13], [24]. The above methods
focus on the global collaboration among edge devices. Ad-
ditionally, the intermediate collaboration is proposed as a
variant of the global collaboration. Afterwards, we review
the previous works of FL with intermediate and direct local
collaboration [27], [48], [49].

6.1 Synchronous FL

The Federated Learning paradigm was first proposed in
[4], which coordinates multiple edge devices to learn a
globally shared model based on their local datasets. Con-
cretely, McMahan et al. developed the FedAvg algorithm
by combining the local stochastic gradient descent (SGD)
on each client with a server that performs synchronous
model averaging [4]. The FedAvg can decouple the model
training from the need for direct access to raw data, and
the data privacy can be preserved. However, Wang et al.
noticed that the SGD-based FedAvg may incur high com-
munication overhead due to the high-frequency transmis-
sion between edge devices and the server. In this way,
Wang et al. proposed a synchronous FL solution given the
resource budgets, which can achieve a trade-off between
communication efficiency and model precision by adjusting
the global aggregation frequency [16]. Similarly, to reduce
the communication overhead on the server, Wang et al.

proposed to construct a special cluster topology [15], and the
communication overhead is reduced by merely aggregating
the models from the cluster headers. Recently, InFEDge also
achieved hierarchical FL in end-edge-cloud systems [50],
which can significantly reduce the communication overhead
and improve the resource utilization. However, the cluster
is constructed according to the heterogeneous resources
on edge devices, which may cause performance degrada-
tion on non-i.i.d. data. Moreover, Xu et al. also proposed
to optimize the global aggregation frequency under the
resource constraints in edge computing systems. Different
from [16], Xu et al. proposed FedLamp, a synchronous FL
solution that jointly optimizes global aggregation frequency
and compression ratio [46]. For theoretical guarantee, Xu et
al. analyzed the relationship between convergence bound
and both aggregation frequency and compression ratio.
The experimental results demonstrate that FedLamp can
significantly reduce the traffic consumption and completion
time compared with the existing methods.

The classical synchronous FL approaches can train a
shared model by coordinating the edge devices without cen-
tralizing the local datasets, so as to prevent the user privacy
leakage. However, the synchronous mechanism for FL may
incur unbearable waiting time when edge devices possess
heterogeneous resources (i.e., synchronization barrier), since
it requires the full participation of devices.

6.2 Traditional Asynchronous FL

The traditional AFL mechanism updates the global model
after a local model from arbitrary device is received, and the
negative effect of synchronization barrier can be completely
addressed. However, due to the heterogeneous resources on
edge devices, their participation frequency is always differ-
ent, which may incur a large staleness on the stragglers.
According to [25], a large staleness will cause the perfor-
mance degradation of global model. Recently, several works
were proposed to handle the model staleness. For example,
Zheng et al. designed a novel mechanism, called DC-ASGD,
to tackle the problem the model staleness. Concretely, in
[47], Zheng et al. sought to approximate the optimization
behavior of SGD with asynchronous SGD, by leveraging
the Taylor expansion [51] of the gradient function and ef-
ficient approximation of Hessian Matrix [52]. From another
perspective, Xie et al. proposed AFO [21], an asynchronous
FL mechanism that adjusts the aggregation weight of each
device according to the staleness, so as to address the model
staleness. The convergence bound of AFO was presented
in [21], and the experimental results show the effectiveness
of AFO. However, in EC, the local data of edge devices
usually are non-i.i.d. [4]. It has been verified that the non-
i.i.d. local data may lead to the performance degradation
(lower convergence rate and model accuracy), especially for
asynchronous FL with staleness [24], [25]. As a consequence,
it requires extra mechanisms for asynchronous FL to tackle
the non-i.i.d. challenge. In addition, the traditional asyn-
chronous mechanisms will incur significant communication
resource consumption as they require frequent transmission
between edge devices and the central server [24].

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

15

6.3 Semi-Asynchronous FL

To reduce the communication resource consumption in FL,
the existing works have focused their attention on the
semi-asynchronous FL, i.e., the server updates the global
model when a subset of all local models is received. Specif-
ically, Liu et al. formulated the problem of asynchronous
federated learning with resource constraints (AFL-RC) to
minimize the loss function for model training. Then, a
communication-efficient semi-asynchronous FL mechanism,
CE-AFL, was designed to solve AFL-RC in [13], which
controls the portion of participating devices with a factor
α ∈ { 1

N , 2
N , · · · , 1}. Intuitively, CE-AFL looses the restric-

tion of synchronization, and can alleviate the negative effect
of synchronization barrier. However, CE-AFL adopts the
constant and fixed α during training, which may cause
the performance degradation considering the training dy-
namics. As an extension of CE-AFL, Liu et al. defined the
problem of adaptive asynchronous federated learning with
resource constraints (AAFL-RC) in EC. Afterwards, Liu et
al. proposed to solve AAFL-RC by DAFL that adaptively
adjusts the value of α based on the deep reinforcement
learning (DRL) technique. Though DAFL can keep pace
with the dynamic training process and reduce the comple-
tion time, the training of DRL model requires large quanti-
ties of data and is extremely time-consuming. Similarly, Ma
et al. proposed a semi-synchronous FL mechanism, FedSA,
which determines the number of participating devices [24].
The extensive experiments on real-world datasets illustrate
that FedSA can significantly reduce the completion time
compared with the baselines. The semi-asynchronous FL
mechanism can alleviate the negative effect of synchroniza-
tion barrier by loosing the restriction of synchronization.
However, the above methods that select participating de-
vices are not always effective, since the selected devices may
be straggler devices [9].

6.4 FL with Intermediate and Direct Collaboration

In terms of the intermediate collaboration, edge devices
collaborate with each other via model swapping [48] or
cross aggregation [49] on the server, without relying on
the global model aggregation. Concretely, FedSwap sup-
ports the model swapping between any two of all local
models at the server, so as to improve the performance of
global model. However, the swapping of local models is
performed in a random manner, without considering the
data distributions on devices, which will suffer from the per-
formance degradation on non-i.i.d. data. Similarly, FedCross
maintains multiple middleware models on the server and
selects a collaborative model for each middleware model to
aggregate [49]. Unlike FedSwap, FedCross selects the col-
laborative models according to the cosine similarity among
local models, which can tackle the non-i.i.d. issue to some
degree. Moreover, Sun et al. proposed a novel FL framework,
named semi-decentralized FEEL (SD-FEEL), which incor-
porates the inter-cluster aggregation between edge servers
[53], so as to address the non-i.i.d. issue. However, the
inter-cluster communication between different edge servers
is much more expensive than the communication among
edge devices [27], since the former typically requires longer
transmission distances and involves more complex network

protocols. The above methods achieve the collaboration of
edge devices by regarding the server as a relay station,
which is different from the direct local collaboration in our
FedLC.

Regarding the direct collaboration of devices, based on
the DRL technique, FedMigr [27] proposes to migrate the
local model from an edge device to another device by
observing the environmental information (e.g., data dis-
tribution variations), which can cope with the non-i.i.d.
data. Nevertheless, regarding that the global model is syn-
chronously updated, FedMigr may lead to non-negligible
waiting time on heterogeneous edge devices. Additionally,
training DRL models is computing-intensive and requires
large amounts of training samples, which makes it difficult
for FedMigr to work in resource-constrained EC scenarios.
As a consequence, FedMigr is not incorporated as baseline
method in this paper. In addition, Hu et al. proposed to split
the model into several segments, and incorporated the local
collaboration by transmitting the model segments between
edge devices using Gossip learning [54]. Moreover, Hegedűs
et al. made a thorough comparison of the Gossip learning
and the centralized FL, and illustrated that the Gossip
learning always outperforms the centralized solutions on
i.i.d. data [55]. However, the Gossip learning may suffer
from the performance degradation on non-i.i.d. data, since
it is difficult to achieve the global consistency when lacking
the global knowledge [56]. Similarly, Meng et al. proposed to
perform topology construction among edge devices based
on DRL, where the reward function is calculated by in-
cluding the training loss, network connectivity and resource
constraints [14]. To address the statistical heterogeneity, Liao
et al. jointly optimized the local updating frequency and
network topology in decentralized networks [57]. Regarding
the non-i.i.d. data, the personalized FL was proposed by
adopting Euclidean distance [58] and cosine similarity [45]
as metrics for collaboration selection. It is worth noting that
the proposed mechanism aims to accelerate the convergence
rate of AFL in centralized networks. Hence, the above
decentralized methods considering network topology are
not adopted as baselines.

Different from the above works, we seek to address the
critical challenges for FL in EC by combining asynchronous
FL with local collaboration. By asynchronous FL, the nega-
tive effect of synchronization barrier can be completely elim-
inated. Meanwhile, with the local collaboration of edge de-
vices, the challenge of non-i.i.d. data can be well addressed,
and a satisfying convergence rate can be guaranteed.

7 CONCLUSION

In this paper, we focused on accelerating the asynchronous
federated learning in EC by enabling the local collaboration
among edge devices. We studied the impact of parameter k
(number of collaborating devices) on training performance
and obtained the relationship between the convergence
bound and k. We proposed a demand-list based algorithm
FedLC to transform the in-neighbor set to the out-neighbor
set, and the waiting between edge devices can be avoided.
To cope with the model staleness, we proposed staleness-
compensated FedLC (i.e., SC-FedLC), which assigns differ-
ent learning rates to edge devices according to their partic-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

16

ipation frequency. We conducted extensive simulation and
testbed experiments on real-world datasets. The experimen-
tal results demonstrated the effectiveness of our proposed
mechanism.

REFERENCES

[1] B. Chander and G. Kumaravelan, “Internet of things: Foundation,”
in Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm.
Springer, pp. 3–33, 2020.

[2] X. Zheng, L. Tian, B. Hui, and X. Liu, “Distributed and privacy
preserving graph data collection in internet of thing systems,”
IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9301–9309, 2021.

[3] Z. Cai, X. Zheng, J. Wang, and Z. He, “Private data trading
towards range counting queries in internet of things,” IEEE Trans-
actions on Mobile Computing, pp. 1–1, 2022.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial intelligence and statistics. PMLR,
pp. 1273–1282, 2017.

[5] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process-
ing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[6] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josi-
fovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed
machine learning with the parameter server,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), pp. 583–598, 2014.

[7] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan et al.,
“Towards federated learning at scale: System design,” Proceedings
of Machine Learning and Systems, vol. 1, pp. 374–388, 2019.

[8] C. Van Berkel, “Multi-core for mobile phones,” in 2009 Design,
Automation & Test in Europe Conference & Exhibition. IEEE, pp.
1260–1265, 2009.

[9] Z. Ma, Y. Xu, H. Xu, Z. Meng, L. Huang, and Y. Xue, “Adaptive
batch size for federated learning in resource-constrained edge
computing,” IEEE Transactions on Mobile Computing, vol. 22, no. 1,
pp. 37–53, 2023.

[10] X. Wang, X. Ren, C. Qiu, Z. Xiong, H. Yao, and V. C. M. Leung,
“Integrating edge intelligence and blockchain: What, why, and
how,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp.
2193–2229, 2022.

[11] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained
edge computing systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 6, pp. 1205–1221, 2019.

[12] J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and
H. Huang, “Adaptive asynchronous federated learning in
resource-constrained edge computing,” IEEE Transactions on Mo-
bile Computing, vol. 22, no. 2, pp. 674–690, 2023.

[13] J. Liu, H. Xu, Y. Xu, Z. Ma, Z. Wang, C. Qian, and H. Huang,
“Communication-efficient asynchronous federated learning in
resource-constrained edge computing,” Computer Networks, vol.
199, p. 108429, 2021.

[14] Z. Meng, H. Xu, M. Chen, Y. Xu, Y. Zhao, and C. Qiao, “Learning-
driven decentralized machine learning in resource-constrained
wireless edge computing,” in IEEE INFOCOM 2021-IEEE Confer-
ence on Computer Communications. IEEE, pp. 1–10, 2021.

[15] Z. Wang, H. Xu, J. Liu, Y. Xu, H. Huang, and Y. Zhao, “Accelerat-
ing federated learning with cluster construction and hierarchical
aggregation,” IEEE Transactions on Mobile Computing, pp. 1–1, 2022.

[16] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He,
and K. Chan, “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” in IEEE IN-
FOCOM 2018-IEEE Conference on Computer Communications. IEEE,
pp. 63–71, 2018.

[17] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “A pi consensus
controller for networked clocks synchronization,” IFAC Proceedings
Volumes, vol. 41, no. 2, pp. 10 289–10 294, 2008.

[18] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge
computing,” in IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, pp. 1–10, 2021.

[19] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and
R. Pedarsani, “Fedpaq: A communication-efficient federated learn-
ing method with periodic averaging and quantization,” in Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, pp.
2021–2031, 2020.

[20] J. Hamer, M. Mohri, and A. T. Suresh, “Fedboost: A
communication-efficient algorithm for federated learning,” in In-
ternational Conference on Machine Learning. PMLR, pp. 3973–3983,
2020.

[21] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated opti-
mization,” arXiv preprint arXiv:1903.03934, 2019.

[22] T. Chen, X. Jin, Y. Sun, and W. Yin, “Vafl: a method of vertical
asynchronous federated learning,” arXiv preprint arXiv:2007.06081,
2020.

[23] C. Xie, S. Koyejo, and I. Gupta, “Zeno++: Robust fully asyn-
chronous sgd,” in International Conference on Machine Learning.
PMLR, pp. 10 495–10 503, 2020.

[24] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “Fedsa:
A semi-asynchronous federated learning mechanism in heteroge-
neous edge computing,” IEEE Journal on Selected Areas in Commu-
nications, vol. 39, no. 12, pp. 3654–3672, 2021.

[25] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “A delayed
proximal gradient method with linear convergence rate,” in 2014
IEEE International Workshop on Machine Learning for Signal Process-
ing (MLSP). IEEE, pp. 1–6, 2014.

[26] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,”
IEEE transactions on neural networks and learning systems, vol. 31,
no. 9, pp. 3400–3413, 2019.

[27] J. Liu, Y. Xu, H. Xu, Y. Liao, Z. Wang, and H. Huang, “Enhancing
federated learning with intelligent model migration in heteroge-
neous edge computing,” in 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE,, pp. 1586–1597 2022.

[28] J. Ho and C.-M. Wang, “Explainable and adaptable augmentation
in knowledge attention network for multi-agent deep reinforce-
ment learning systems,” in 2020 IEEE Third International Conference
on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE,
pp. 157–161, 2020.

[29] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous
online federated learning for edge devices with non-iid data,” in
2020 IEEE International Conference on Big Data (Big Data). IEEE,
pp. 15–24, 2020.

[30] H. Jamali-Rad, M. Abdizadeh, and A. Singh, “Federated learning
with taskonomy for non-iid data,” IEEE transactions on neural
networks and learning systems, 2022.

[31] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hier-
archical clustering of local updates to improve training on non-
iid data,” in 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, pp. 1–9, 2020.

[32] J.-P. Vial, “Strong convexity of sets and functions,” Journal of
Mathematical Economics, vol. 9, no. 1-2, pp. 187–205, 1982.

[33] R. Bhatia and C. Davis, “A cauchy-schwarz inequality for opera-
tors with applications,” Linear algebra and its applications, vol. 223,
pp. 119–129, 1995.

[34] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, vol. 87, 2003.

[35] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–
311, 2018.

[36] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing tcp’s
retransmission timer,” Tech. Rep., 2011.

[37] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” arXiv
preprint arXiv:2102.07078, 2021.

[38] J. Zhang, Y. Zhao, J. Wang, and B. Chen, “Fedmec: improving
efficiency of differentially private federated learning via mobile
edge computing,” Mobile Networks and Applications, vol. 25, no. 6,
pp. 2421–2433, 2020.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[40] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist:
Extending mnist to handwritten letters,” in 2017 international joint
conference on neural networks (IJCNN). IEEE, pp. 2921–2926, 2017.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

17

large scale visual recognition challenge,” International journal of
computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[42] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[45] Z. Ma, Y. Xu, H. Xu, J. Liu, and Y. Xue, “Like attracts like: Person-
alized federated learning in decentralized edge computing,” IEEE
Transactions on Mobile Computing, 2022.

[46] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive control
of local updating and model compression for efficient federated
learning,” IEEE Transactions on Mobile Computing, 2022.

[47] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and
T.-Y. Liu, “Asynchronous stochastic gradient descent with delay
compensation,” in International Conference on Machine Learning.
PMLR, pp. 4120–4129, 2017.

[48] T.-C. Chiu, Y.-Y. Shih, A.-C. Pang, C.-S. Wang, W. Weng, and C.-T.
Chou, “Semisupervised distributed learning with non-iid data for
aiot service platform,” IEEE Internet of Things Journal, vol. 7, no. 10,
pp. 9266–9277, 2020.

[49] M. Hu, P. Zhou, Z. Yue, Z. Ling, Y. Huang, Y. Liu, and M. Chen,
“Fedcross: Towards accurate federated learning via multi-model
cross aggregation,” arXiv preprint arXiv:2210.08285, 2022.

[50] X. Wang, Y. Zhao, C. Qiu, Z. Liu, J. Nie, and V. C. Leung, “Infedge:
A blockchain-based incentive mechanism in hierarchical federated
learning for end-edge-cloud communications,” IEEE Journal on

Selected Areas in Communications, vol. 40, no. 12, pp. 3325–3342,
2022.

[51] G. B. Folland, “Higher-order derivatives and taylor’s formula in
several variables,” Preprint, pp. 1–4, 2005.

[52] W. C. Thacker, “The role of the hessian matrix in fitting models
to measurements,” Journal of Geophysical Research: Oceans, vol. 94,
no. C5, pp. 6177–6196, 1989.

[53] Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-
decentralized federated edge learning with data and device het-
erogeneity,” IEEE Transactions on Network and Service Management,
2023.

[54] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning:
A segmented gossip approach,” arXiv preprint arXiv:1908.07782,
2019.

[55] I. Hegedűs, G. Danner, and M. Jelasity, “Gossip learning as a
decentralized alternative to federated learning,” in Distributed
Applications and Interoperable Systems: 19th IFIP WG 6.1 International
Conference, DAIS 2019, Held as Part of the 14th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2019, Kon-
gens Lyngby, Denmark, June 17–21, 2019, Proceedings 19. Springer,
pp. 74–90, 2019.

[56] W. Wu, L. He, W. Lin, and C. Maple, “Fedprof: Selective federated
learning based on distributional representation profiling,” IEEE
Transactions on Parallel and Distributed Systems, 2023.

[57] Y. Liao, Y. Xu, H. Xu, L. Wang, and C. Qian, “Adaptive config-
uration for heterogeneous participants in decentralized federated
learning,” arXiv preprint arXiv:2212.02136, 2022.

[58] V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized
joint learning of personalized models and collaboration graphs,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, pp. 864–874, 2020.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3307610

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 02,2023 at 10:34:39 UTC from IEEE Xplore. Restrictions apply.

