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Abstract—Federated Learning (FL) has emerged as an efficient
distributed model training framework that enables multiple clients
cooperatively to train a global model without exposing their
local data in edge computing (EC). However, FL usually faces
statistical heterogeneity (e.g., non-IID data) and system hetero-
geneity (e.g., computing and communication capabilities), resulting
in poor model training performance. To deal with the above
two challenges, we propose an efficient FL framework, named
FedBR, which integrates the idea of block-wise regularization
and knowledge distillation (KD) into the pioneer FL algorithm
FedAvg, for resource-constrained edge computing. Besides, we
design a heuristic algorithm (GMBS) to determine the appropriate
number of model blocks for clients according to their varied
data distributions, computing, and communication capabilities.
Extensive experimental results show that FedBR can reduce the
time cost by 19.5% and the communication cost by 27% on average
compared with the other three baselines when achieving the target
testing accuracy under heterogeneous settings.

Index Terms—Federated Learning, Edge Computing, Heterogene-
ity, Regularization, Knowledge Distillation.

I. INTRODUCTION

As the computing power of edge devices (or clients) be-
comes more and more powerful, a distributed model training
framework, federated learning (FL) [1], is applied to handle
more complex tasks for edge computing. However, performing
efficient federated learning still faces three main challenges
in EC. (1) Statistical Heterogeneity. The local data of the
clients are usually generated according to the preference and the
location of clients [2]. Data samples from different clients are
usually not independent and identically distributed (non-IID).
This characteristic of non-IID data will seriously hurt the model
training performance and reduce the convergence rate [3]. (2)
System Heterogeneity. The clients participating in the model
training have different computing and communication capabil-
ities [4], [5], which are closely related to the time of model
updating and transmission, respectively. In FL, the training time
of each global round always depends on the slowest client,
resulting in a longer completion time. (3) Communication
Limitation. It takes a lot of bandwidth to deliver models
between the server and clients during the training. Therefore,
the limited communication bandwidth on the server is also a
bottleneck in FL [6].

To mitigate the impact of statistical heterogeneity, regu-
larization [7] has been applied to FedAvg, e.g. FedProx [8].
FedMLB [9] is a new regularization method combined with
knowledge distillation (KD) technology [10], which blocks the
model hierarchically based on FedAvg and constructs multiple
auxiliary branches. It puts the output obtained by each auxiliary

branch and the output obtained by the local model into the loss
function as a regularization item through knowledge distillation
to obtain more global information. Although this method can
effectively alleviate the non-IID data issue, the introduction of
auxiliary branches greatly increases the computing cost [11].
Besides, since all clients use the same number of auxiliary
branches and receive the entire global model, FedMLB performs
poorly under system heterogeneity and limited communication
resource according to the results of experiments.

Motivated by FedMLB, we design an efficient federated
learning framework FedBR, which integrates the idea of block-
wise regularization and knowledge distillation into FedAvg, to
solve the above three challenges simultaneously. Specifically,
we divide the model into multiple blocks according to the
layer order of DNN. To alleviate the impact of non-IID data,
we design a new regularization technique, called block-wise
regularization, to absorb the knowledge of the global model
blocks via KD, where KD is adopted to reduce the discrepancy
between the outputs of different paths. Besides, the server only
distributes the last several consecutive blocks of the global
model in FedBR, thus significantly reducing the communication
cost compared with FedAvg. Although more number of global
model blocks allow clients to learn more global information,
it will lead to more computing and communication cost.
Therefore, how to dynamically determine the proper number of
global model blocks sent by the server for each client is a key
challenge. Based on this, we summarize the main contributions
of this paper as follows:

• We propose an efficient FL framework, called FedBR,
which can reduce the communication cost and alleviate
the heterogeneous challenges.

• We propose a heuristic algorithm (termed as GMBS) that
adaptively determines the number of global model blocks
for clients.

• We evaluate the performance of FedBR through extensive
experiments. The experimental results show that FedBR
can shorten the time cost by 19.5% and reduce the band-
width consumption by 27% on average compared with the
other three benchmark methods when achieving the same
target testing accuracy under heterogeneous settings.

II. PROPOSED FRAMEWORK AND PROBLEM FORMULATION

A. Overview of FedBR

In this section, we propose an efficient federated learning
framework with block-wise regularization (FedBR) to reduce
the communication cost and alleviate the heterogeneous chal-
lenges. Specifically, we divide the model into M blocks, where979-8-3503-9973-8/23/$31.00 © 2023 IEEE
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Fig. 1: The workflow of FedBR. Multiple consecutive layers in the
neural network constitute a model block (e.g., the two layers form a
model block in the figure). G∗ and L′

∗ represent the global model
blocks (black blocks) and the local model blocks (blue blocks) saved
by clients at the previous global round, respectively, where ∗ denote
the indexes of the model block.

M is determined by the server according to the layer structure
of the model. Concretely, the workflow of FedBR is divided
into the following four steps as shown in Fig. 1:
(1) Model Broadcast: At the beginning of global round t,
the server sends different numbers of consecutive global model
blocks to the clients. We use xt and αt

k to denote the global
model and the number of global model blocks which are sent to
client k at global round t, respectively. To prevent client k from
forgetting the information belonging to the first several blocks
of the global model (e.g., G1, G2, G3 in Fig. 1), the server will
send an entire global model to all clients every τ + 1 rounds,
where τ ≥ 1.
(2) Model Combination: If client k receives the last αt

k global
model blocks at global round t, it will combine the first M−αt

k

blocks of local model xt
k(te) with the last αt

k blocks of the
global model to form the combined model. We use xt

k(i) to
represent the local model of client k after i local iterations,
where i is equal to the total number of local iterations from the
beginning of model training. If client k receives entire global
model at global round t, it will directly take the received model
as the combined model.
(3) Local Updating: At global round t, client k uses the
combined model as the new local model xt

k(te). Then, client
k performs e local iterations based on its own local dataset
Dk using the block-wise regularization in Fig. 2 to obtain
updated local model xt+1

k ((t+1)e). When e local iterations are
completed, client k returns the entire local model xt+1

k ((t+1)e)
to the server.
(4) Model Aggregation: After the server collects all local
models from K clients, it will aggregate all models to derive
an up-to-date global model xt+1 according to the following
equation:

xt+1 =
1

K

K∑
k=1

xt+1
k ((t+ 1)e). (1)
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Fig. 2: The block-wise regularization in FedBR. Given global round
t, the local network of client k consists of αt

k hybrid paths and one
local path. The blue arrow indicates the forward propagation path of
the input and q denotes the output of each path. y and ζ represent
the truth label of the input and loss term, respectively. Double-headed
arrows indicate different loss terms in the loss function.

Then, FedBR continues to perform the Model Broadcast at
the next global round t + 1 until the global model reaches
convergence or network resources are exhausted.

B. Problem Definition

Assume that there are N clients in the network and only K
clients participating in the model training (K ≤ N). Without
loss of generality, computing and communication resources are
taken into consideration in this work. The total budgets of
computing and communication resources are denoted as Bc and
Bb in the network, respectively. Besides, the computing cost
of one batch and the consumption of transferring the entire
model are denoted as c and b, respectively. Let ctk represent
the computing cost of client k at each local iteration of global
round t. It can be expressed as:

ctk = (1 +
αt
k(α

t
k + 1)

2M
) · nk

B
· c, (2)

where nk is the number of local samples in client k, B is the
size of batch, and the coefficient (i.e., 1 + αt

k(α
t
k + 1)/2M )

is related to the multiplexing of intermediate results between
the local path and hybrid paths. We use btk to denote the
average communication cost of client k at global round t.
The communication cost of client k can be expressed as
(1 + αt

k/M) · b. Combining the above two cases, the average
communication cost of client k in each global ground can be
expressed as:

btk = (1 +
1

τ
+ (1− 1

τ
)
αt
k

M
) · b, (3)

We aim to minimize the completion time while finding the
proper αt

k for each client k at round t in FedBR. Accordingly,
we formulate the FLMBT problem as follows:

min
∑T

t=1
Ht (4)

s.t.



f(xT ) ≤ F ,
T∑

t=1

K∑
k=1

e · ctk ≤ Bc, ∀k, t
T∑

t=1

K∑
k=1

btk ≤ Bb, ∀k, t

αt
k ∈ {1, . · · · ,M − 1} , ∀k, t,
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where Ht represents the completion time of global round t, i.e.,
the time that K clients complete their local training after the
last global round. The first inequality expresses the convergence
requirement, where F is the convergence threshold of the loss
value after T global rounds. The second set of inequalities and
the third set of inequalities indicate that the computing and
communication cost during T global rounds should not exceed
their total budget. The fourth group of formulas denote that
the number of blocks should be an integer and not exceed the
number of total model blocks.

In fact, it is difficult to directly solve the FLMBT problem in
Eq. (4). Since the decision variable of FLMBT is an integer, this
is a typical integer programming problem. In general, finding
the optimal solution for an integer programming problem is NP-
hard [12]. Consequently, solving problem in Eq. (4) at each
global round will be time-consuming. Meanwhile, the time-
varying network conditions also aggravate the difficulty of the
problem.

III. ALGORITHM DESIGN

In this section, we propose an efficient algorithm to solve
the FLMBT problem in Eq. (4). The key challenge to solve
problem in Eq. (4) is to find the appropriate αt

k for each client
k at the beginning of any global round t while minimizing
the completion time. The number of blocks αt

k should depend
on the data distribution as well as the communication and
computing time of client k. The difference between the local
model and the global model is proportional to the bias between
the local data distribution and the overall data distribution [13].
We use dk to denote the deviation between the data distribution
of client k and the overall data distribution. Let tk,b and tk,c
represent the communication time and the computing time of
client k, respectively. To facilitate comparison, we employ
normalization for the communication and computing time of
client k. Apparently, αt

k should be positively correlated with
dk and inversely proportional to t′k,b and t′k,c for client k. As
a result, we design a feedback variable rtk,m:

rtk,m ≜
dk ·∆ζL

et
′
k,c+t′k,b

, (5)

where the exponential function is applied to enhance the effect
of time cost on the feedback variable, ζL is the local loss
function. To determine the proper αt

k for client k, we design a
greedy-based model blocks selection (GMBS) algorithm. The
server holds one vector pk for each client k to remember
the feedback information of the previous global round, where
pk,m corresponds to the feedback information of sending m
global model blocks to client k. We need to remember previous
feedback information to decrease the interference of error
feedback information caused by a certain round. Therefore,
pk,m is updated by the following equation:

pk,m = λrtk,m + (1− λ)pk,m, (6)
where λ (0 ≤ λ ≤ 1) is a hyperparameter that reflects the
weight of real-time feedback information. Since the number
of global model blocks is randomly selected at the beginning
of training and the states of clients are variable, we cannot
always adopt m corresponding to the highest value of feedback
information as αk for the decision of client k. Therefore, we
add a penalty item for feedback information pk,m. Finally, we

use the following decision variable Vk,m to select the number
of global model blocks:

Vk,m = pk,m +

√
ln (t+ 1)

nk,m + 1
, (7)

where nk,m represents the frequency that the server selects
m global model blocks to send to client k. We choose m
corresponding to the largest decision variable as the number of
global model blocks received by client k at round t (i.e.,m =
argmax

m
Vk,m).

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Datasets and Model: We use two real-world classical
datasets, i.e., CIFAR10 and CIFAR100 [14] to evaluate the
performance of FedBR and the baselines. Besides, we train
a ResNet18 [15] model, which is often adopted for image
recognition tasks.

Data Division: We use ϵ to represent the non-IID level,
which ranges from {0, 1, · · · , 9}. When ϵ = 0, it represents the
data distribution is IID. For CIFAR10, when ϵ ∈ {1, · · · , 9},
it denotes that the ϵ × 10% local data of the client belongs
to the same class and the rest of the local data is evenly
divided into the remaining nine classes. For CIFAR100, when
ϵ ∈ {1, · · · , 9}, it denotes that the local dataset of each client
lacks ϵ × 10 kinds of images and the local data is evenly
distributed among the remaining 100− ϵ× 10 classes.

Baselines and Metrics: We compare the performance of
FedBR together with the three baselines, i.e., FedAvg [1],
FedProx [8], and FedMLB [9]. In this paper, we use the
following three metrics to evaluate the performance of our
proposed framework: (1) Testing accuracy. We will compute
the testing accuracy of the global model on the testing set. (2)
Time cost. We will record the completion time when the model
training achieves the given target accuracy. (3) Communication
cost. We will record the total bandwidth consumption of all
clients for uploading and downloading models.

B. Experimental Results

Resource Consumption: We test the resource consumption
of FedBR and the baselines to achieve a target testing accuracy,
as shown in Fig. 4. For time cost, FedBR consumes the least
time among all methods to train the model either on CIFAR10
or CIFAR100 according to the left plot of Fig. 4. For example,
when CIFAR100 is trained on ResNet18 under ϵ = 7, FedBR
takes 954 seconds, which is 14.6% less than FedAvg (1,104
seconds), 20% less than FedProx (1,189 seconds), and 24%
less than FedMLB (1,245 seconds). For communication cost,
as shown in the right plot of Fig. 4, FedBR consumes the
least communication bandwidth to train the model either on
CIFAR10 or CIFAR100 when the global model achieves a target
accuracy. For instance, when CIFAR100 is trained on ResNet18
under ϵ = 7, we obtain that the communication bandwidth
consumed by FedBR is 72.8GB, which saves 31%, 27.5%,
and 22.3% of bandwidth when FedAvg (105.4GB), FedProx
(100.4GB), and FedMLB (93.7GB) achieve the same testing
accuracy, respectively.

Impact of Resource Constraints: We conduct experiments
to test the performance of FedBR and three baselines with the
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Fig. 3: Testing accuracy with completion time and bandwidth constraints under the non-IID level ϵ = 7
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Fig. 4: Time and bandwidth consumption after the model achieves the
target accuracy on CIFAR10 (0.8) and CIFAR100 (0.5).

resource constraints. For the completion time constraint, Fig.
3(a) and Fig. 3(b) show that the testing accuracy will increase
with the increasing completion time budget on both CRFAR10
and CIFAR100. Note that FedBR can achieve the best training
performance in four methods with the same completion time
budget. For example, the testing accuracy of FedBR is about
77.4% on CIFAR10 when given the completion time is 900s,
while that of FedAvg, FedProx and FedMLB is about 75.3%,
74.1% and 74.0%, respectively. For bandwidth constraint, more
communication bandwidth budget will significantly improve the
performance of all methods according to Fig. 3(c) and Fig.
3(d). However, FedBR obtains better performance than FedAvg,
FedProx, and FedMLB while consuming the same network
bandwidth. For instance, given the total network bandwidth
budget of 50GB, the testing accuracy of FedBR is about 76.8%
on CIFAR10, while that of FedAvg, FedProx, and FedMLB is
about 70.8%, 70.3%, and 72.3%, respectively.

V. CONCLUSIONS

In this work, we have proposed the FedBR framework to
deal with statistical heterogeneity and system heterogeneity for
resource-constraint edge computing. We have designed a heuris-
tic algorithm (GMBS) to adaptively determines the number of
global model blocks for each client. We have built a simulation
environment and evaluated the performance of FedBR. The
results demonstrate the effectiveness of FedBR in improving
the model accuracy and reducing resource consumption.
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