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Abstract—Federated learning (FL) has been widely applied to collaboratively train deep learning (DL) models on massive end devices
(i.e., clients). Due to the limited storage capacity and high labeling cost, the data on each client may be insufficient for model training.
Conversely, in cloud datacenters, there exist large-scale unlabeled data, which are easy to collect from public access (e.g., social
media). Herein, we propose the Ada-FedSemi system, which leverages both on-device labeled data and in-cloud unlabeled data to
boost the performance of DL models. In each round, local models are aggregated to produce pseudo-labels for the unlabeled data,
which are utilized to enhance the global model. Considering that the number of participating clients and the quality of pseudo-labels will
have a significant impact on the training performance, we introduce a multi-armed bandit (MAB) based online algorithm to adaptively
determine the participating fraction and confidence threshold. Besides, to alleviate the impact of stragglers, we assign local models of
different depths for heterogeneous clients. Extensive experiments on benchmark models and datasets show that given the same
resource budget, the model trained by Ada-FedSemi achieves 3%∼14.8% higher test accuracy than that of the baseline methods.
When achieving the same test accuracy, Ada-FedSemi saves up to 48% training cost, compared with the baselines. Under the
scenario with heterogeneous clients, the proposed HeteroAda-FedSemi can further speed up the training process by 1.3×∼1.5×.

Index Terms—Edge Computing, Federated Learning, Semi-supervised Learning, Pseudo-labeling.
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1 INTRODUCTION

With the considerable development of deep learning (DL) in
recent years, more and more AI applications are penetrating
our daily life, such as smart transportation [1], virtual reality
[2] and intelligent assistants [3]. In order to utilize data
generated at the network edge without possible leakage
of personal privacy, federated learning (FL) [4] is proposed
to collaboratively train DL models on massive end devices
with the aid of the parameter server (PS). In FL, end devices
(i.e., clients) keep their data locally during training and
only upload local models to the PS periodically for global
aggregation. Then, the PS broadcasts the global model back
to clients, and the interaction procedure will last until the
model converges.

The most existing works of FL concentrate on training
efficiency and assume sufficient labeled data on clients.
However, due to the high labeling cost or lack of expert
knowledge for annotation, the scale of labeled data on each
client may be small [5]. Since the strong performance of DL
models is largely attributed to the availability of abundant
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data (especially the labeled data), the insufficient labeled
data on clients may result in model [6]. On the contrary,
there are various other data sources (e.g., social networks
[7]) continuously generating unlabeled data [8], which are
collected and stored in cloud datacenters. For example, the
large-scale WebVision Database [9] consists of 2.4 million
web images crawled from the Internet, and the images may
lack ground-truth labels [10].

To fully utilize both labeled and unlabeled data in FL,
a new technology of federated semi-supervised learning
(FSSL) has been proposed [11]. Long et al. [12] and Jeong
et al. [11] assume the labeled and unlabeled data are already
on clients, while some works [13], [14] distribute unlabeled
data from the cloud to clients and then implement FSSL
using the mixed data on clients. However, limited by the
storage capacity of clients, the data size on clients is much
smaller than that in cloud, which restricts the performance
boost of DL models. Besides, delivering additional data
from the cloud to clients will incur a large amount of com-
munication cost and also increase computation overhead for
the resource-constrained clients. Instead, in works [15], [16],
the PS first collects local models from all clients as teacher
models, and then produces pseudo-labels for the in-cloud
unlabeled data in terms of the teachers’ predictions. Subse-
quently, the pseudo-labeled data are exploited to improve
the trained model. However, since they adopt all pseudo-
labeled data in the training without considering the quality
of pseudo-labels, there may be many incorrect labels, which
will lead to noisy training [17]. Moreover, given the massive
quantity of the clients, collecting local models from all the
clients will result in extremely high communication cost,
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which is infeasible for FL systems.
In this paper, we consider a practical FL scenario where

there are limited labeled data on clients and large-scale
unlabeled data in cloud, and the clients are equipped with
limited computation, communication and storage resource.
We fuse FL and semi-supervised learning, and leverage both
the on-device labeled data and in-cloud unlabeled data to
better boost the performance of DL models, even when the
labeled data are not independent and identically distributed
(non-IID) across clients. During FL training, the quality of
pseudo-labels (depicted as confidence) is low at the early
stage and increases gradually as the training progresses
[17]. If a large number of low-confidence pseudo-labels
are adopted, the training performance will be significantly
degraded. Besides, the number of participating clients (re-
ferred as participating fraction) has an impact on training cost,
including time and communication. With the increasing
participating fraction, the communication cost will increase
and the time will be shorten when achieving the same
accuracy [18]. Note that different FL tasks usually have
various preferences towards communication cost and time
cost, and their preferences may change over time. Therefore,
the approaches [18], [19], [20] with fixed strategies can
barely achieve satisfactory training performance.

To improve training efficiency as well as model accuracy,
we propose an adaptive FSSL system termed Ada-FedSemi,
which employs a multi-armed bandit (MAB) based online
learning algorithm to adaptively determine the participating
fraction (i.e., P ) and confidence threshold (i.e., C). Further-
more, considering the heterogeneity among edge devices,
we propose a simple yet effective approach to assign local
models of different depths for the participating clients. In
general, high-performance clients train models with more
layers while the clients with low capability only train the
first few layers, which alleviates the impact of stragglers.
To update the global model, the PS aggregates these hetero-
geneous local models in a layer-wise manner. In this way,
training cost in FL is further reduced without sacrificing
model accuracy. The main contributions of this paper are
summarized as follows:

• Considering the constrained computation and com-
munication resource of clients at the network edge,
we propose to exploit limited on-device labeled data
and large-scale in-cloud unlabeled data to boost the
training performance of FL in a semi-supervised way.

• To adapt to different cost preferences of FL tasks, we
present a multi-armed bandit based online algorithm
to adaptively determine the participation fraction of
clients and the confidence threshold of pseudo-labels
to improve training efficiency and model accuracy.

• To alleviate the impact of heterogeneous clients on
FL training, we propose to train local models of dis-
tinct depths in accordance with clients’ capabilities.
Through layer-wise aggregation, the global model is
recovered and updated.

• We implement an FL hardware prototype system and
conduct extensive experiments on benchmark mod-
els and datasets. The experimental results demon-
strate that (i) given the same resource budget, Ada-
FedSemi can improve test accuracy by 3%∼14.8%;

(ii) when achieving the same test accuracy, Ada-
FedSemi saves up to 48% training cost, compared
with the baseline methods; (iii) under the scenario
with heterogeneous clients, the proposed method
further speeds up the model training by 1.3×∼1.5×.

The rest of the paper is organized as follows. Section
2 introduces the adaptive FSSL system and formulates the
optimization problem. Section 3 describes the MAB based
online algorithm that adaptively determines the partici-
pation fraction of clients and pseudo-labeling confidence
threshold. In Section 4, we propose an extended method
to further deal with client heterogeneity. The experimental
evaluation is presented in Section 5. Section 6 reviews some
related works and Section 7 gives the conclusions.

2 SYSTEM DESCRIPTION AND PROBLEM DEFINI-
TION

In this section, we first introduce the FSSL system and the
main training procedure of Ada-FedSemi. Then, we conduct
several experiments to show the motivation of utilization of
unlabeled data and further present the impact of partici-
pating fraction as well as confidence threshold. Finally, we
formally describe the problem to be solved in this paper.

2.1 System Description for FSSL

An FSSL system usually includes a parameter server (PS)
and a set of M distributed clients (e.g., IoT devices and edge
nodes) V = {v1, v2, . . . , vM}, which collaboratively train DL
models over the networks. Each client vm ∈ V trains a local
model on its own private dataset Dm with Nm labeled data,
and only needs to synchronize model parameters with the
PS rather than sharing the original data.

Let D = DL ∪ DU denote the whole training dataset,
where DL = D1,L ∪ D2,L ∪ · · · ∪ DM,L is the labeled
dataset distributed across clients and DU is the unlabeled
dataset collected in the cloud. For the sake of description, we
assume that there is no intersection between local datasets.
Thus, there are NL =

∑M
m=1Nm data samples in DL =

{(xi, yi)}NL
i=1, where xi is the features of the i-th data sample

and yi = [yi,1, . . . , yi,Q] ∈ {0, 1}Q is a one-hot label, and Q
is the total number of classes. yi,q = 1, q ∈ [1, Q] means
that the data sample xi belongs to class q. For the unlabeled
dataset, there are NU data samples in DU = {xj}NU

j=1, which
lack the ground-truth labels. Let F (w, x, y) denote the loss
function over the data (x, y), and w is the model parameter.
When considering FL on labeled local data, for each client
vm, its local loss function is defined as:

fm(w) = E(x,y)∼Dm
F (w, x, y). (1)

In order to utilize unlabeled data during the model
training, pseudo-labeling is a general and efficient method
[17], [21], in which there are two alternating steps, includ-
ing training and labeling. In the training step, models are
trained on both labeled and pseudo-labeled data, which is
similar to traditional supervised learning but has different
loss functions. In the labeling step, a trained model, also
called teacher model, is used to produce predictions for
unlabeled data. For a certain data sample xj , the prediction
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Fig. 1: System workflow of Ada-FedSemi.

by the teacher model is pj = [pj,1, . . . , pj,Q] ∈ [0, 1]Q and∑Q
q=1 pj,q = 1. The pseudo-label ŷj of xj is defined as:

ŷj = argmax
q

pj,q. (2)

When the model is trained on unlabeled data, the
pseudo-labels are treated as their training targets. Therefore,
the FSSL system aims to obtain the optimal global model
w∗ by minimizing the loss function on both labeled and
unlabeled datasets:

w∗ := arg min
w

E(x,y)∼DL
F (w, x, y)

+ E(x,ŷ)∼DU
F (w, x, ŷ). (3)

2.2 System Workflow of Ada-FedSemi

In Ada-FedSemi, the model will be trained on both on-
device labeled data and in-cloud unlabeled data iteratively
as shown in Fig. 1. The process involves many training
rounds, and at each round k, it mainly consists of the
following four steps:

(1) Model Broadcast and Local Updating. Let Pk denote
the participating fraction and Vk denote the set of selected
clients at round k. In this step, the PS selects a fraction
of clients, and broadcasts the global model wk to them.
Most researches [4], [22] select specific clients based on a
predefined Pk. In general, larger fractions lead to faster
convergence but result in more traffic consumption, and vice
versa [18]. Thus, considering the properties of FL tasks and
the limited resource in the distributed data system, our al-
gorithm concentrates on determining Pk. With a determined
Pk, we randomly select clients as in most prior works [4],
[18], [22], while advanced client selection strategies [23], [24]
can also be applied to further improve the performance.

For each selected client vm, it first initializes wk,m(0) =
wk and then performs local updating on its local dataset by
stochastic gradient descent (SGD) [25]:

wk,m(τ ′ + 1) = wk,m(τ ′)− ηk∇Fm(wk,m(τ ′)), (4)
where ηk is the learning rate,∇Fm(wk,m(τ ′)) is the stochas-
tic gradient, τ ′ ∈ [0, τ) and τ is the number of local
updating. Finally, client vm gets its updated model wk,m.

(2) Model Uploading and Global Aggregation. After
finishing local updating, clients in Vk upload their local

models to the PS, and the PS aggregates these models based
on the number of samples in their local datasets as follows:

wk+ 1
2

=

∑
vm∈Vk Nmwk,m∑

vm∈Vk Nm
, (5)

where wk+ 1
2

is referred as the intermediate model. Then, the
teacher model is updated by the intermediate model, which
will be elaborated in Section 3.

(3) Pseudo-labels Generation and Selection. At the PS,
in terms of the teacher model, we make predictions for the
unlabeled data and then generate pseudo-labels. Since ŷj
may not be the ground-truth label, we need to estimate the
confidence of the pseudo-labels, which indicates how likely
a pseudo-label is true. Specifically, we regard the probability
of label ŷj in the prediction as its confidence [26]:

aj = max
q
pj,q. (6)

Generally, high-confidence pseudo-labels are more likely to
be the ground-truth labels and vise versa.

To mitigate data noise introduced by pseudo-labeling, at
round k, we only train the model on the high-confidence
pseudo-labeled data samples, whose confidence aj is over a
threshold Ck [27].

(4) Semi-supervised Model Training. The intermediate
model derived from the aggregation of local models may
suffer from poor generalization, since the local models can
easily overfit to the insufficient on-device labeled data [6].
Thus, we expect to improve the model’s generalization abil-
ity by learning additional knowledge from the massive in-
cloud unlabeled data. Specifically, the intermediate model
in step (2) is further trained on pseudo-labeled data at the
PS in a semi-supervised way:

wk+1 = wk+ 1
2
− ηk∇Fs(wk+ 1

2
), (7)

where Fs(w) is the loss function on Dk,U = {(xj , ŷj)|xj ∈
DUand aj > Ck}. Dk,U is the high-confidence pseudo-
labeled dataset at the server. As a result, the updated global
model wk+1 trained on both labeled and unlabeled data is
obtained. These four steps are executed repeatedly until the
model converges.
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2.3 Motivation for the Design of Ada-FedSemi

In this section, we conduct several sets of experiments to
present the motivation of federated model training with
the mixture of labeled and unlabeled data (Figs. 2-3), and
analyze the impacts of participating fraction (i.e., P ) and
confidence threshold (i.e., C) (Figs. 4-5) on training per-
formance. For the sake of simplicity, P and C without
subscript are used to indicate that their values keep fixed
during the training. We train VGG9 models for 600 rounds
on the dataset CIFAR10 with 20 clients, and the details of
experiments are introduced in Section 5.

We begin with experiments on labeled datasets with dif-
ferent scale and an unlabeled dataset. The first experiment
involves 10,000 labeled data samples and 40,000 unlabeled
data samples, while the second and the third experiments
separately involve 20,000 and 10,000 labeled data sam-
ples without unlabeled data. The confidence threshold for
pseudo-labeling is set as 0.8. In Fig. 2, with the increasing
number of labeled data from 10,000 to 20,000, the accuracy
of the trained model is improved significantly. Besides, we
also find that utilizing additional unlabeled data can also
achieve higher test accuracy, compared with training only
on labeled data. This motivates us to exploit massive in-
cloud unlabeled data when the scale of labeled data is
limited.

However, in Fig. 3, we observe that the trend of training
loss is not consistent with that of test accuracy. For example,
given the same scale of labeled data, the model trained
with additional unlabeled data achieves worse training loss
but higher test accuracy. Since the ultimate goal of model
training is to make predictions for unseen data, training loss
is not a good metric to measure the performance of a trained
model. Instead, we adopt a validation dataset to evaluate
the training model and guide the decisions of P and C .

Moreover, we conduct another set of experiments on
10,000 labeled data to analyze the impacts of P and C on
training performance. In Fig. 4, we present the time cost and
communication cost to achieve 60% accuracy given different
values of P . When achieving the same test accuracy, larger
P always leads to faster convergence but results in more
communication cost. Thus, we should determine P carefully
to balance the trade-off between training cost and model
accuracy regarding the desired cost preference.

Furthermore, we conduct experiments with different val-
ues of P and C to analyze their combined influence. Note
that C = 1.0 means the model is only trained on labeled
data since the confidence of pseudo-labels cannot exceed

1.0. The results are shown in Fig. 5, where the missing test
accuracy indicates the model fails to converge given the
corresponding values of P and C . We observe that, with
small P (e.g., 0.1), the test accuracy is more sensitive to
the changes of C than that with large P (e.g., 0.2 and 1.0).
Conversely, when all clients participate in the training (i.e.,
P = 1.0), the test accuracy is more robust to the change
of C . This set of experiments shows that the values of P
and C should be optimized simultaneously so as to achieve
satisfactory model accuracy.

2.4 Problem Definition

In FL systems, the clients are usually equipped with limited
and heterogeneous capabilities of computation and commu-
nication. Let tk,m denote the time cost of client vm at round
k, which includes the time for model broadcasting, updating
and uploading. Since the operations of computation and
communication at clients can be executed in parallel, the
time cost of clients depends on the slowest participating
client (i.e., the straggler). Thus, the time cost at round k can
be calculated as:

tk = max
vm∈Vk

{tk,m}+ tk,p, (8)

where tk,p = tp|Dk,U | is the time cost for model training
on the in-cloud pseudo-labeled data, and tp is the time for
processing a single data sample at the PS. We ignore the time
cost for generating pseudo-labels, which will be elaborated
in Section 3.

Since the clients are usually connected with the PS via
cellular network, with the increasing number of participat-
ing clients, the network may get congested and the commu-
nication cost will increase. Given the size, i.e.,W , of the local
model, the total communication cost can be expressed as:

bk = dPkMeW, (9)
where dPkMe is the number of participating clients at round
k. As shown in Fig. 4 and also demonstrated in the work
[18], more communication cost usually leads to faster model
convergence, i.e., less time cost, and vice versa. Considering
that different FL tasks have diverse cost preferences (e.g.,
fast convergence or low communication cost), we consider
the weighted cost of the both as in [18]:

Φk = αtk + (1− α)bk, (10)
where α ∈ [0, 1] is the bias factor to adjust the preference
towards time cost and communication cost. α = 0 means
that only the communication cost is taken into consider-
ation while α = 1 indicates that the model is expected
to converge as fast as possible without considering com-
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munication cost. Note that the setting of cost preference is
based on the properties of FL tasks [18]. For example, in a
cellular network, traffic consumption is probably the main
concern for the clients participating in FL. In contrast, in a
search-and-rescue task which aims to collaboratively learn
a search scheme as quickly as possible, achieving timely
result would be the first priority. Thus, the cost preferences
are mainly determined by the requirements of FL tasks and
our algorithm can adapt to different cost preferences online,
which is demonstrated in Section 5.

In the most prior works [25], [28], the optimization ob-
jective of model training aims to minimize the loss function
over training data, i.e., the objective defined in Eq. (3).
However, as demonstrated in Section 2.3, training loss fails
to exactly evaluate the prediction ability of the model on
unseen data (i.e., generalization ability), especially when the
scale of training dataset is varying. Instead, the validation
dataset can be used to provide an unbiased evaluation of
the model during the training [29]. At round k, we denote
the accuracy of the global model on the validation dataset
as uk.

As stated in Section 2.3, Pk and Ck have a significant
impact on the performance of model training and need to
be judiciously determined. As a result, the optimization
problem is formulated as follows:

min
Pk,Ck,K

K∑
k=1

αtk + (1− α)bk (11)

s.t.


uK ≥ ε,∑K
k=1 tk ≤ T,∑K
k=1 bk ≤ B,

Pk, Ck ∈ [0, 1],∀k,

where ε is the target accuracy on validation dataset. T and
B are the time and communication budgets for federated
model training, respectively.

3 ALGORITHM DESCRIPTION

Since Pk and Ck play an important role in the model
training, we propose an adaptive federated semi-supervised
learning system (termed as Ada-FedSemi) to utilize both on-
device labeled data and in-cloud unlabeled data efficiently.
Specifically, given the desired cost preference and limited
resource budgets, Ada-FedSemi employs a multi-arm bandit
(MAB) based online algorithm to adaptively determine the
participating fraction (i.e., Pk) of clients and the confidence
threshold (i.e., Ck) of pseudo-labels at each round.

3.1 Overall Training Process of Ada-FedSemi

The overall training process of Ada-FedSemi is described
in Alg. 1. Our goal is to achieve the target model accuracy
while minimizing training cost. At round k, based on the
value of Pk, the PS first randomly selects a subset of clients
to participate in FL, and then aggregates the local models
to derive the intermediate model wk+ 1

2
at the end of local

updating (Line 4-7). On the basis of the intermediate model,
the teacher model w̃k is updated (Line 8).

As suggested in [30], averaging the models across differ-
ent rounds can generate a more accurate and reliable model

than directly using the latest model. This is because models
tend to forget past learned knowledge and fit the recent
training data [31]. For example, at a certain round, if only
one client is chosen to participate in the federated model
training and the data on that client is highly skewed (e.g.,
all data belong to only one class), the trained model will
prefer to classify the input data as that class. Thus, we adopt
the exponential moving average of the intermediate models
across rounds as the teacher model, which is updated as
follows and can achieve reliable performance improvement:

w̃k = γwk+ 1
2

+ (1− γ)w̃k−1, (12)
where γ ∈ (0, 1]. Unlike some existing methods, where
the teacher is a well-trained model, our teacher model will
be gradually improved during the training process without
incurring additional training cost [30].

Subsequently, the teacher model w̃k is used to generate
pseudo-labels for unlabeled data (Line 9-10). As generating
predictions for massive unlabeled data is time-consuming,
we propose two strategies to reduce the cost for pseudo-
labeling. (1) Pseudo-labeling can be executed periodically
(e.g., every R rounds) since the prediction ability of the
teacher model will not improve significantly in several
successive rounds. Furthermore, (2) pseudo-labeling can be
performed in parallel with other steps like model training,
broadcasting and uploading. As a result, the time cost of
pseudo-labeling can be ignored. In terms of the thresh-
old Ck, we select the high-confidence pseudo-labeled data,
upon which the intermediate model is further trained to
produce the global model wk+1 for next round (Line 11-12).

Since it is inevitable to generate incorrect pseudo-labels
for unlabeled data, the model trained on these data will
accumulate errors (also known as confirmation bias) [32].
In other words, the model keeps learning from incorrect
pseudo-labels, and thereby the confidence of wrong predic-
tions by the model continuously increases. In order to pre-
vent error accumulation, we propose to adjust the learning
rate periodically (Line 13). Specifically, we use the cosine
anneal learning rate [33] to schedule the training process,
which can help models jump out of local optimum and
explore other regions [34]. Concretely, the learning rate is
scheduled as follows:

ηk = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

k mod K̃

K̃
π)), (13)

where ηmin and ηmax are the minimum and the maximum
learning rates, respectively. K̃ is the restart interval and k is
the current training round. In each interval, the learning rate
is initialized as ηmax at the beginning and then gradually
decreased to ηmin. As a result, models trained with the trick
of learning rate restart always achieve better accuracy as
demonstrated in Section 5.

3.2 MAB based Decision Making

To adapt to system dynamics and different cost preferences,
we need to adaptively determine the values of Pk+1 and
Ck+1 (Line 14-17 of Alg. 1). As shown in Section 2.3,
more participating clients (i.e., larger P ) always contribute
to higher model accuracy but also result in more training
cost. Besides, with the increasing value of C , the number
of selected data decreases and the quality of pseudo-labels
increases, since the high-confidence pseudo-labels are more
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Algorithm 1 Training Process of Ada-FedSemi

Input: Client sets V with their on-device data and in-cloud
unlabeled data

Output: The well-trained model w

1: Initialize MAB agents with action sets SP and SC , global
model wk, participating fraction Pk, confidence thresh-
old Ck, update interval R, target accuracy ε, current
accuracy uk = 0, k = 1

2: while uk < ε do
3: Processing at the Parameter Server
4: Select dPkMe clients into the set Vk randomly
5: Broadcast wk to vm ∈ Vk
6: Collect local models wk,m,∀vm ∈ Vk
7: Obtain the intermediate model wk+ 1

2
as Eq. (5)

8: Update the teacher model w̃k as Eq. (12)
9: if k mod R = 0 then

10: Update pseudo-labels of unlabeled data
11: Select pseudo-labeled data into Dk,U based on Ck
12: Train wk+ 1

2
on Dk,U as Eq. (7), and obtain wk+1

13: Adjust learning rate ηk as Eq. (13)
14: Validate wk+ 1

2
and record the accuracy as uk,P

15: Validate wk+1 and record the accuracy as uk,C
16: Calculate the change of accuracy ∆uk,P and ∆uk,C
17: Update MAB agents, and determine Pk+1 and Ck+1

18: uk = uk,C , k = k + 1
19: Processing on Each Client vm
20: if Receive wk from the PS then
21: Update the local model as Eq. (4)
22: Upload the trained model wk,m

likely to be the ground-truth labels in comparison to the
low-confidence pseudo-labels. Moreover, the values of P
and C are demonstrated to have an impact on each other.
With more clients participating in FL (i.e., larger P ), the
quality of predictions by the teacher model will increase and
thus the number of errors in pseudo-labels will be reduced,
which will affect the decision of C . Therefore, P and C are
expected to get optimized simultaneously.

However, due to the complex influence factors of fed-
erated model training (e.g., model architecture, datasets,
optimizer and number of clients), it is infeasible to obtain
the optimal values of P and C in advance of the training.
Therefore, we propose a multi-armed bandit (MAB) based
online learning algorithm to determine P and C without
any prior knowledge of the FL system. In each round,
the MAB algorithm chooses an action, i.e., arm, from an
action set and collects a reward. Then, based on the action
decisions and the corresponding rewards across different
rounds, the strategies for choosing actions are updated.

We take the optimization problem in Eq. (11) as a classic
MAB problem, where the values of P andC can be regarded
as actions. The MAB algorithm is originally developed for
discrete decision spaces. However, the values of P and C
are continuous, which are within [0, 1]. Thus, we need to
partition the continuous decision space into discrete action
sets SP and SC , respectively. In fact, the decision space can
be further zoomed in to focus on a much smaller range.
For example, in Fig. 5, we find that the test accuracy of

the trained model always decreases when the value of C is
below 0.8. Therefore, we only consider the decision space of
C in the range of 0.8 to 1.0. The decision making process of
our MAB algorithm is summarized in Alg. 2. In each round,
the MAB agent at the PS first makes the decision about
which action is performed and then obtains a reward in
response to the action (Line 3-4). According to the rewards,
the MAB agent updates probabilities for the corresponding
actions (Line 5-6).

We adopt a validation dataset to evaluate the accuracy of
the trained models and calculate the rewards (i.e., accuracy
improvement) of different actions. At round k, we denote
the accuracy of the models wk+ 1

2
and wk+1 as uk,P and

uk,C , respectively. The accuracy improvement of the two
models is ∆uk,P and ∆uk,C :

∆uk,P = uk,P − uk−1,C , (14)
∆uk,C = uk,C − uk,P . (15)

Since the intermediate model wk+ 1
2

is aggregated from local
models, we recognize the improvement of this model, i.e.,
∆uk,P , as the outcome of the decision of Pk. Meanwhile, the
model wk+1 is trained on the pseudo-labeled data selected
by Ck, and thus we recognize ∆uk,C as the outcome of the
decision of Ck. Since the algorithm for determining Pk and
Ck is the same, we use ∆uk and S for simplicity to introduce
our algorithm in the following. We define the reward of the
decision at round k as follows:

rk =

{
∆uk

Φk
, if ∆uk ≥ 0,

∆uk · Φk, otherwise.
(16)

As the reward design is the key to the success of MAB
algorithms [35], herein, we explain the rationality of the
reward function. The intuition of our reward design has
two folds and the goals of the two-fold reward functions
are consistent, i.e., improving the model performance in a
cost-efficient way. (1) When achieving the same accuracy
improvement (i.e., ∆uk ≥ 0), the decisions which consume
less training cost should be given higher rewards. In another
word, we expect high accuracy improvement and small
training cost. (2) While some inappropriate actions may
degrade accuracy, i.e., ∆uk < 0, and we still use ∆uk/Φk
as the reward, a smaller training cost Φk will lead to a
higher penalty (penalty means negative reward). This is not
consistent with our design goal, i.e., efficient training. Thus,
in case of ∆uk < 0, we denote ∆uk · Φk as the reward.

Traditional MAB algorithms estimate the actual reward
of an action by averaging its received rewards across
rounds. However, in this paper, the reward distribution
of actions is not identical across different rounds. Firstly,
the improvement speed of model accuracy is not the same
during the training process. In general, the increase of model
accuracy is fast at the beginning of the training and becomes
slow as training progresses. Besides, the optimal decision
may change over time since the quality of pseudo-labels
will improve and the cost preference may vary during the
training. Therefore, this is a non-stationary MAB problem
[36], and it is not rational to simply average rewards of
each action across rounds as traditional MAB algorithms do.
Instead, we concentrate more on the recent rewards which
are assigned with larger weights, and gradually decay the
weights for the past rewards [37]. At round k, for each action
a in the action set S, its estimated reward r̂k,a is calculated
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Algorithm 2 MAB Agent

1: Action set S and r̂k,a, pk,a for each action
2: for round k ∈ {1, . . . ,K} do
3: Select an action based on the probability pk,a,∀a ∈ S
4: Receive the reward rk based on Eq. (16)
5: Update estimated rewards r̂k,a as Eq. (17)
6: Calculate the probability pk,a of action as Eq. (18)

as follows:

r̂k,a =

{
r̂k−1,a + β(rk − r̂k−1,a) , if ak = a,

r̂k−1,a, otherwise,
(17)

where β ∈ (0, 1] is the decay factor and ak is the action
chosen for round k.

Thus, the goal of our MAB algorithm is to maximize
the total received rewards via a judicious trade-off between
exploration and exploitation. Exploitation means pulling the
best action known so far while exploration aims to explore
different actions to find better solutions. Specifically, we
adopt the Boltzmann exploration strategy [38], which is
wildly used for balancing exploration and exploitation. The
probability of choosing action a ∈ S at round k is calculated
as follows:

pk,a =
eψr̂k,a∑

a′∈S e
ψr̂k,a′

. (18)

Particularly, with ψ = 0, the actions are uniformly
chosen all the time, while ψ → ∞ means that the MAB
agent will always output the action with the highest reward
without any exploration.

4 ADAPTATION TO HETEROGENEOUS CLIENTS

As indicated in Eq. (8), the time cost of a round depends
on the slowest client (i.e., the straggler). Since clients typ-
ically consist of various types of devices equipped with
different hardwares and bandwidth, they exhibit significant
divergence on the capabilities of both computation and com-
munication. According to AI-Benchmark1, the computation
capabilities vary significantly across different mobile CPUs.
For instance, when executing the same tasks, HiSilicon Kirin
9000 is 10× faster than Snapdragon 625. Besides, according
to the report of Cisco [39], by 2023, there are still about 30%
mobile devices that communicate through 2G or 3G (the
bandwidth is less than 10 Mbps) while the 5G connection
(the bandwidth is more than 500 Mbps) only accounts for
10%. Due to the computation and communication hetero-
geneity among clients, the stragglers may slow down the
training process, resulting in a long waiting time of fast
clients and thus inefficient utilization of available resources.

In general, we expect that heterogeneous clients can train
local models with different sizes in accordance with their
capabilities. However, it is usually difficult to aggregate
models of different architectures [40]. Herein, we propose
a simple yet effective approach, called HeteroAda-FedSemi,
where local models are generated from the same global
model but of different depths. Specifically, inspired by re-
cent researches on multi-exit models [41], we add auxiliary
classifiers in the intermediate layers of a conventional (i.e.,

1. https://ai-benchmark.com

single-exit) model. Then, each exit and its preceding layers
form an independent model, which can be trained on clients
without relying on the subsequent layers. In this way, local
models of different depths are trained on heterogeneous
clients and the global aggregation can be easily performed
in a layer-wise manner. In the following, we first introduce
the architecture of the multi-exit model, and then present
the assignment of heterogeneous local models.

4.1 Multi-exit Model

Multi-exit models have been proven effective to accelerate
inference through early-exit techniques [42], but remain
rarely explored to achieve efficient model training. In our
system, we exploit the potential of multi-exit models to
perform heterogeneous local training to alleviate the impact
of stragglers.

A conventional model can be regarded as a function H
that maps the input x into the predictionH(x). We decouple
it intoB+1 parts, including h1, . . . , hB for feature extraction
and c for classification:

ŷ = H(x) = (c ◦ hB ◦ hB−1 ◦ · · · ◦ h1)(x), (19)
where ŷ is the prediction from the model. The operator ◦
denotes function composition, i.e., (hb ◦ hb′)(·) = hb(hb

′
(·)).

The output of hb is denoted as zb, 1 ≤ b ≤ B. We denote
z0 = x, zb = hb(zb−1) and ŷ = c(zB). The function hb

may represent any single or several consecutive layers (e.g.,
convolutional layers).

To transform a conventional model into a multi-exit
model, we add an auxiliary classifier cb after hb, 1 ≤ b ≤
B − 1. Then, we feed the output of hb to the classifier cb to
obtain an early prediction ŷb:

ŷb = cb(zb), 1 ≤ b ≤ B, (20)
where zb (1 ≤ b ≤ B − 1) is the input of both cb and hb+1

while zB is the input of the original classifier, i.e., cB = c.
The classifier cb and its previous parts (including c1, · · · , cb
and h1, · · · , hb) form a submodel Hb. We use wb to denote
the parameters in the model part b (including hb and cb).
Regarding the output of the classifier cb, we calculate its
loss on local dataset Dm at round k as:

f b(wbk,m) = E(x,y)∼Dm
F (wbk,m, x

b, y), (21)
where wbk,m is the parameters of the model part b on client
vm and round k, and xb = zb−1 is the input of the model
part b (i.e., the output of hb−1 for b > 1). If the client vm
trains the submodel f bk,m at round k, its overall optimiza-
tion goal is:

w∗k,m = arg min
wk,m

bk,m∑
b=1

f b(wbk,m). (22)

Note that the transformation from a conventional model
to the multi-exit model can be easily applied on any CNN-
based model [41], e.g., VGG [43] and ResNet [44], which
have been widely used in various FL applications [45], [46].

4.2 Submodel Assignment for Heterogeneous Clients

Models of different depths require significantly diverse cost
of both computation and communication. For example, we
add two intermediate classifiers for VGG9, and thus three
submodels (including the full model) can be generated. The
required computation cost of the smallest submodel is only
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Algorithm 3 Clustering clients by their capabilities in
HeteroAda-FedSemi

1: Estimate t̂k,m as Eq. (23) for vm ∈ Vk
2: if |Vk| > B then
3: Initialize B clusters: U1, U2, · · · , UB
4: Randomly select B clients, sort their estimated time

and obtain centroids of clusters: t1, t2, · · · , tB
5: else
6: Return |Vk| clusters: UB−|Vk|+1, · · · , UB−1, UB

7: while The assignment of clusters is changing do
8: Compute the distance between clients’ estimated

time and all centroids
9: Assign each client to the closest cluster (centroid)

10: Update the centroid for each cluster by averaging all
clients’ estimated time in that cluster

11: Return B clusters: U1, U2, · · · , UB

32.3% of that of the full model. Besides, the correspond-
ing communication cost is also reduced from 13.41MB to
0.11MB. The details of the parameter size and the computa-
tion load of submodels of VGG9 are listed in Table 9.

For heterogeneous clients, we assign local models of
different depths based on their capabilities. In general, we
assign the full model for high-performance clients while
assigning submodels for other clients equipped with the rel-
atively low capabilities. The detailed algorithm is presented
in Alg. 3.

Clients are first clustered based on their capabilities, and
then a submodel is assigned for each cluster. Specifically,
to indicates clients’ capabilities (Line 1), we estimate the
completion time of clients for training the full model as:

t̂k,m =
Π

ψ̂k,m
+

Ω

γ̂k,m
, (23)

where Π and Ω are the training load and parameter size
of the full model, respectively. ψ̂k,m and γ̂k,m are the esti-
mated computation capability and bandwidth, respectively.
By recording the actual time of model training (i.e., tcpk−1,m)
and transmitting (i.e., tcmk−1,m) at the last round (i.e., k − 1),
the estimated computation capability and bandwidth can be
calculated as:

ψ̂k,m =
Πk−1,m

tcpk−1,m

, (24)

γ̂k,m =
Ωk−1,m

tcmk−1,m

, (25)

where Πk−1,m and Ωk−1,m are local submodel’s training
load and parameter size on client vm at round k − 1,
respectively.

If there are over B clients in the selected set Vk, we will
randomly select B clients to initialize B clusters, i.e., one
client in each cluster. Then, we use clients’ estimated time
t̂k,m to set centroids of clusters (Line 2-4). Otherwise, |Vk|
clusters are returned and each contains a client (Line 5-6).
Using the estimated time, the distance between clients and
all centroids are calculated (Line 8). Each client is assigned
to the closest centroid (Line 9). The centroid of each cluster
is updated by taking average of all clients’ estimated time
in that cluster (Line 10). The clusters are updated repeatedly
until the assignment of clusters is not changing. At last, we
obtain client clusters, i.e., U1, U2, · · · , UB . The clients in a

cluster are equipped with similar capabilities, and thus train
a same submodel. Specifically, the clients in UB train the
full model, i.e., HB , the clients in UB−1 train the submodel
HB−1 and so on. When clients finish local training, the PS
will collect these updated submodels and perform layer-
wise aggregation. As a result, the updated global model
wk+1 is obtained for further training.

4.3 Convergence Analysis

Herein, we will analyze the convergence of each part in a
multi-exit model, which consists of multiple model parts.
The input data of the first part is the original data samples,
which keep unchanged during the training. However, the
input data of other parts are affected by their preceding
parts, due to the optimization of model parameters [47],
[48]. In other words, the distribution of the input data of
part b (b > 1) depends on its preceding parts. At round k,
we denote the distribution of the input data of part b on
client vm as pbk,m and assume the converged distribution is
pb,∗.

To analyze the convergence property of the training of
the multi-exit model, we make following assumptions:

Assumption 1. (L-smoothness) For a constant L > 0 and the
model part b, we have:
‖∇fm(wb)−∇fm(w̃b)‖ ≤ L‖wb − w̃b‖,∀vm ∈ V, (26)

where wb and w̃b are two different parameters of the
model part b.

Assumption 2. (Convergence of the previous parts) As
in [47], we consider the variation distance between
the local distribution and the converged distribution:
cbk,m ,

∫
|pbk,m − pb,∗|dz, where z denotes the data

samples drawn from the distribution p, i.e., z ∼ p. For
ease of analysis, we denote cbk = maxm c

b
k,m, and assume

the input of the model part b will converge:∑
k

cb−1
k <∞. (27)

Assumption 3. (Unbiased and bounded gradient) The
stochastic gradient at each client is an unbiased estimator
of the local full-batch gradient:

E(x,y)[∇Fm(wbk,m)] = ∇f(wbk,m),∀m, b, k. (28)
For a constant G, we have:

‖∇Fm(wbk,m)‖2 ≤ G,∀m, b, k. (29)

Lemma 1. Under Assumptions 1-3, we have:

E[f(wbk+1)] ≤ f(wbk) +
LGη2

2M
(30)

− η(
1

2
‖∇f(wbk)‖2 − Gcb−1

k

M
),

where η is the learning rate. The proof is presented in
APPENDIX A.

Theorem 1. Under Assumptions 1-3 and Lemma 1, we have
the following result at round K :

1

K

K−1∑
k=0

‖∇f(wbk)‖2 ≤ 2f(wb0)

Kη
+

2G

MK

K−1∑
k=0

cb−1
k +

LGη

M
,

which is proved in APPENDIX B.
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TABLE 1: Performance metrics of FedSemi-P -C and FedAvg-P (i.e., FedSemi-P -1.0) on CIFAR10.

(a) Test accuracy (%)

C
P

0.1 0.2 0.5 1.0

0.6 - - 74.5±0.1 75.8±0.1
0.7 - 80.4±0.3 77.0±0.2 82.9±0.1
0.8 - 81.3±0.2 82.9±0.1 83.3±0.0
0.9 68.9±0.4 82.1±0.2 83.3±0.0 83.1±0.1
0.95 73.4±0.5 81.5±0.1 81.6±0.1 81.5±0.0
0.98 77.6±0.2 79.1±0.2 81.4±0.1 80.5±0.1
1.0 75.1±0.3 75.4±0.1 75.6±0.2 75.3±0.1

(b) Time cost (min) for 75% accuracy

C
P

0.1 0.2 0.5 1.0

0.6 - - - 419
0.7 - 382 312 251
0.8 - 311 240 196
0.9 - 296 199 186
0.95 - 247 211 190
0.98 356 296 221 194
1.0 395 346 326 314

(c) Traffic (GB) for 75% accuracy

C
P

0.1 0.2 0.5 1.0

0.6 - - - 355
0.7 - 68 139 226
0.8 - 58 113 186
0.9 - 57 98 183
0.95 - 49 103 187
0.98 36 59 108 194
1.0 41 72 169 324

Corollary 1. Referring to the analyses in the works [49], [50],
we define:

qk =
‖∇f(wk)‖2

‖∇f(wbk)‖2
and q0 = max

k
qk. (31)

Besides, we also define:
f0 = max

b
f(wb0) and c0 = max

k,b
cb−1
k . (32)

Then, we can obtain the convergence of the entire model:

1

K

K−1∑
k=0

‖∇f(wk)‖2 ≤ 2q0f0

Kη
+

2q0Gc0
M

+
q0LGη

M
, (33)

which is proved in APPENDIX C.

From Theorem 1, we can see that the distribution of
input data of the model part b, i.e., cb−1

k , has an impact
on the convergence, and the distribution depends on the
convergence of all the preceding model parts. Thus, in our
algorithm, the part that is closer to the original data input
will be trained on more clients, since its convergence will
influence the training process of all its subsequent parts. In
this way, heterogeneous resources can be fully utilized while
model convergence can be guaranteed. Besides, we can also
see that the loss value (i.e., the left hand side of Theorem
1) continues to decrease as the numbers of training rounds
(i.e., K) and participating clients (i.e., M ) increase, which is
consistent with prior works of FL [51], [52].

5 EXPERIMENTAL EVALUATION

5.1 System Platform

We evaluate the performance of Ada-FedSemi through ex-
tensive experiments on an FL hardware prototype system.
Specifically, an AMAX deep learning workstation, which
is equipped with an Intel(R) Core(TM) i9-10900X CPU, 4
NVIDIA GeForce RTX 2080Ti GPUs and 128 GB RAM, is
applied to serve as the PS. Besides, 20 NVIDIA Jetson TX2
developer kits2 are specified as the clients. Each TX2 client
has a 256-core Pascal GPU and a CPU cluster consisting of a
2-core Denver2 and a 4-core ARM CortexA57. By default,
TX2 clients work in their full capabilities, i.e., the mode
0 in Table 8. The PS and clients are connected via a Wi-
Fi router. The implementation for model training is based
on the PyTorch deep learning framework [53], and we use
the socket library of Python to build up the communication
between clients and the PS.

2. https://docs.nvidia.com/jetson/

5.2 Setup of Experiments

Datasets and Models: We use four benchmark datasets,
i.e., CIFAR10 [54], SVHN [55], STL10 [56] and IMDB [57]
to evaluate the performance of Ada-FedSemi and baselines:

• CIFAR10: It contains 60,000 color images labeled in
10 classes with 6,000 samples per class. By default,
we split the whole dataset into four datasets: i)
labeled training dataset with 10,000 samples, ii) un-
labeled training dataset with 40,000 samples whose
labels are discarded, iii) validation dataset with 2,000
samples, and iv) test dataset with 8,000 samples.

• SVHN: There are 73,257 digits for training, 26,032
digits for testing, and 531,131 additional data, which
are labeled in 10 classes. By default, 5% of training
data, i.e., 3,660 digits, are distributed to clients as
labeled data. 20,000 and 6,032 digits in testing dataset
are used for testing and validation, respectively. The
rest digits in the training dataset and additional
dataset are all placed at the PS as unlabeled data.
As a result, there are 600,728 unlabeled samples at
the PS.

• STL10: It consists of 13,000 labeled images and
100,000 unlabeled images. The resolution of these
color images is 96×96 pixels and there are 10 cat-
egories in the labeled dataset. We split the labeled
data into three datasets: i) labeled training dataset
with 5,000 samples, ii) validation dataset with 2,000
samples, and iii) test dataset with 6,000 samples.

• IMDB: There are 50,000 movie review samples
(25,000 for training and 25,000 for test), labeled by
positive or negative sentiment. We split the whole
dataset into four datasets: i) labeled training dataset
with 5,000 samples, ii) unlabeled training dataset
with 20,000 samples, iii) validation dataset with 5,000
samples, and iv) test dataset with 20,000 samples.

Since data are not always distributed uniformly across
clients at the network edge, we will analyze training perfor-
mance under both IID and non-IID settings. (1) In the IID
setting, all labeled data are uniformly distributed to clients.
(2) In the non-IID setting, as in [23], a fraction (ζ) of data
samples assigned to a client belong to a certain class and
the remaining data samples belong to other classes, which
is denoted as non-IID-ζ . By default, the data distribution of
CIFAR10 and SVHN is non-IID-0.5 while that of STL10 and
IMDB is non-IID-0.75 and IID, respectively.
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TABLE 2: Performance metrics of FedSemi-P -C and FedAvg-P (i.e., FedSemi-P -1.0) on SVHN.

(a) Test accuracy (%)

C
P

0.1 0.2 0.5 1.0

0.7 62.7±0.4 80.2±0.2 80.7±0.2 81.8±0.1
0.75 64.5±0.3 81.3±0.3 81.1±0.2 82.0±0.1
0.8 67.5±0.2 81.6±0.2 81.9±0.1 83.2±0.2
0.85 68.5±0.2 82.4±0.1 83.4±0.2 84.5±0.1
0.9 69.6±0.3 82.8±0.1 82.1±0.1 82.6±0.1
0.95 72.5±0.1 80.4±0.3 81.3±0.1 81.2±0.0
1.0 70.4±0.2 80.8±0.2 80.9±0.2 81.6±0.1

(b) Time cost (min) for 75% accuracy

C
P

0.1 0.2 0.5 1.0

0.7 - 63 52 31
0.75 - 59 46 27
0.8 - 54 43 25
0.85 - 52 37 23
0.9 - 51 41 27

0.95 - 59 45 28
1.0 - 58 43 28

(c) Traffic (GB) for 75% accuracy

C
P

0.1 0.2 0.5 1.0

0.7 - 0.77 1.21 2.07
0.75 - 0.71 1.12 1.94
0.8 - 0.69 1.09 1.76
0.85 - 0.64 1.02 1.69
0.9 - 0.59 1.08 1.81
0.95 - 0.76 1.13 2.20
1.0 - 0.76 1.15 2.04

TABLE 3: Performance metrics of FedSemi-P -C and FedAvg-P (i.e., FedSemi-P -1.0) on STL10.

(a) Test accuracy (%)

C
P

0.1 0.2 0.5 1.0

0.8 24.7±0.6 44.9±0.4 51.6±0.2 52.3±0.3
0.85 26.3±0.5 51.1±0.3 53.0±0.4 53.7±0.1
0.9 29.7±0.3 54.2±0.3 55.6±0.3 57.5±0.2
0.95 32.2±0.4 56.5±0.3 56.6±0.2 59.5±0.0
0.98 39.3±0.4 56.4±0.2 57.8±0.2 58.4±0.1
0.99 41.4±0.3 57.7±0.2 55.9±0.1 56.9±0.2
1.0 39.9±0.4 55.6±0.2 56.3±0.1 56.5±0.1

(b) Time cost (min) for 50% accuracy

C
P

0.1 0.2 0.5 1.0

0.8 - - 342 329
0.85 - 549 256 244
0.9 - 340 243 181
0.95 - 324 239 167
0.98 - 325 207 178
0.99 - 303 245 189
1.0 - 355 243 192

(c) Traffic (GB) for 50% accuracy

C
P

0.1 0.2 0.5 1.0

0.8 - - 131 247
0.85 - 82 99 187
0.9 - 53 93 146
0.95 - 49 93 129
0.98 - 50 84 138
0.99 - 46 95 150
1.0 - 54 96 148

TABLE 4: Optimal combination of P and C with different cost
preferences (α) on CIFAR10.

Range of α (×0.1) [0, 1.07) [1.07, 5.06) [5.06, 8.68) [8.68, 10]
Optimal P and C (0.1, 0.98) (0.2, 0.95) (0.5, 0.9) (1.0, 0.9)

TABLE 5: Optimal combination of P and C with
different cost preferences (α) on SVHN.

Range of α (×0.01) [0, 2.98) [2.98, 4.57) [4.57, 100]
Optimal P and C (0.2, 0.9) (0.5, 0.85) (1.0, 0.85)

TABLE 6: Optimal combination of P and C with different
cost preferences (α) on STL10.

Range of α [0, 0.284) [0.284, 0.529) [0.529, 1.0]
Optimal P and C (0.2, 0.99) (0.5, 0.98) (1.0, 0.95)

On CIFAR10 and STL10, we train a VGG9 model [58]
with 3.49 million parameters while a lightweight CNN
model with 0.54 million parameters is trained on SVHN. For
IMDB, we adopt the CNN model in [59]. Besides, the SGD
optimizer with momentum is adopted in our experiments
to optimize models, and the momentum is set as 0.9. The
restart interval for learning rate is set as 100. The maximum
and minimum learning rates are set as 0.05 and 0.0001,
respectively.

Baselines: We compare our proposed system with the
following baselines.

• FedSemi [15], [16]: In FedSemi, the in-cloud unla-
beled data and on-device labeled data are used to
train models in a semi-supervised way. However,
the two critical parameters, i.e., P and C , are fixed
during the training. Given different combinations of
P and C , we denote the baselines as FedSemi-P -C ,
e.g., FedSemi-0.5-0.9.

• FedAvg [4]: In FedAvg, only labeled data on clients
are utilized to train models, and thus there is only

one critical parameter, i.e., P . We denote the FedAvg
with different P as FedAvg-P , e.g., FedAvg-0.2. Note
that if the value of C in FedSemi-P -C is set as
1.0 (i.e., FedSemi-P -1.0), FedSemi-P -1.0 is equivalent
to FedAvg-P , since the confidence of pseudo-labels
cannot exceed 1.0 and none of the unlabeled data
is selected. For ease of presentation, we will use
FedSemi-P -1.0 and FedAvg-P interchangeably in the
later experiments.

Performance Metrics: In the experiments, we employ the
following metrics to evaluate the performance of different
FL systems: (1) Test accuracy. In each round, we will evalu-
ate the global model on test dataset and record the accuracy.
(2) Time cost. We will record the time to achieve the target
test accuracy on different FL systems. (3) Communication
cost. The communication cost for broadcasting and upload-
ing models is also recorded when achieving the target test
accuracy. (4) Weighted Cost. Based on the cost preference
and Eq. (10), we combine time cost and communication cost
to derive the weighted cost.

5.3 The Impacts of P and C
We first conduct experiments on the baselines with fixed
P and C to analyze the impacts of the two parameters.
The time budget of the training is set as 480min, 80min
and 480min for CIFAR10, SVHN and STL10, respectively.
The corresponding target test accuracy is set as 75%, 75%
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Fig. 6: Training cost on CIFAR10.
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Fig. 7: Training cost on SVHN.
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Fig. 8: Training cost on STL10.

and 50%. For training efficiency, by default, Ada-FedSemi
randomly selects 100,000 out of 600,728 (for SVHN) and
40,000 out of 100,00 (for STL10) unlabeled data to generate
pseudo-labels. The impact of the scale of unlabeled dataset
will be analyzed in Section 5.6. The experimental results are
presented in Tables 1-3.

From the perspective of test accuracy, the models trained
on both labeled and unlabeled data (i.e., FedSemi) can
achieve 1.6%-7.8% accuracy improvement on three datasets,
compared with the models only trained on labeled dataset
(i.e., FedAvg). However, we observe that FedSemi with small
C and/or small P suffers from accuracy degradation (e.g.,
P = 0.1 and C ≤ 0.9 on STL10) and even fails to converge
(e.g., FedSemi-0.1-0.8 on CIFAR10). Given a small P , the
models will only learns knowledge from a small number
of clients and labeled data, and a small C will bring in
many low-confidence pseudo-labels during the training,

which degrades the performance of models. Besides, the
values of P have influence on the optimal values of C .
For example, on CIFAR10, when all clients participate in
the FL training (i.e., P = 1.0), C = 0.8 achieves the highest
test accuracy. However, when selecting only 10% of clients
(i.e., P = 0.1), C needs to be set as 0.98 to achieve the best
accuracy. The reason lies in that the models can learn more
knowledge from the labeled data with the increasing of P
and thus generate pseudo-labels with higher quality. Thus,
when using the same C , we can select more samples with
less errors from the pseudo-labeled data.

In terms of training cost, the time cost and communica-
tion cost are usually contradictory. With the increasing num-
ber of participating clients, the time to achieve the target ac-
curacy gets shorter and meanwhile the communication cost
gets higher. For example, when training models on SVHN
using FedAvg, with the value of P varying from 0.2 to 1.0,
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Fig. 9: Training cost on CIFAR10 with varying preference.
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Fig. 10: Distribution of P in two training phases.
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Fig. 11: Training process of Ada-FedSemi and the baselines on different data distributions.

the time cost to achieve 75% test accuracy decreases from
58min to 28min while the communication cost increases
from 0.76GB to 2.04GB. It is noteworthy that training on
both labeled and unlabeled data may not always achieve
better training efficiency, compared with training only on
labeled dataset. For example, on CIFAR10, FedSemi-1.0-0.6
spends 33% more time cost and 10% more communication
cost to achieve the same target test accuracy in comparison
to FedAvg-1.0. This is because a large number of low-
confidence pseudo-labels mislead the optimization of model
training and result in resource waste.

In Tables 1-3, we observe that a little extra time cost
can help reduce the communication cost to a great extent
in some cases. For example, on CIFAR10, when C is set as
0.9, the system with P = 0.5 spends 7% more time but saves
47% communication cost, compared with P = 1.0. Different
FL tasks always have different cost preferences. Some tasks
expect to converge fast without considering communication
cost while others may prefer to perform model training in a
communication-efficient way. As a result, these preferences
will lead to different optimal decision of P and C . We
present the optimal combination of P and C under different
preferences in Tables 4-6. For example, on STL10, when the
task prefers saving communication cost, i.e., α < 0.284, the
minimum weighted cost can be achieved with P = 0.2.
When the task is expected to converge fast (i.e., α ≥ 0.529),
all clients (i.e., P = 1.0) should participate in the training.

5.4 Performance Comparison

In this section, we compare the performance of Ada-
FedSemi and baselines. In Ada-FedSemi, the decision spaces
of P and C are set as [0.0, 1.0] and [0.8, 1.0], respectively,
and we evenly partition each of the two decision spaces

into 10 discrete values. By default, we set the preference
parameter α as 0.5, 0.05 and 0.5 for the training on CI-
FAR10, SVHN and STL10, respectively. As indicated in
Table 4, on CIFAR10, P = 0.2 and 0.5 can achieve small
weighted cost when α = 0.5. Therefore, we choose FedAvg-
0.2, FedAvg-0.5, FedSemi-0.2-0.95 and FedSemi-0.5-0.9 as
baselines. Similarly, on SVHN, we take FedAvg-0.5, FedAvg-
1.0, FedSemi-0.5-0.85 and FedSemi-1.0-0.85 for comparison
while on STL10, FedAvg-0.2, FedAvg-0.5, FedSemi-0.2-0.99
and FedSemi-0.5-0.98 are adopted as baselines. When a
system cannot achieve the target test accuracy, its cost is
set as the maximum (i.e., the budgets are exhausted). On
CIFAR10 and STL10, the time budget and traffic budget are
set as 500min and 200GB, respectively. On SVHN, those are
60min and 3GB.

The time cost, communication cost and weighted cost
of Ada-FedSemi and the baselines for achieving the dif-
ferent test accuracy are presented in Figs. 6-8. Although
baselines with fixed P and C may achieve the least time
cost (i.e., P = 1.0 on SVHN) or communication cost (i.e.,
P = 0.2 on CIFAR10) in some cases, they cannot achieve
the least weighted cost. On the contrary, Ada-FedSemi can
always achieve the least weighted cost, indicating that Ada-
FedSemi is able to balance time cost and communication
cost given the specific cost preference. On CIFAR10, com-
pared with FedAvg-P , Ada-FedSemi can save 35% (P =
0.2) and 48% (P = 0.5) weighted cost when achieving 75%
test accuracy. Given the 80% test accuracy, Ada-FedSemi
saves the weighted cost over FedSemi-0.2-0.95 and FedSemi-
0.5-0.9 by 22% and 14%. However, FedAvg-P fails to achieve
higher test accuracy (i.e., 80%) without utilization of the in-
cloud unlabeled data. On SVHN and STL10, compared with
other baselines, Ada-FedSemi saves 6%∼25% and 7%∼43%
weighted cost, respectively.
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TABLE 7: Performance comparison of different systems on
IMDB dataset.

Metrics Accuracy (%) Time (min) Traffic (GB)
Ada-FedSemi 74.8±0.2 76.8 52.6

FedSemi 73.6±0.3 84.7 59.2
FedAvg 70.7±0.1 104.1 69.4

Furthermore, we evaluate the systems’ performance on
IMDB dataset to verify that Ada-FedSemi can also perform
well on the text classification task. For the baselines FedAvg
and FedSemi, we set P as that of Ada-FedSemi in each
round while C in FedSemi is set as 0.95. As such, we can
compare the training performance between fixed C and
adaptive C . In Table 7, we present the best accuracy in
120min as well as the training cost to achieve 70% target
accuracy. We observe that Ada-FedSemi reaches the high-
est test accuracy due to its adaptive determination of C .
Meanwhile, when achieving the same target accuracy, Ada-
FedSemi provides a speedup of 1.1×∼1.4×, compared with
baselines. Besides, compared with FedSemi and FedAvg,
Ada-FedSemi reduces the network traffic by 11.2% and
24.2%, respectively. These results show remarkable perfor-
mance gains of the proposed algorithm, even on the text
classification task.

We conduct another set of experiments on CIFAR10 in
the scenario where the FL tasks would like to achieve an
acceptable test accuracy with low time cost and then further
improve model performance in a communication-efficient
way. Specifically, we initially set α as 0.9 to ensure fast
convergence and when the test accuracy reaches 60%, α is
set as 0.1 to put more emphasis on communication cost.
The training process is terminated when the test accuracy
reaches 80%. The communication cost and time cost of the
two training phases are presented in Fig. 9. In the first
training phase, Ada-FedSemi achieves the least time cost,
resulting in the most communication cost since our goal
in this phase is fast convergence. In the second training
phase, our system results in similar communication cost
with FedSemi-0.2-0.95 and saves about 50% communication
cost in comparison to FedSemi-0.5-0.9. We further present
the distribution of the values of P in the two training
phases. As shown in Fig. 10, Ada-FedSemi always chooses
the optimal P (i.e., 0.6 in the first phase and 0.2 in the

second phase) with the high probability, which indicates
that our system is able to adaptively determine the optimal
combination of P and C even when the cost preference is
varying over time.

5.5 Adaptability to Data Distribution

In this section, we conduct experiments to evaluate the
impact of data distributions. The models are trained on
CIFAR10 with four different data distributions, i.e., IID, non-
IID-0.5, non-IID-0.6 and non-IID-0.75. We take FedSemi-0.2-
0.95, FedSemi-0.5-0.9 and FedAvg-1.0 for comparison. The
time budget is set as 480min, and the experimental results
are presented in Fig. 11.

Generally, the test accuracy of the models trained on
all systems decreases with the increasing skewness of data
distribution. The final test accuracy of Ada-FedSemi on IID,
non-IID-0.5, non-IID-0.6 and non-IID-0.75 is 85.0%, 83.3%,
80.4%, and 73.5%, respectively. For the same data distri-
bution, Ada-FedSemi can always achieve the highest test
accuracy and outperform the three baselines by 1.5% to
14.8%. We find that FedAvg-1.0 always achieves the best test
accuracy at the beginning of the training. This is because, in
FedAvg, models are optimized without perturbation of er-
rors from low-confidence pseudo-labels and thus converge
fast. For FedSemi, as the training progresses, the prediction
ability of models is improved, and thus the teacher model
generates more and more high-confidence pseudo-labels for
the unlabeled data. As a result, the models trained on these
high-confidence pseudo-labeled data can achieve higher
test accuracy, compared with FedAvg. Nevertheless, in Fig.
11(d), the test accuracy of FedSemi-0.2-0.95 and FedAvg-1.0
is separately 59.0% and 66.7%, indicating that with highly
skewed data, a small number of clients may fail to gen-
erate high-confidence pseudo-labels, and thus the incorrect
pseudo-labels may mislead the model optimization.

In Fig. 12, we present the communication cost of different
systems on the four data distributions. Except Ada-FedSemi,
the communication cost of other three baselines is almost the
same across different data distributions since they always
use fixed P and C . As the skewness of training data in-
creases, our system can adaptively increase communication
cost to ensure the best model performance. For example, on
non-IID-0.75 dataset, although Ada-FedSemi consumes 20%
more communication cost than FedSemi-0.5-0.9, it improves
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the final test accuracy from 66.7% to 73.5%. The results of the
experiments demonstrate that Ada-FedSemi has the ability
of adapting to different data distributions.

5.6 Impact of the Scale of Unlabeled Dataset
As mentioned in Section 5.2, the number of unlabeled
data in CIFAR10, SVHN and STL10 is 40,000, 600,728 and
100,000, respectively. To explore the impact of the scale of
unlabeled dataset, we fix the size of labeled dataset and
conduct experiments by changing the proportion of in-cloud
unlabeled data involved in the training. In addition to con-
ducting experiments with labeled and unlabeled data from
the same dataset, i.e., SVHN and CIFAR10, we also con-
duct an experiment using labeled data from CIFAR10 and
unlabeled data from STL10, denoted as CIFAR10(STL10).
The experimental results are shown in Fig. 13(a). When the
proportion of involved unlabeled data varies from 0% to
100%, the accuracy of models on CIFAR10 increases from
75.5% to 83.1% and that on SVHN increases from 81.5%
to 91.1%. However, when labeled and unlabeled data are
obtained from different datasets, the accuracy improvement
is only 5.4%, i.e., from 75.5% to 80.9%. This can be attributed
to a large number of unlabeled data in STL10 that do
not belong to any classes in CIFAR10. Hence, those data
cannot contribute significantly towards improving model
performance.

Furthermore, we use the trained model with C = 0.9
to select pseudo-labeled data of CIFAR10 and the results
are presented in Fig. 13(b). With the increasing of scale of
unlabeled data, the number of selected data increases from
4,868 to 34,008, and the accuracy of pseudo-labels increases
from 78.5% to 89.1%. This set of experiments demonstrates
that in Ada-FedSemi, the final test accuracy of trained
models is positively correlated to the scale of unlabeled
data. Therefore, when the scale of labeled data on clients is
small, it is an effective way to collect and exploit large-scale
in-cloud unlabeled data to boost the model performance,
and it will not incur additional training cost for resource-
constrained clients.

5.7 Impact of Learning Rate Restart
Herein, we also conduct experiments to evaluate the im-
pact of learning rate restart. The constant learning rate
0.05, denoted as no-restart, is taken as comparison. We
perform model training on CIFAR10 with FedSemi-0.2-0.9
and FedSemi-0.2-0.7, and the corresponding results are pre-
sented in Figs. 14(a) and 14(b), respectively. It shows that
the test accuracy first degrades at each moment of learning
rate restart and then resumes quickly. Although the models
trained with the constant learning rate can achieve contin-
uous improvement, it converges earlier and fails to reach
higher test accuracy, compared with the models trained with
learning rate restart. This is because the constant learning
rate may make the models get trapped in local minimum,
especially when there exists noise in pseudo-labels. Instead,
restarting learning rate helps the models jump out of local
minimum and converge to better solutions.

Although learning rate restart can reach higher final test
accuracy, the performance of models during the training
may vary significantly. In Fig. 15, we compare the test

TABLE 8: Configurations of 5 computation modes of TX2.

Mode 0 1 2 3 4
Denver 2 2.0Ghz×2 0 1.4Ghz×2 0 2.0Ghz×2
ARM A57 2.0Ghz×4 1.2Ghz×4 1.4Ghz×4 2.0Ghz×4 0.3Ghz×1

GPU 1.30Ghz 0.85Ghz 1.12Ghz 1.12Ghz 1.12Ghz

TABLE 9: Parameter size (MB) and normalized
computation load of submodels of VGG9.

Submodel H1 H2 H3

Parameter size (MB) 0.11 1.00 13.4
Normalized computation load 1.0 2.3 3.1

accuracy of teacher model and global model on two data
distributions of CIFAR10, i.e., non-IID-0.5 and non-IID-0.75.
We find that compared to the global model, the teacher
model can achieve more robust performance improvement.
The reason lies in that since the teacher model is a moving
average of past local models, it can produce pseudo-labels
with less errors, and thus exploits unlabeled data better.

5.8 Extension to Client Heterogeneity Scenario
In this section, we evaluate the performance of our pro-
posed algorithm, i.e., HeteroAda-FedSemi, under the client
heterogeneity scenario. The baseline methods are Ada-
FedSemi and Semi-HFL [48]. Without considering client
heterogeneity, Ada-FedSemi assigns a same model to all
selected clients for local training. By utilizing multi-exit
models, Semi-HFL heuristically assigns models of different
sizes to heterogeneous clients and selects pseudo-labels with
a fixed threshold. To make a fair comparison, we modify the
implementation of Semi-HFL and apply it in our scenario,
where unlabeled data are on the server.

To simulate various clients with heterogeneous compu-
tation and communication capabilities, we give the configu-
rations of clients as follows.

• For Computation. TX2 clients can work in one of
five computation modes, and the details are listed in
Table 8. Specifically, the fastest mode (i.e., mode 0)
performs training about 2× faster than the slowest
one (i.e., mode 1). To mimic system dynamics, we
randomly change the working modes of clients every
20 rounds.

• For Communication. All clients are connected to the
parameter server via 2.4GHz WiFi. We arrange 20
clients in 3 groups (each of which contains 10, 5 and
5 TX2 devices, respectively). Then, the clients in the
groups are placed at different locations that are 2m,
10m and 20m away from the WiFi router. Due to
random noises and competition among clients, the
bandwidth between the parameter server and clients
varies dynamically.

The VGG9 model [58] contains 6 convolutional layers
and 3 fully-connected layers. To transform VGG9 into a
multi-exit model, auxiliary classifiers are added after the
second and the fourth convolutional layers, respectively.
As a result, three submodels (including the original model)
of different depths can be generated to adapt to the client
heterogeneity. The parameter sizes and computation loads
of different submodels are presented in Table 9.
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Fig. 14: Impact of the learning rate restart strategy.
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Fig. 15: Performance of teacher model and global model.
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Fig. 16: Training process with heterogeneous clients.
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Fig. 17: Comparison under client heterogeneity.

As shown in Fig. 16, on both CIFAR10 and STL10,
HeteroAda-FedSemi always converges fastest. Specifically,
compared to Ada-FedSemi and Semi-HFL, HeteroAda-
FedSemi speeds up the model training on CIFAR10 by about
1.5× and 1.3×, respectively. The corresponding speedup
on STL10 is 1.7× and 1.2×. In Fig. 17(a), we observe
that on CIFAR10, the average round time of Ada-FedSemi,
HeteroAda-FedSemi and Semi-HFL is 67s, 45s and 52s, re-
spectively. The corresponding time on STL10 is 102s, 68s and
76s. The reason of the performance improvement lies in that
considering heterogeneous device capabilities, HeteroAda-
FedSemi assigns different submodels for clients to perform
local training, thus alleviating the impact of stragglers.
Although the clients in Semi-HFL also train different sub-
models, Semi-HFL can neither assign the most suitable sub-
model to each client nor determine the confidence threshold
adaptively.

To further investigate how long the fast clients wait for
the slow ones, we calculate the average waiting time ratio
as follows:

ratio =

∑K
k=1

∑
vm∈Vk

tk,max−tk,m

tk,max∑K
k=1 |Vk|

× 100%, (34)

where tk,max = maxvm∈Vk{tk,m}. As shown in Fig. 17(b),
HeteroAda-FedSemi significantly reduces the waiting time.
When training models on CIFAR10, the average waiting
time ratio is 38.7%, 6.7% and 10.4% for Ada-FedSemi,
HeteroAda-FedSemi and Semi-HFL, respectively. On STL10,
it becomes 32.1%, 4.5% and 9.2%, correspondingly. These
results demonstrate the efficiency of HeteroAda-FedSemi
when training models under the client heterogeneity.

6 RELATED WORKS

FL aims to train DL models over networks cooperatively

without transferring any users’ personal raw data. Since the
clients at the network edge are usually resource-constrained
(e.g., limited computation and communication capabilities),
many existing works focus on training efficiency in FL.
However, few works consider the scarcity of labeled data
on clients, which is a more practical scenario for federated
model training. In what follows, we review the existing
works about FL with both labeled and unlabeled data, as
well as resource-efficient FL, respectively.

6.1 Federated Learning with Unlabeled Data

The significant improvement of DL in recent years is largely
attributed to the utilization of large scale labeled dataset,
e.g., Imagenet [60]. However, obtaining labels of data is
often very costly and time-consuming in practice [5]. Thus,
more and more works are paying attention to exploiting
massive unlabeled data [15], [16], [61], which are easy to
collect from public access. For example, with the advent of
social media, over a billion of people are generating different
types of data, including text, images and videos on the
Internet continuously [8], which are stored in cloud and can
be accessed publicly. One large scale dataset is WebVision
Database [9], consisting of 2.4 million web images crawled
from the Internet but their labels are always missing. There-
fore, semi-supervised learning (SSL) [62] is proposed to train
models on both small scale of labeled dataset and large scale
of unlabeled dataset.

There are two main methods in traditional SSL. The
first one is consistency regularization based algorithms [63].
These algorithms require that the predictions of unlabeled
data are invariant to different data augmentations, which
is implemented by a consistency regularization term in
the loss function. However, as indicated in [21], training
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models on the different views of the data (i.e., multiple
augmentations of a single data sample) significantly in-
creases the training overhead. The other method is pseudo-
labeling based algorithms [17], [21], which regard the high-
confidence predictions of unlabeled data as their pseudo-
labels. Then, models are trained over both labeled and
pseudo-labeled data samples. However, all above methods
only care about the final test accuracy of the trained model
but don’t take the features (e.g., limited capacity of commu-
nication and computation) of FL into consideration and thus
fail to achieve training efficiency.

Recently, several works try to perform SSL under FL
settings. Some works try to exploit on-device unlabeled
data. For example, Jeong et al. [11] propose to select other
clients’ local models for each client to help exploit local un-
labeled data. Besides, Long et al. [12] adopt two models (i.e.,
teacher and student models) at each client to train models on
both labeled and unlabeled data. Moreover, considering the
limited scale of on-device unlabeled data, works [13], [14]
first distribute in-cloud public unlabeled data to clients and
then perform SSL algorithms. However, all above methods
try to utilize unlabeled data at the edge, which will increase
training cost for clients. Since end devices at the network
edge are always resource-constrained and there are large-
scale in-cloud public unlabeled data, it is a more efficient
way to utilize these data at the PS, without incurring any
additional training cost on clients.

6.2 Resource-efficient Federated Learning

Training the DL models (especially the highly over-
parameterized models) in a distributed manner usually
requires intensive computation and significant communi-
cation overhead. In order to achieve efficient training of
FL, many algorithms are proposed to reduce time cost and
communication cost. Some recent works [19], [23] aim to
optimize the training time by utilizing deep reinforcement
learning based algorithms to schedule clients. Huang et al.
[64] aim to accelerate FL while ensuring long-term fairness
constraints. However, these works all employ a fixed partic-
ipating fraction of clients and mainly concentrate on opti-
mizing a single objective (e.g., training time), which cannot
satisfy the various cost preferences (e.g., fast convergence or
low communication cost) for different FL tasks. As stated
in the work [18], a large participating fraction can lead to
reduction of training time while a small fraction contributes
to saving communication cost. However, the work [18]
is designed to determine the offline optimal participating
fraction before performing the FL tasks, which fails to adapt
to the dynamic changes of cost preferences online.

Moreover, to reduce the volume of transmitted data and
accelerate the distributed model training, many prior works
[65] propose various model (or gradient) compression tech-
niques. For example, Quantization saves communication cost
using less bits to represent the original parameter elements
(e.g., from float32 to float16). Sparsification is also a popular
compression method, which transmits a sparse vector in-
cluding only a subset of the original model parameters. The
transmitted parameters are selected randomly or through
their magnitude. Another common technique for reducing
the number of communication rounds is federated average

(FedAvg) [4], which allows clients to perform multiple local
updating before global aggregation. Wang et al. [25] propose
to determine the optimal local updating steps adaptively
with the constraint of available resource.

Edge devices usually exhibit capability heterogeneity,
due to different types of hardwares, including CPU, GPU,
storage and battery life. The clients with poor capabilities
may become the system stragglers, slowing down the train-
ing process. To deal with the heterogeneity among edge
devices in FL, there are a number of works that adopt
different methods. Ma et al. [52] adjust batch size for het-
erogeneous clients to reduce the waiting time. Xu et al. [66]
jointly optimize the local updating frequency and model
compression ratio to speed up the training process.

Note that our work is orthogonal to above resource-
efficient techniques, which can be adopted in our FL system
to further reduce traffic consumption and speed up the
training process.

7 CONCLUSIONS

To fully utilize the on-device labeled and in-cloud unlabeled
data in FL, we propose an adaptive FSSL system called
Ada-FedSemi. It employs an MAB based online learning
algorithm to adaptively determine the fraction of partici-
pating clients and confidence threshold for pseudo-labeling
during the federated model training. The dynamic opti-
mization of participating fraction and confidence threshold
can contribute to the trade-off between model accuracy
and training efficiency given the limited resource budgets.
The extensive experimental results demonstrate that Ada-
FedSemi significantly outperforms the existing baselines,
including FedAvg and FedSemi. Moreover, considering the
client heterogeneity, the proposed HeteroAda-FedSemi can
further speed up the model training.
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